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Abstract

What do you do if a computational object (e.g. program trace) fails a specifica-
tion? An obvious approach is to perform a repair : modify the object minimally
to get something that satisfies the constraints. This approach has been in-
vestigated in the database community, for integrity constraints, and in the AI
community for propositional logics. Here we study how difficult it is to repair
a document in the form of a string. Specifically, we consider number of edits
that must be applied to an input string in order to satisfy a given target lan-
guage. This number may be unbounded; our main contribution is to isolate
the complexity of the bounded repair problem based on a characterization of the
regular languages that admit bounded repairr. We consider the settings where
the repair strategy is unconstrained and when the editing must be produced in
a streaming way, i.e. by a letter-to-letter transducer.

Keywords: Bounded repair, edit distance, regular languages.

1. Introduction

When a computational object does not satisfy a specification, an obvious
approach is to repair it – edit it minimally so that it becomes valid. We may
want to perform this editing transformation on the object, or we may be merely
interested in knowing how difficult it would be to perform – that is, determining
how far a given object or collection of objects is from satisfying the specification.
In the database community, this has been extensively studied under the notion
of constraint repair (see e.g. [1, 2]): the specifications considered there are
relational integrity constraints, such as keys and foreign keys, and the problems
considered include determining how much a database needs to be modified in
order to satisfy a given constraint.

Here we study repairs of words. In this case, we can simply consider the
edit distance between strings, a standard measure of how many basic operations
it takes to get from one string to another. Edit distance is lifted in a natural
way to give a measure of the distance of a string u to a language (collection
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of strings) L. It is well known [3] that the standard dynamic programming
approach to edit distance extends to give an efficient algorithm for calculating
the minimum distance of u to any string in L, when L is a regular language
given as a non-deterministic finite state automaton.

In this work we take the next step and consider a notion of “distance” be-
tween languages: given two languages R and T (specified in terms of automata),
we aim to calculate how difficult it is to transform a string satisfying R into a
string satisfying T . The notion is motivated by considering R to be a restriction
– a constraint that the input is guaranteed to satisfy – while T is a target – a
constraint that we want to enforce. We consider the worst-case over any string
u ∈ R of the number of edit operations needed to move u into T , that is, we
look at the worst-case number of edits needed to get from R to T . Of course,
this number may be infinite; the core of our results is a procedure for solving
the bounded repair problem, namely, to determine whether the supremum above
is finite. In order to solve this effectively, we need to restrict the languages R
and T . We consider this problem when the restriction and target languages are
presented by both deterministic and non-deterministic finite state automata. In
these cases we determine the complexity of the bounded repair problem.

Above we considered the use of an edit/correction function that can read
the whole string in memory. In this work we consider the impact of limitations
on the editing process – what happens when we require the editing to be done
by a transducer, reading the input letter-by-letter and producing the corrected
output, based only on a finite amount of control state and a fixed amount of
lookahead in the word. We refer to this as a streaming repair processor. We
isolate the complexity of the streaming repair problem for any lookahead and for
any of type of representation of the languages considered in the non-streaming
setting.

The above deals with the problem of determining whether the distance be-
tween two specifications is finite or infinite. But in the finite case, we may want
to compute this distance exactly, and to produce the processor that optimally
edits a given specification. Note that in the non-streaming setting, it is easy
to describe the optimal processor: it is simply the procedure that given a word
u runs a dynamic programming algorithm to compute the edit distance to the
target language (e.g. the algorithm from [3]). However, in the streaming set-
ting it is not clear how to derive the optimal editing algorithm efficiently. We
give results on the complexity of computing the exact bound when it is finite
in both the streaming and non-streaming settings, and also give procedures for
computing the optimal processor in the streaming setting.

The streaming and non-streaming repair problems have very different
flavours: the former are closely related to games played on the components
of two automata, while the latter require a more global analysis, and exhibit a
close relation to distance automata. However, there are connections between the
different problems: we show that in the case where there is no restriction, the
bounded repair problems are the same for both the streaming and non-streaming
setting. We also show that the bounded repair problem in the streaming set-
ting is independent of the lookahead, and is robust under plausible alternative
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definitions.
In summary our contributions are:

1. We formalize the bounded repair problem for languages of words and
characterize when regular languages have bounded repair, in both the
streaming and non-streaming setting.

2. We show that the bounded repair problem in the streaming setting is
independent of the lookahead, and is robust under variants of the cost
function.

3. Using the characterizations above, we give results on the complexity of
the bounded repair problem in each setting.

4. We present results on the complexity of computing the optimal number
of edits, and on computing the optimal repair strategy in the streaming
setting.

5. We demonstrate special cases where the streaming and non-streaming
bounded repair problems have the same solution.

Organization. Section 2 gives the preliminaries. Section 3 defines the basic
problems. Section 4 gives the characterizations of bounded repairability that
we will use throughout the remainder. Section 5 analyses the complexity of the
bounded repair problem in the non-streaming and streaming settings. Section 6
shows some connections with games and distance automata. Section 7 gives the
conclusions.

Acknowledgments. We thank the anonymous referees of JCSS for many
helpful comments. The authors were supported by the Engineering and Physi-
cal Sciences Research Council (UK) grant EP/G004021/1, Enforcement of Con-
straints on XML Streams.

2. Preliminaries

Given a word w over an alphabet Σ, we denote by ∣w∣ its length. Given two
positions 1 ≤ i ≤ j ≤ ∣w∣, we denote by w[i] (resp., w[i . . . j]) the i-th symbol of
w (resp., the infix of w starting at position i and ending at position j).

Automata. A non-deterministic finite state automaton (shortly, NFA) is a
tuple of the form A = (Σ,Q,E, I,F), where Σ is a finite alphabet, Q is a finite
set of states, E ⊆ Q × Σ × Q is a transition relation, and I,F ⊆ Q are sets of
initial and finite states. The notions of run and accepted word are the usual
ones [4]. L (A) is the language recognized by A. If A is a deterministic finite
state automaton (DFA), which never has more than one applicable transition,
then we usually denote the unique initial state by q0 and turn its transition
relation E into a partial function δ from Q × Σ∗ to Q defined by δ(q, ε) = q
and δ(q,a u) = δ(q ′,u) iff (q,a,q ′) ∈ E. We naturally extend the transition
function δ of a DFA from letters to strings – that is, we let δ(q, ε) = q and
δ(q,u ⋅ a) = δ(δ(q,u),a) for all u ∈ Σ∗.
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For technical reasons, it is convenient to assume that an automaton is
trimmed, namely, all its states are reachable from some initial states (i.e., they
are accessible) and they can reach some final states (i.e., they are co-accessible).
It is worth noticing that, since the decision problems we are going to deal with
are at least NLOGSPACE-hard and since states of automata that are not ac-
cessible or not co-accessible can be pruned using a simple non-deterministic
logarithmic-space reachability analysis, this assumption will have no impact on
our complexity results.

Since automata can be viewed as directed labelled graphs, we inherit stan-
dard definitions and constructions in graph theory. In particular, given an
automaton A = (Σ,Q,E, I,F) and a state q ∈Q, we denote by C(q) the strongly
connected component (SCC, for short) of A that contains all states mutually
reachable with q. Given a set C of states of A (e.g., a SCC), we denote by
A∣C the NFA that recognizes the set of all words that can be consumed entirely
inside the SCC C: this automaton is obtained by restricting A to the set C and
by letting the new initial and final states be all and only the states in C. Note
that if C consists of a single state without transitions to itself, then the language
L (A∣C) recognized by the subautomaton A∣C is equal to {ε}. Finally, we de-
note by dag(A) the directed acyclic graph of the SCCs of A and by dag∗(A)
the graph obtained from the symmetric and transitive closure of the edges of
dag(A).
Transducers. A (subsequential) transducer is a tuple S = (Σ,∆,Q,δ,q0,Ω),
where Σ is a finite input alphabet, ∆ is a finite output alphabet, Q is a finite
set of states, δ is a partial transition function from Q × Σ to ∆∗ ×Q, q0 is an
initial state, and Ω is a partial function from Q to ∆∗. For every input word
u = a1 . . .an ∈ Σ∗, there is at most one run of S on u of the form

q0
a1/v1−→ q1

a2/v2−→ . . . an/vn−→ qn
ε/vn+1−→

where δ(qi,ai) = (vi,qi+1) for all 0 ≤ i < n and Ω(qn) = vn+1 [5]. In such a
case, we define the output of S on u to be the word S(u) = v1v2 . . .vnvn+1.
We observe that the transducer may append a string vn+1 at the end of the
computation: this is precisely the notion of subsequentiality introduced in [5].

Transducers as above produce a portion of the output immediately on read-
ing an input character. We will also consider transducers with a bounded
amount of “delay”. A k-lookahead transducer, with k ∈ N, is defined as above,
but the transition function δ now has input in Q×Σ× (Σ�)k, with Σ� = Σ∪ {�}
and � ∉ Σ. Given an input word u and a position 1 ≤ i ≤ ∣u∣ in it, we de-
note by −�u i the (k + 1)-character subword of u ⋅ �k that starts at position i and
ends at position i + k. The output of a k-lookahead transducer S on an input
u of length n is the unique word v = v1v2 . . .vnvn+1 for which there exists a
sequence of states q0, ...,qn satisfying δ(qi,−�u i) = (vi,qi+1), for all 1 ≤ i ≤ n,
and Ω(qn) = vn+1. Clearly, a 0-lookahead transducer is simply a standard
(subsequential) transducer.
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3. The bounded repair problem

Given two words u ∈ Σ∗ and v ∈ ∆∗, we denote by

dist(u,v)

the Levenshtein distance (henceforth, edit distance) between u and v, which is
defined as the length of a shortest sequence s of edit operations (e.g., deleting a
single character, modifying a single character, and inserting a single character)
that transforms u into v [3].

We are interested in quantifying how difficult it is to edit a word in one
language to obtain a word in another language. That is, we have finite alphabets
Σ and ∆ and regular languages R ⊆ Σ∗ and T ⊆ ∆∗, called the restriction and
target languages, respectively. We would like to edit any string that is known
to belong to the restriction language R into a string in the target language T .
How do we measure the cost of edits needed to get from R to T? One method
is to look at the largest number of edit operations that are needed to get into T
from strings in R, that is, the supremum over all u ∈ R of the minimum over all
v ∈ T of dist(u,v):

cost(R, T) =def sup
u∈R

min
v∈T

dist(u,v).

Intuitively, having a finite uniform bound to the edit distance of words in R
from T , means that the language R is “quite close to being a subset” of T – the
gap between strings in R and strings in T is small.

A repair strategy for two languages R and T is any function from R to T .
For a repair strategy f and a word u ∈ R, we define the cost of f on u, denoted
cost(u, f), as the edit distance between u and f(u). Accordingly, we define the
worst-case cost of f as the supremum of the cost of f over all words in R (if
the cost of f on u ∈ R is unbounded, then write cost(R, f) = ∞). Note that the
value cost(R, T) introduced in the previous paragraph can be equally described
as the minimum over all repair strategies f for R and T of the worst-case cost
of f: indeed, the best repair strategy for R and T is just to output on any u ∈ R
the word in T that is closest to u with respect to the edit distance.

Example 1. Consider the regular languages R = a∗ b∗ and T = a∗ c b∗. Clearly,
any string in R can be converted to a string in T with at most 1 edit operation,
namely, cost(R, T) = 1; a repair strategy that achieves this cost maps any word
an bm ∈ R to the word an c bm ∈ T .

The bounded repair problem is to decide, given two regular languages R and
T , whether cost(R, T) is finite or not, namely, whether all words in R can be
edited into T with at most some cost bound that does not depend on the input
word. A variant of the bounded repair problem, called threshold repair problem,
consists of deciding whether cost(R, T) ≤ θ for two given regular languages R
and T and for a given number θ. This problem is the decision version of the
problem of computing the exact value of cost(R, T).
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The regular languages R and T are naturally presented by means of automata.
In the following, we will study the complexity of the bounded repair problem
for languages specified by (i) deterministic finite state automata (DFA) and (ii)
non-deterministic finite state automata (NFA).

Streaming vs non-streaming. The notion of “how much does it cost to edit
a word in R to a word in T” assumes that a repair strategy could be any mapping
from R to T (in principle, such a mapping could even fail to be computable).
However, we know from [3] that there is a dynamic programming algorithm
that, given a word u and a regular target language T specified by means of a
finite state automaton T , computes in time O(∣u∣ ⋅ ∣T ∣) an optimal edit sequence
that transforms u into some word in T . In particular, this shows that optimal
repair strategies can be described by functions of fairly low complexity.

Sometimes it is desirable to have repair strategies that are in even more
limited classes. Perhaps the ideal case is when we can repair R into T with a
one-pass algorithm, that is, using a transducer. Recall that a transducer defines
a word-to-word partial function; if this function happens to produce a word in T
for every input u ∈ R, then we say that it is a streaming repair strategy for R and
T . Similarly, we can consider k-lookahead transducers, with k ∈ N. This type of
transducer outputs words on the basis of its current state and an input (k+ 1)-
character window that represents a substring of u of the form u[i] . . .u[i + k],
where u[i] is either the i-th symbol of w, if i ≤ ∣u∣, or a dummy symbol �, if
i > ∣u∣. Accordingly, we talk about a k-lookahead streaming repair strategy for
R and T .

Given a (k-lookahead) streaming edit strategy S for R and T and given a
word u ∈ R, we can define the cost of S on u in two ways:

1. letting q0
a1/v1−→ q1

a2/v2−→ . . . an/vn−→ qn
vn+1−→ be the run of S on u, we define

the aggregate cost of S on u, denoted costaggrS (u), to be the length of the
final output vn+1 plus the sum, over all indices 1 ≤ i ≤ n, of dist(ai,vi),
where dist(ai,vi) is 1 if vi is empty, ∣vi∣ − 1 if ai occurs in vi, and ∣vi∣
otherwise;

2. considering the transducer S as a repair strategy, we define the edit cost
of S on u, denoted costeditS (u), to be simply the edit distance between u
and the output S(u).

The first notion of cost considers the distortions performed in producing the in-
put from the output – it is equivalent to considering the transducer as producing
edit sequences rather than strings and counting the number of edits produced.
The second notion of cost is global and it considers only the output and not
its production (clearly, the edit cost never exceeds the aggregate cost). These
two models of cost can be very different in general. As an example, consider a
transducer S on the input alphabet Σ = {a,b} that converts a’s to b’s, and b’s
to a’s. On the string un = (ab)n, the aggregate cost is 2n since S changes each
letter, but the edit distance between u and S(u) (i.e., the edit cost of S on u
in our sense) is only 2.

Similarly, we define the worst-case aggregate/edit cost of the k-lookahead
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streaming repair strategy S as follows:

costλS(R) =def sup
u∈R

costλS(u) for λ ∈ {aggr, edit}.

The k-lookahead streaming aggregate/edit cost costλk−lookahead(R, T) for two lan-
guages R and T and for λ ∈ {aggr, edit} is then defined as the minimum of
costλS(R) taken over all k-lookahead streaming strategies S for R and T .

The following example illustrates the difference between bounded repairabil-
ity in the streaming and non-streaming settings:

Example 2. Consider the languages R = (a+b) c∗ (a∗ +b∗) and T = a c∗ a∗ +
b c∗ b∗. In the non-streaming setting, one can get from R to T by only editing
the initial letter, and thus cost(R, T) = 1. In contrast, a k-lookahead streaming
edit strategy must decide whether to leave or change the initial letter, and thus it
could be forced to repair an unbounded sequence of a’s or b’s after the sequence
of c’s. In this case we have costaggrk−lookahead(R, T) = costeditk−lookahead(R, T) =∞.

The bounded repair problem in the k-lookahead streaming setting consists of
deciding whether costλk−lookahead(R, T) < ∞ for a given pair of regular languages
R and T , a given λ ∈ {aggr, edit}, and a given k ∈ N. To stress the difference
between the streaming and the non-streaming settings, we explicitly refer to the
original problem as the bounded repair problem in the non-streaming setting.
Even though the two models of aggregate and edit cost for streaming repair
strategies can be very different, it will turn out that for the bounded repair
problem it does not matter which cost model we choose (see Corollary 4.6).

Special cases. We are also interested in a variant of the bounded repair prob-
lem where the restriction language is assumed to be universal, i.e., a language
of the form Σ∗. In this case, the input to the problem consists of a restriction
alphabet Σ and a regular target language T . We refer to this variant as the
unrestricted case of the bounded repair problem.

4. Characterizations of bounded repairability

We fix a restriction language R and a target language T and we assume,
for the moment, that these languages are recognized by two NFA R and T ,
respectively. Recall that, given a SCC C of R, we denote by R∣C the sub-
automaton of R that is obtained by declaring the states in C to be both initial
and final and by discarding all other states. Moreover, dag(R) denotes the
directed acyclic graph of the SCCs of R and dag∗(T ) denotes the symmetric
and transitive closure of dag(T ). Finally, recall that bothR and T are trimmed,
namely, unreachable and sink states are removed from R and T .

4.1. Non-streaming setting

In order to characterize the positive instances of the bounded repair problem,
we need to consider the relationships between the paths in dag(R) and the
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paths in dag∗(T ). We say that a path π = C1 . . .Ck of SCCs in dag(R) is
covered by a path τ = D1 . . .Dh of SCCs in dag∗(T ) if we have k = h and
L (R∣Ci) ⊆ L (T ∣Di) for all indices 1 ≤ i ≤ k, namely, if the language recognized
by the i-th component along π is contained in the language recognized by the
i-th component along τ.

The following characterization reduces the bounded repair problem in the
non-streaming setting to a path coverability problem between finite directed
acyclic graphs.

Theorem 4.1. Given two NFA R and T , the following conditions are equivalent

1. cost(L (R),L (T )) <∞
(i.e., there is a strategy that repairs L (R) into L (T ) with a uniformly
bounded number of edits),

2. every path in dag(R) is covered by some path in dag∗(T ),

3. cost(L (R),L (T )) ≤ (1 + ∣dag(R)∣) ⋅ ∣T ∣.

Proof of Theorem 4.1. Let R = (Σ,Q,E, I,F) and T = (∆,Q ′,E ′, I ′,F ′) be two
NFA. We first prove the implication from 2 to 3; later we will prove the impli-
cation from 1 to 2 (the implication from 3 to 1 is trivial).

We briefly outline the main ideas underlying the proof of the implication
from 2 to 3. In this direction, we assume that the coverability condition is
satisfied, and we repair a generic word u ∈ L (R) as follows. We first consider
the path π of SCCs of R that is induced by a successful run on u, and we
observe that the input word u can be factorized into a bounded number of
pieces, each one realizable within a component of the path. For instance, if
π = C1 . . .Ck is the considered path inside dag(R), then we can factorize u
as u1 a1 u2 . . . ak−1 uk, with ui ∈ L (R∣Ci) and aj ∈ Σ for all 1 ≤ i ≤ k
and all 1 ≤ j < k. We then consider a path inside dag∗(T ) that covers π, say
τ = D1 . . .Dk, and we observe that each factor ui is also realizable within the
component Di of T . In particular, no repair is needed on the factors u1, . . . ,uk.
On the other hand, the characters a1, . . . ,ak−1 that are interleaved with the
factors in u and that induce jumps along the components C1, . . . ,Ck of π can
be replaced by small strings inducing analogous jumps along the components
D1, . . . ,Dk of τ. This is possible because there exist partial runs connecting
arbitrary states in each component Di to arbitrary states in the next component
Di+1. In the end, the repair of u is formed by interleaving the factors u1, . . . ,uk
with the small strings that replace a1, . . . ,ak−1, and by appending a final string
to reach an accepting state of T .

We now turn to the technical details of this proof. Suppose that every
path in dag(R) is covered by some path in dag∗(T ). We have to prove the
existence of a repair strategy of L (R) into L (T ) with edit cost uniformly
bounded by (1 + ∣dag(R)∣) ⋅ ∣T ∣. Let us fix a generic word u in the restriction
language L (R), and let ρ be an accepting run of R on u. The sequence of
SCCs of R that are visited by the run ρ identifies a path inside dag(R), say
π = C1C2 . . .Ck. Accordingly, we factorize the word u into the sequence of
subwords u1,a1,u2,a2, . . . ,uk, where ui ∈ L (R∣Ci) for all 1 ≤ i ≤ k and ai ∈ Σ
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for all 1 ≤ i ≤ k−1. From the assumption of coverability of the paths in dag(R),
we know that there is a path τ =D1D2 . . .Dk in dag∗(T ) that covers π, namely,
such that L (R∣Ci) ⊆ L (T ∣Di) for all 1 ≤ i ≤ k. This shows that each subword
ui, with 1 ≤ i ≤ k, belongs also to the language L (T ∣Di).

We can now construct inductively a corresponding word f(u) that has the
form v0 u1 v1 u2 . . . uk vk and that is accepted by T . Recall that τ =D1 . . .Dk
is a path in dag∗(T ). Because the automaton T is trimmed, we know that all
states in D1 can be reached from some initial state of T and, similarly, all states
in Dk can reach some final state. In particular, since u1 ∈ L (T ∣D1), we know
that there exist an initial state s0 of T , two states r1 and s1 in D1, and a word
v0 ∈ ∆∗ such that T admits a run of the form s0

v0−→ r1 u1−→ s1. Moreover, without
loss of generality, we can assume that the length of v0 is bounded by the number
of states of T . For the inductive step, we assume that the words v0, . . . ,vi−1,
with 0 ≤ i ≤ k − 1, are defined and that T admits a run on v0 u1 . . . vi−1 from
the initial state s0 to a state si ∈Di. Since every state in Di+1 is reachable from
every state in Di, we know that there is a word vi, with ∣vi∣ ≤ ∣T ∣, and two states

ri+1 and si+1 in Di+1 such that T admits a run of the form si
vi−→ ri+1 ui+1−→ si+1.

For the final step, we assume that v0, . . . ,vk−1 are defined and that T admits
a run on v0 u1 . . . vk−1 uk from the initial state s0 to a state sk ∈ Dk. Using
arguments similar to the previous ones and the fact that all states in Dk can
reach a final state, we derive the existence of a word vk, with ∣vk∣ ≤ ∣T ∣, and a

final state rk+1 of T such that T admits a run of the form sk
vk−→ rk+1. Putting

everything together, we obtain the existence of a successful run of T of the form

s0
v0−→ r1 u1−→ s1 v1−→ r2 u2−→ . . . rk

uk−→ sk vk−→ rk+1

and hence the word f(u) = v0 u1 v1 u2 . . . uk vk is accepted by T . Moreover,
since k ≤ ∣dag(R)∣ and ∣vi∣ ≤ ∣T ∣ for all 0 ≤ i ≤ k, we have that the edit distance
between u and f(u) is at most (1 + ∣dag(R)∣) ⋅ ∣T ∣. This proves that there is
a repair strategy f for L (R) and L (T ) with edit cost uniformly bounded by
(1 + ∣dag(R)∣) ⋅ ∣T ∣, and hence

cost(L (R),L (T )) ≤ (1 + ∣dag(R)∣) ⋅ ∣T ∣.

We now prove the implication from 1 to 2, namely, we assume that there is
a repair strategy f for R and T with bounded cost and we show that every path
in dag(R) is covered by a path in dag∗(T ). The general idea is to associate
with any path π = C1, . . . ,Ck inside dag(R) a suitable word uπ ∈ L (R), called
witnessing word of π, whose repair according to the strategy f induces a path
τ inside dag∗(T ) that covers π. Intuitively, the witnessing word uπ is obtained
from the path π by replacing every component Ci with a sufficiently large num-
ber of repetitions of a special string in L (R∣Ci), which we called fingerprint of
Ci. The number of repetitions of each fingerprint will depend on the worst-case
repair cost N = maxu∈L (R){cost(u, f)}, and will be large enough to imply that
any repair of the witnessing word uπ achieved by at most N edits contains at
least one copy of the fingerprint of each component Ci of π. Moreover, the order
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of occurrence of the fingerprints inside the repaired string will be the same as
the order of the components in the path π. One finally looks at some run of T
that accepts f(uπ): thanks to the occurrence order of the fingerprints of f(uπ),
this run must induce a path τ inside dag∗(T ) that covers π.

Before constructing the witnessing word, we prove a technical lemma, which
defines precisely the concept of fingerprint of a component of R. Intuitively,
the lemma shows that, for any given component C of R, one can find a word
u that can be arbitrarily “pumped” inside the language L (R∣C) – namely,
{u}∗ ⊆ L (R∣C) – and such that, for all components D of T , u ∈ L (T ∣D) iff
L (R∣C) ⊆ L (T ∣D). Hereafter, we say that a word u is cyclic (in a component

C) if there is q ∈ C such that R admits a run of the form q u−→ q.

Lemma 4.2. For every component C of R, there is a cyclic word u ∈ L (R∣C)
such that, for every component D of T ,

u ∈ L (T ∣D) iff L (R∣C) ⊆ L (T ∣D).

Proof. Let C be a component of R and let D1, . . . ,Dm be all the components
of T . We construct the cyclic word u by exploiting an induction over the
number of components in T . That is, we prove that for all i, there is a cyclic
word ui ∈ L (R∣C) such that:

∀1 ≤ j ≤ i. L (R∣C) ⊆ L (T ∣Dj) iff ui ∈ L (T ∣Dj) (⋆)

Clearly, the lemma follows from (⋆) when we let u = um.
The base step i = 0 is vacuously true, so we simply let u0 = ε. For the

inductive step, let i <m and suppose that there exists a word ui satisfying (⋆).
We construct a word ui+1 that satisfies (⋆) as well. We distinguish between
two cases, depending on whether L (R∣C) ⊆ L (T ∣Di+1) or not. If L (R∣C) ⊆
L (T ∣Di+1), then we simply let ui+1 = ui, in such a way that (⋆) holds trivially.
Otherwise, let v1 be a word in L (R∣C) ∖ L (T ∣Di+1). Since v1 ∈ L (R∣C),
R admits a run of the form q v1−→ r, for some states q, r ∈ C. Similarly, since
ui is cyclic in C, R admits a run of the form s ui−→ s, for some state s ∈ C.
Moreover, since q, r, s are mutually reachable inside C, there exist some words
v0,v2 ∈ L (R∣C) such that R admits runs of the form s v0−→ q and r v2−→ s. Now,
define ui+1 = v0 v1 v2 ui. The word ui+1 is cyclic in C, as witnessed by
following the run:

s v0−→ q v1−→ r v2−→ s ui−→ s.
It is also easy to see that ui+1 does not belong to L (T ∣Di+1). Indeed, if
ui+1 ∈ L (T ∣Di+1), then the subautomaton T ∣Di+1 would also admit a run on
the factor v1 of ui+1, which is a contradiction since v1 ∉ L (T ∣Di+1). Finally, we
know from the inductive hypothesis that for all 1 ≤ j ≤ i, L (R∣C) ⊆ L (T ∣Dj) iff
ui ∈ L (T ∣Dj), and that the latter holds iff ui+1 ∈ L (T ∣Dj). We conclude that,
for every 1 ≤ j ≤ i+1, L (R∣C) ⊆ L (T ∣Dj) iff ui+1 ∈ L (T ∣Dj), which proves the
inductive step for (⋆). ◻
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Consider now any path π = C1 . . .Ck ∈ dag(R). We associate with each
component Ci a word ui that satisfies Lemma 4.2, and we call it the fingerprint
of Ci. Since each word ui is cyclic for Ci and since all states in a component
Ci can reach all states in the next component Ci+1, we know that there exist
states q1 ∈ C1, . . . ,qk ∈ Ck and words u ′1, . . . ,u ′k−1 such that R admits a run of
the form

q1
u1−→ q1 u ′1−→ q2 u2−→ q2 u ′2−→ ⋯ uk−1−→ qk

uk−→ qk.

Furthermore, since R is trimmed, there exist an initial state q0, a final state
qk+1, and some words u ′0,u ′k such that R admits runs of the form q0

u ′0−→q1 and

qk
u ′k−→qk+1. Putting all together, we have that, for every positive natural number

n, the word
u(n) =def u ′0 un1 u ′1 un2 . . . unk u

′
k

is accepted by R. We define the witnessing word of π as uπ = u(M), where
M = (N + 1) ⋅ (∣dag(R)∣ + 1).

To conclude the proof, we look at the repair f(uπ) of the witnessing word of
π, we extract from it a path τ in dag∗(T ), and we show that τ covers π. First,
recall that f(uπ) is accepted by T and is obtained from uπ by a sequence of at
most N edits. From this and the definition of uπ, it follows that we can write

f(uπ) = v0 u
`
1 v1 u

`
2 . . . u`k vk

where ` = ∣dag(R)∣ + 1. A simple application of the pigeon-hole principle shows

that every run of T on f(uπ) must contain a sub-run of the form ri
ui−→ si,

for each 1 ≤ i ≤ k, where the states ri and si belong to the same com-
ponent of T . Specifically, this means that f(uπ) can be equally written as
v ′0 u1 v

′
1 u2 . . . uk v

′
k, and that this word is accepted by a run of T of the form:

s0
v ′0−→ r1 u1−→ s1 v ′1−→ r2 u2−→ s2 . . . rk

uk−→ sk v ′k−→ rk+1

where ri, si ∈ Di for all 1 ≤ i ≤ k, and D1, . . . ,Dk are SCCs of T . In particular,
for all 1 ≤ i ≤ k, we have ui ∈ L (T ∣Di), and hence L (R∣Ci) ⊆ L (T ∣Di) since
ui is the fingerprint of Ci. We have just shown that the path τ = D1 . . .Dk in
dag∗(T ) covers the arbitrarily chosen path π = C1 . . .Ck. ◻

4.2. Streaming setting

We now provide a variant of Theorem 4.1 that characterizes the positive
instances of the bounded repair problem in the streaming setting. We do so by
adding in a game. For this it is convenient to assume that the restriction and
target languages are presented by means of DFA R and T . We associate with R
and T a reachability game played by two players, Adam and Eve, on a directed
acyclic graph AR,T , which is defined in terms of the SCCs of R and T . The idea
underlying the game is as follows: the moves of Adam’s construct incrementally
a path π in dag(R); Eve has to respond to these moves by constructing of a
corresponding path f(π) in dag∗(T ) that covers π. In the game setting, moves
are played alternatively between Adam and Eve. In particular, the function f
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that describes Eve’s strategy must satisfy the following condition: if π ⋅C is an
extension of the path π in dag(R) by a single component, then either f(π ⋅ C)
coincides with f(π) or it is an extension of f(π) by a single component, namely,
f(π ⋅C) is of the form f(π) ⋅D.

Formally, the arena AR,T of the game is a directed acyclic graph, in which
the nodes owned by Adam (resp., Eve) are the pairs of the form (C,D) (resp.,
(D,C)), with C SCC of R and D SCC of T . The edges of the arena connect
Adam’s nodes (C,D) to Eve’s nodes (D,C ′) whenever (C,C ′) is an edge of
dag(R); similarly, they connect Eve’s nodes (D,C) to Adam’s nodes (C,D ′)
whenever (D,D ′) is an edge of dag∗(T ) and, in addition, L (R∣C) ⊆ L (T ∣D ′).
The initial node is owned by Eve and it is of the form (D0,C0), where C0 is the
SCC of the initial state of R and D0 is the SCC of the initial state of T . The
last player who moves wins. Intuitively, Adam’s objective is to reach a node
(C,D) where Eve cannot respond with any move. Conversely, Eve’s objective is
to reach a node (D,C) where Adam cannot respond with any move. As usual,
we say that a player has a winning strategy on the arena AR,T if he/she can
win the reachability game on AR,T independently of the choices of the other
player.

The following characterization reduces the bounded repair problem in the
streaming setting to the problem of determining the winner of a reachability
game over a finite arena.

Theorem 4.3. Given two DFA R and T , the following two conditions are
equivalent:

1. there exists a streaming strategy with some lookahead that repairs L (R)
into L (T ) with uniformly bounded edit cost,

2. Eve has a winning strategy in the reachability game on AR,T .

The idea underlying the proof of the direction from 2 to 1 is as follows. If we
have a winning strategy for Eve, then we can get a streaming repair strategy for
L (R) and L (T ) by tracking the current component C reached by the input
and by maintaining the invariant that the component D induced by repaired
string is such that (C,D) is a position consistent with Eve’s winning strategy.
When a new letter comes in and changes the component in the restriction from
C to C ′, we respond with a suitable repair that moves from D to the response
component D ′ that preserves the invariant.

For the direction from 1 to 2, we assume that there is a streaming k-
lookahead edit strategy that repairs L (R) into L (T ) with uniformly bounded
cost and derive a strategy for Eve. The strategy will maintain the invariant
that the position (C,D) corresponds to some input string u and repair v con-
sistent with the repair strategy. If, by way of contradiction, we reach a pair
(C,D) corresponding to some string u and, moreover, there is a successor SCC
C ′ of C corresponding to some extension uu ′, and (D,C ′) is a losing position
for Eve, then, for every SCC D ′ of T , we can find a word witnessing the non-
containment L (R∣C ′) ⊈ L (T ∣D ′). We can then concatenate multiple copies
of such words together in such a way that the resulting string cannot be re-
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paired by our transducer with a bounded number of edit operations, which is a
contradiction.

Before turning to the proof of the above theorem, it is convenient to establish
two preliminary lemmas, which will be also reused in other proofs (e.g., in the
proof of Proposition 5.4). For the sake of brevity, given an NFA (resp., DFA)
A, a SCC C of it, and a state q ∈ C, we denote by A∣qC the NFA (resp., the
DFA) obtained from the subautomaton A∣C by letting q be the unique initial
state (recall that the final states of A∣C are all the states in C).

Lemma 4.4. Let R be an NFA, let T be a DFA, and let C and D be some
SCCs of R and T , respectively. We have that

L (R∣C) ⊆ L (T ∣D) iff ∃ q ∈ C, r ∈D. L (R∣qC) ⊆ L (T ∣rD).

Proof. Let R = (Σ,Q,E, I,F) and T = (∆,Q ′,δ ′, r0,F ′). We first prove the right-
to-left implication. Suppose that L (R∣qC) ⊆ L (T ∣rD) for some states q ∈ C
and r ∈ D. Let u be a word in L (R∣C). Since q ∈ C and C is a SCC, we know
that there is a word u0 ∈ Σ∗ such that u0 u ∈ L (R∣qC). Since L (R∣qC) ⊆
L (T ∣rD), the same word u0 u belongs also to the language L (T ∣rD). In
particular, this shows that u ∈ L (T ∣D).

We now prove the contrapositive of the left-to-right implication, namely,
we assume that L (R∣qC) ⊈ L (T ∣rD) for all q ∈ C and all r ∈ D and we
derive L (R∣C) ⊈ L (T ∣D). Let D = {r1, . . . , rn}. We first prove, by exploiting
an induction on i ≤ n, that there is a word ui that belongs to L (R∣C) but
not to L (T ∣rjD) for all indices 1 ≤ j ≤ i. The base case is trivial. For the
inductive step, we assume that the claim holds for i < n and we prove it for
i + 1. The main idea is to append to the word obtained from the inductive
hypothesis a suitable word that witnesses a non-containment of L (R∣qC) into
L (T ∣ri+1D). Let ui be the word obtained from the inductive hypothesis such
that ui ∈ L (R∣C) ∖L (T ∣rjD) for all 1 ≤ j ≤ i. Moreover, let si+1 be the state
reached by T from ri+1 after parsing the word ui, that is, si+1 = δ ′(ri+1,ui)
(note that here we use the determinism of T ). If si+1 ∉D, then the claim follows
trivially. We thus consider the case si+1 ∈ D. Recall that ui ∈ L (R∣C) and let

pi,p
′
i be two states in C such that pi

ui−→ p ′i. From the original assumption and
the fact that p ′i ∈ C and si+1 ∈ D, we know that L (R∣p ′

i
C) ⊈ L (T ∣si+1D), and

hence there is a word vi+1 ∈ L (R∣p ′
i
C)∖L (T ∣si+1D). In particular, this shows

that the word ui+1 = ui vi+1 belongs to the language L (R∣C), but not to
the language L (T ∣ri+1D). Finally, since D is a SCC, it follows that ui+1 does
not belong to any of the languages L (T ∣rjD) either, for all 1 ≤ j ≤ i, and this
concludes the proof. ◻

Lemma 4.5. Let R and T be two DFA and let C and D be some SCCs of R
and T , respectively. We have that

L (R∣C) ⊆ L (T ∣D) implies ∀ q ∈ C. ∃ r ∈D. L (R∣qC) ⊆ L (T ∣rD).

Proof. Let R = (Σ,Q,δ,q0,F) and T = (∆,Q ′,δ ′, r0,F ′) be two DFA, let C and
D be two SCC of R and T , respectively, such that L (R∣C) ⊆ L (T ∣D), and
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let q be a state in C. We know from Lemma 4.4 that there exist two states
p ∈ C and s ∈D such that L (R∣pC) ⊆ L (T ∣sD). Moreover, since the states p,q
in C are mutually reachable, there is a word u0 such that δ(p,u0) = q. Since
L (R∣pC) ⊆ L (T ∣sD) and u0 ∈ L (R∣pC), we know that the state r = δ(s,u0)
belongs to D as well. Now, let us consider a generic word u in L (R∣qC).
Clearly, we have u0 u ∈ L (R∣pC). From L (R∣pC) ⊆ L (T ∣sD) it follows that
u0 u ∈ L (T ∣sD), whence u ∈ L (T ∣rD). This shows that L (R∣qC) ⊆ L (T ∣rD).
◻

Proof of Theorem 4.3. Let R = (Σ,Q,δ,q0,F) and T = (∆,Q ′,δ ′, r0,F ′) be two
DFA and let AR,T be the arena obtained from R and T as described above.
Below, we prove first the implication from 2 to 1 and then the implication from
1 to 2.

Suppose that Eve has a winning strategy in the reachability game over AR,T .
Since reachability games are positionally determined, Eve’s strategy can be
described by a partial function1 g that maps a node of the form (D,C), with C ∈
dag(R) andD ∈ dag∗(T ), to a successor g(D,C) = (C,D ′) (if there is any) in the
arena AR,T . We can use Eve’s winning strategy g to construct a subsequential
0-lookahead transducer S that implements a streaming repair strategy for L (R)
and L (T ) having uniformly bounded aggregate cost. Intuitively, the transducer
S works as follows. While parsing the input word u from the restriction language
L (R) and emitting a corresponding word v, the transducer S mimics, at the
same time, the transitions of both automata R and T . Each time the restriction
automatonR exits the current SCC C and enters a new SCC C ′, a corresponding
move (C,D) Adam−→ (D,C ′) for Adam is identified; accordingly, on the basis of
Eve’s response g(D,C ′) = (C ′,D ′) (recall that Eve’s strategy was assumed to
be winning), the transducer S outputs a suitable word that makes the target
automaton T move from the SCC D to the SCC D ′ (the new state in D ′ can
be determined using Lemma 4.5 since we have L (R∣C ′) ⊆ L (R∣D ′)).

The formal definition of the transducer S is a bit more technical due to
the treatment of some special cases. First of all, we can assume, without loss
of generality, that the initial state q0 of R has no entering transitions (we can
always enforce this condition by duplicating states). Then, we let C0 be the SCC
of q0 in R, D0 be the SCC of the initial state r0 of T , g(D0,C0) = (C0,D1) be
target node in the arena AR,T for the first move of the player Eve (recall that g
is the winning strategy of Eve). We also let r1 be some arbitrary state inD1 such
that L (R∣q0

C0) ⊆ L (T ∣r1D1) – this states exists thanks to the containment
L (R∣C0) ⊆ L (R∣D1) and Lemma 4.5. Accordingly, we define v0 to be the
shortest word such that δ ′(r0,v0) = r1 – note that dag∗(T ) contains an edge
from D0 to D1 and hence the state r1 must be reachable from r0. Intuitively,
the word v0 is the first prefix emitted by the transducer S at the beginning of

1The reason for the strategy function g to be partial is that some positions in the arena
AR,T may have no successors.
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the computation (it should be now clear why we assumed that the initial state
q0 of R has no entering transitions). Below we define the various components
of the transducer S = (Σ,∆,Q ′′,δ ′′, s0,Ω).
� The state space of the transducer is Q ′′ =Q ×Q ′.

� For every state s = (q, r) ∈ Q ′′ and every symbol a ∈ Σ, δ ′′(s,a) = (v, s ′),
where s ′ = (δ(q,a),δ ′(r,v)) and v is the word over ∆ defined as follows:

1. if both states q and δ(q,a) belong to the same SCC of R, then we
let v be either the input symbol a or the word v0 ⋅ a, depending on
whether q ≠ q0 or q = q0;

2. otherwise, if the states q and δ(q,a) belong to different SCCs, we
denote by C ′ the SCC of the state δ(q,a) in R, by D the SCC
of the state r in T , by (C ′,D ′) the response g(D,C ′) given by
Eve’s winning strategy, by r ′ some arbitrary state in D ′ such that
L (R∣δ(q,a)C ′) ⊆ L (T ∣r ′D ′) – the state r ′ exists thanks to the con-
tainment L (R∣C ′) ⊆ L (R∣D ′) and Lemma 4.5 – and, finally, we
denote by v ′ the shortest word such that δ ′(r,v ′) = r ′ – the state
r ′ is reachable from r because dag∗(T ) contains an edge from D to
D ′. Accordingly, we define the output v be either the word v ′ or the
word v0 v

′, depending on whether q ≠ q0 or q = q0.

� The initial state of the transducer is s0 = (q0, r0).
� For every state s = (q, r) ∈ Q ′′, the final output Ω(s) is defined to be the

shortest word v ∈ ∆∗ such that δ(r,v) ∈ F ′ – note that the existence of
such a word v is guaranteed by the assumption that every state of T can
reach some final state.

Using arguments similar to those used in the proof of Theorem 4.1 (e.g., by
associating with each successful run of R a corresponding path π in dag(R)
and a covering path τ in dag∗(T ) induced by Eve’s winning strategy), one can
show that the transducer S maps any word u ∈ L (R) to a word S(u) ∈ L (T ).
Moreover, by construction, the output produced at each transition of S can be
different from the input symbol only if S is at the beginning of the computation,
at the end of the computation, or if the current SCC of the automaton R has
just changed. In each of these cases, the length of the produced output does
not exceed the number of states in T . This shows that the aggregate cost of S
on input u ∈ L (R) is at most (1 + ∣dag(R)∣) ⋅ ∣T ∣ and hence

costaggr0−lookahead(L (R),L (T )) ≤ (1 + ∣dag(R)∣) ⋅ ∣T ∣.

We now prove the implication from 1 to 2, namely, we assume that S =
(Σ,∆,Q ′′,δ ′′, s0,Ω) is a transducer with k-lookahead that implements a repair
strategy for L (R) and L (T ) with edit cost uniformly bounded by a natural
number N, and we derive from this a winning strategy for Eve. More precisely,
we will specify Eve’s moves g(D,C) on those nodes (D,C) in AR,T , with C ∈
dag(R) and D ∈ dag∗(T ), for which there exist some words uC,u ′C ∈ Σ∗ and
vD ∈ ∆∗ such that
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i) δ(q0,uC u
′
C) ∈ C,

ii) δ ′(r0,vD) ∈D,

iii) δ ′′(s0,uC) = (vD, s ′) for some s ′ ∈Q ′′.

We call these nodes reachable. On the remaining (unreachable) nodes, we let
the function g be unspecified. As a preliminary remark, we observe that from
the definition of the arena AR,T and from the above properties, the domain
of the function g is closed under the ancestor relation, namely, if g(D,C) is
defined and (D ′,C ′) is an ancestor of (D,C) in the arena AR,T , then g(D ′,C ′)
is defined as well. Thus, to prove that the defined strategy g is winning for
Eve, it will be sufficient to verify that the moves induced at the leaves of g
reach nodes that are losing for Adam. Below, we define the moves g(D,C) by
exploiting an induction on the distance of the SCC C from the root of dag(R),
which is the SCC of the initial state q0 of R.

Consider a reachable node (D,C) in the arena AR,T . Since (D,C) is reach-
able, we know that there exist some words uC,u ′C ∈ Σ∗ and vD ∈ ∆∗ such that
(i) δ(q0,uC u

′
C) ∈ C, (ii) δ ′(r0,vD) ∈D, and (iii) δ ′′(s0,uC) = (vD, s ′) for some

s ′ ∈ Q ′′. For the sake of brevity, we let q = δ(q0,uC u
′
C). We claim that there

is a SCC D ′ that is a successor of D in dag∗(T ) (possibly D ′ = D) such that
L (R∣C) ⊆ L (T ∣D ′). Indeed, suppose, by way of contradiction, that this is not
the case. Let D1, . . . ,Dh be all the the descendants of D, topologically ordered
according to their accessibility relation (hence D1 = D). Using arguments sim-
ilar to those used in the proof of Theorem 4.1, we can recursively construct a
sequence of words u ′0,u1,u ′1, . . . ,uh,u ′h over Σ such that, for all 1 ≤ i ≤ h:

i) q
uiu

′

i−→ q is a run of R that starts and ends in state q,

ii) ui ∉ L (T ∣Di).
In particular, the first property implies that the word

uC u
′
C (u1 u

′
1)N+1 . . . (uh u ′h)N+1

is a prefix of some word u in the language L (R) (recall the assumption that
all states in R can reach some final states). Moreover, since u contains N + 1
occurrences of the subwords u1, . . . ,uh and since S implements a repair strategy
with cost uniformly bounded by N, we have that the words u1, . . . ,uh must
occur at least once, and in this particular order, as subwords of S(u) (observe
that having a transducer with k-lookahead does not help here). However, since
vD is a prefix of S(u), δ(r0,vD) ∈ D, and ui ∉ L (T ∣Di) for all 1 ≤ i ≤ h, we
have that S(u) cannot belong to the target language L (T ). This is against
the assumption that S implements a repair strategy for L (R) and L (T ). We
must conclude that there is a SCC D ′ that is a successor of D in dag∗(T ) and
that satisfies L (R∣C) ⊆ L (T ∣D ′). Accordingly, we define Eve’s move on node
(D,C) to be g(D,C) = (C,D ′) (note that this is a valid move in the arena
AR,T ).

Turning to the proof of the main theorem, we argue that the above defined
strategy g for Eve is winning. This is equivalent to proving that, in every partial
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play of the form

(D0,C0) Eve−→ (C0,D1) Adam−→ . . . Adam−→ (Dn,Cn)

that follows Eve’s strategy g, Eve is able to respond with an appropriate move,
namely, g is defined on the node (Dn,Cn). To prove this property it is sufficient
to check that the node (Dn,Cn) is reachable: this can be easily verified by
exploiting an induction on n and the definition of g given above. We conclude
that Eve has a winning strategy for the reachability game over AR,T . ◻

It is interesting to observe that the above proof also shows that the property
of bounded repairability in the streaming setting is not sensitive to the notions
of transducer with/without lookahead, nor to the models of aggregate/edit cost:

Corollary 4.6. For two DFA R,T , the following two conditions are equivalent:

1. there exist k ∈ N and a streaming strategy with k-lookahead that repairs
L (R) into L (T ) with edit cost uniformly bounded by a constant,

2. there exists a streaming strategy with 0-lookahead that repairs L (R) into
L (T ) with aggregate cost uniformly bounded by (1 + ∣dag(R)∣) ⋅ ∣T ∣.

5. Complexity analysis

In this section we analyse the complexity of the bounded repair problem and
the threshold problem, distinguishing, in both cases, between the non-streaming
and streaming settings and between NFA- and DFA-based specifications of reg-
ular languages. We will also consider special cases where the restriction or the
target languages are fixed, and when the restriction language is universal (i.e.
no restriction).

5.1. The bounded repair problem in the non-streaming setting

NFA vs NFA. Theorem 4.1 leads straightforwardly to a polynomial-space
algorithm that solves the bounded repair problem between two NFA R and T
in the non-streaming setting: the algorithm first guesses universally a path π =
C1...Ck in dag(R), then it guesses existentially a path τ =D1...Dk of the same
length in dag∗(T ), and finally it checks the containment of the sub-automaton
R∣Ci in the sub-automaton T ∣Di for all indices 1 ≤ i ≤ n (these containments
can be checked in polynomial space [6]). Together with the PSPACE lower
bound proved later in Corollary 5.10 (which deals with the unrestricted case),
we obtain:

Corollary 5.1. The bounded repair problem in the non-streaming setting, where
both the restriction and target languages are specified by NFA, is PSPACE-
complete.
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NFA vs DFA. The same characterization result can be used to solve the
bounded repair problem when the restriction language is specified by an NFA
and the target language is specified by a DFA. In this case, we can take advan-
tage of the determinism and show that the problem becomes coNP-complete:

Theorem 5.2. The bounded repair problem in the non-streaming setting, where
the restriction language is specified by an NFA and the target language is spec-
ified by a DFA, is in coNP and it is coNP-hard already for languages specified
by DFA.

Before turning to the proof of the above theorem, we establish the following
complexity result for the coverability problem:

Lemma 5.3. Given two NFA R and T and a path π = C1 . . .Ck in dag(R), the
problem of deciding whether π is covered by some path in dag∗(T ) is in PTIME
with an oracle for deciding containment of the languages L (R∣Ci) inside lan-
guage of the form L (T ∣D), with D SCC of T .

Proof. The basic idea for checking whether the path π is covered by some path in
dag∗(T ) is to incrementally process longer and longer prefixes of π while keeping
the frontier of the paths in dag∗(T ) that cover these prefixes. Algorithm 5.1
below gives the pseudo-code for a procedure that implements this idea:

Algorithm 5.1: PathCoverability(R, T , π)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

let π = C1 . . .Ck
let dag∗(T ) = (V ′,E ′)
F← ∅
for all D ∈ V ′

do {
if CheckContainment(R, T , C1, D)
then F← F ∪ {D}

for i← 2 to k

do

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

F ′ ← F
F← ∅
for all D ′ ∈ F ′ and (D ′,D) ∈ E ′

do {
if CheckContainment(R, T , Ci, D)
then F← F ∪ {D}

return (F ≠ ∅)

Note that the pseudo-code uses CheckContainment(R,T ,Ci,D) as an
oracle for deciding containment between the languages L (R∣Ci) and L (T ∣D).
The proof of the correctness of the algorithm is based on the following invariant:
at each iteration of the loop on i, the set F contains a SCC D of T iff there
is a path τ = D1 . . .Di in dag∗(T ), with Di = D, that covers πi = C1 . . .Ci.
The described procedure runs in polynomial time with respect to the size of the
input NFA R and T . ◻
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Proof of Theorem 5.2. We first prove the complexity upper bound. Let R
be an NFA and T be a DFA. Thanks to Theorem 4.1, deciding whether
cost(L (R),L (T )) < ∞ amounts at first guessing universally a path π in
dag(R) (this can be done in coNP) and then checking whether π is covered
by some path in dag∗(T ). By Lemma 5.3, this can be done efficiently using an
oracle for checking containment of languages recognized by SCCs of R and T .

What remains to be done is to show that one can decide in polynomial
time the containment of any language L (R∣C) inside any language L (T ∣D),
where C (resp., D) is a SCC of the NFA R (resp., DFA T ) – note that, strictly
speaking, the sub-automaton T ∣D is not deterministic, since its successful runs
can start from arbitrary states in D. To show this we use Lemma 4.4, which
reduces the containment problem L (R∣C) ⊆ L (T ∣D) to a series of containment
problems between a non-deterministic sub-automaton of R (i.e., R∣qC for some
q ∈ C) and a deterministic sub-automaton of T (i.e., T ∣rD for some r ∈ D).
Since deterministic automata can be easily complemented, the latter instances
of the containment problem can be decided in polynomial time by reducing to
an emptiness problem involving the intersection of two automata (i.e., R∣qC
and the complement of T ∣rD).

Putting all together, we have that the bounded repair problem in the non-
streaming setting, where the restriction language is given by an NFA and the
target language is given by a DFA, is in coNP.

We now prove the lower bound, which follows from a reduction from the
validity problem for propositional formulas in disjunctive normal form (i.e., the
dual of the SAT problem). The general idea is to encode in the restriction
language all the possible valuations for the propositional variables and then
restrict the target language to consist only of encodings of valuations that satisfy
at least one clause of the formula. We further allow some redundancy in the
encodings of the valuations in order to forbid the repair strategy from modifying
the encoded valuations.

We consider a set X = {x1, . . . ,xk} of propositional variables and we denote
by L = {x1, . . . ,xk} ∪ {¬x1, . . . ,¬xk} the corresponding set of literals. For the
sake of brevity, we identify ¬¬xi with xi. A valuation for the variables in X can
be viewed as a subset V of L such that, for every literal l ∈ L, we have l ∈ V iff
¬l ∉ V. Let us consider a formula in disjunctive normal form

ϕ = ⋁
1≤i≤m

⋀
1≤j≤hi

li,j

with li,j ∈ L for every pair of indices 1 ≤ i ≤m and 1 ≤ j ≤ hi. Below, we describe
suitable restriction and target languages R and T such that R can be repaired
into T with uniformly bounded cost iff ϕ is valid, namely, if for every valuation
V, there is an index 1 ≤ i ≤m such that li,1, . . . , li,hi

∈ V.
We define the restriction language over the alphabet Σ = L to be

R =def ({x1}∗ ∪ {¬x1}∗) ({x2}∗ ∪ {¬x2}∗) . . . ({xk}∗ ∪ {¬xk}∗).

Note that it is easy to construct a DFA R that recognizes R and that has size
polynomial in the number of variables used by ϕ. Similarly, we define the target
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language over the alphabet ∆ = {a1, . . . ,am} ∪ L to be

T =def ⋃
1≤i≤m

{ai} (L ∖ {¬li,1, . . . , ¬li,hi
})∗.

Again, it is easy to construct a DFA T that recognizes T and that has size linear
in the number of clauses of ϕ and in the number of its variables.

We verify that R can be repaired into T with uniformly bounded cost iff
ϕ is valid. For the right-to-left implication, suppose that ϕ is valid and let u
be a word in R. Clearly, u is of the form (l1 . . . l1) (l2 . . . l2) . . . (lk . . . lk),
with li ∈ {xi,¬xi} for all 1 ≤ i ≤ k. Such a word encodes the valuation Vu =
{l1, l2, . . . , lk}. Moreover, since ϕ is valid, there is an index 1 ≤ i ≤m such that
li,1, . . . , li,hi

∈ V. The repair strategy f for R and T could then map the word
u to the word f(u) = ai u, which clearly belongs to T . As for the converse
implication, we assume that ϕ is not valid. This means that there is a valuation
V = {l1, l2, . . . , lk}, with li ∈ {xi,¬xi} for all 1 ≤ i ≤ k, such that for every index
1 ≤ i ≤ m, there is an index 1 ≤ j ≤ hi satisfying li,j ∉ V. We then consider the
family of words un = (l1)n (l2)n . . . (lk)n. We know that for every 1 ≤ i ≤m,
there is 1 ≤ j ≤ hi such that the edit distance between the sub-word (¬li,j)n of
un and any word in the sub-language Ti = {ai} (L ∖ {¬li,1, . . . , ¬li,hi

})∗ of T
is at least n. This shows that all repair strategies of R into T have unbounded
cost. ◻

Fixed restriction or target. Here, we briefly outline some parametrized
complexity results. Quite surprisingly, the bounded repair problem in the non-
streaming setting becomes tractable when we fix either the restriction language
or the target language.

Proposition 5.4. Let R be a fixed restriction language. The problem of decid-
ing, given a DFA T , whether cost(R,L (T )) <∞ is in PTIME.

Proof. The proof is similar to the part of the proof of Theorem 5.2 related to
the coNP upper bound. Let R be a fixed restriction language and let R be a
DFA that recognizes R. Moreover, let T be a given DFA recognizing the target
language T . From Theorem 4.1, deciding whether cost(R,L (T )) <∞ amounts
at checking that every path π in dag(R) is covered by some path in dag∗(T ).
In virtue of Lemma 5.3 and Lemma 4.4, coverability of a given path in dag(R)
by paths in dag∗(T ) can be decided in polynomial time. Since the number of
paths in dag(R) is fixed, this shows that the problem is in PTIME. ◻

Proposition 5.5. Let T be a fixed target language. The problem of deciding,
given an NFA R, whether cost(L (R), T) <∞ is in PTIME.

Proof. The polynomial-time solution to the bounded repair problem under a
fixed target language T = L (T ) uses a dynamic programming approach and the
characterization of Theorem 4.1 (hence it is similar to the proof of Theorem 5.2).
However, instead of guessing a path π in dag(R) and then checking whether π
is covered by some path τ in dag∗(T ), we compute a succinct representation of
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all instances of the coverability relation. More precisely, we aim at representing
the set P of all pairs (π,Π), where π is any path in dag(R) and Π is the set
of all and only the paths in dag∗(T ) that cover π. Note that this set P can
be constructed inductively starting from the paths of length 1 and considering,
at each step, the possible prolongations by single components. Because the
set P might have size exponential in the number of components of R, we need
to succinctly represent it by abstracting all paths in it with their shallowest
components. Formally, we replace any pair (π,{τ1, . . . ,τ`}) in P, where π =
C1 . . .Ck and τi = Di,1 . . .Di,k for all 1 ≤ i ≤ `, with the corresponding pair
(Ck,F), where F = {D1,k, . . . ,D`,k}. This abstraction is correct because paths
ending in the same component behave similarly with respect to the coverability
properties of their prolongations. Algorithm 5.2 below implements such an idea.

Algorithm 5.2: AllPathsCoverability(R, T )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

let dag(R) = (V ,E)
let dag∗(T ) = (V ′,E ′)
P ← ∅
for all C ∈ V

do

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

F← ∅
for all D ∈ V ′

do {
if CheckContainment(R, T , C, D)
then F← F ∪ {D}

P ← P ∪ {(C,F)}
for k← 2 to ∣V ∣

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

for all (C,F) ∈ P and (C,C ′) ∈ E

do

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

F ′ ← ∅
for all D ∈ F and (D,D ′) ∈ E ′

do {
if CheckContainment(R, T , C ′, D ′)
then F ′ ← F ′ ∪ {D ′}

P ← P ∪ {(C ′,F ′)}
return (∀ (C,F) ∈ P. F ≠ ∅)

The proof that the algorithm is correct, namely, that it terminates success-
fully iff every path π in dag(R) is covered by some path in dag∗(T ), relies on
the following invariant: at each iteration of the loop on k, the set P contains all
pairs (C,F) such that (i) there exists a path π ∈ dag(R) that ends in C and has
length at most k and (ii) the set F consists of all and only the shallowest com-
ponents of the paths in dag∗(T ) that cover π. Moreover, we observe that every
instruction used in the pseudo-code of the algorithm (including the calls to the
subroutine CheckContainment(R, T , C, D)) requires time polynomial in
the size of the arguments (recall, for instance, Lemma 4.4). Finally, since the
set P has size at most ∣R∣ × 2∣T ∣ and T is fixed, we conclude that the algorithm
runs in polynomial time with respect to the size of R. ◻

5.2. The bounded repair problem in the streaming setting

DFA vs DFA. The characterization of Theorem 4.3 shows that the problem
of deciding the existence of a streaming repair strategy with uniformly bounded
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(aggregate or edit) cost for two languages specified by DFA R and T amounts
at solving a reachability game over a suitable directed acyclic graph AR,T . In
particular, we observe that AR,T can be computed from R and T in polyno-
mial time, and that checking containment of languages recognized by SCCs of
automata is in PTIME. Moreover, it is known that the problem of deciding the
winner of reachability games over directed acyclic graphs is PTIME-complete
[7, 8]. This shows that the bounded repair problem for DFA in the streaming
setting is PTIME-complete:

Corollary 5.6. The bounded repair problem in the streaming setting, where the
restriction and target languages are specified by DFA, is PTIME-complete.

NFA vs NFA. Of course, the problem becomes more difficult when the lan-
guages are specified by NFA. In this case we are not able to provide tight com-
plexity bounds, and we only claim that the complexity of the bounded repair
problem for NFA in the streaming setting is between PSPACE and EXPTIME.
The lower bound will follow from Corollary 5.10 below and the upper bound
from the standard subset construction on NFA:

Corollary 5.7. The bounded repair problem in the streaming setting, where the
restriction and target languages are specified by NFA, is in EXPTIME and it is
PSPACE-hard.

DFA vs NFA. We analyse here the complexity of the bounded repair problem
in the streaming setting where one of the two input automata is a DFA and
the other is an NFA. In these cases, we can improve the upper bounds from
EXPTIME to PSPACE:

Theorem 5.8. The bounded repair problem in the streaming setting, where the
restriction language is specified by a DFA and the target language is specified by
an NFA, is PSPACE-complete.
The bounded repair problem in the streaming setting, where the restriction lan-
guage is specified by an NFA and the target language is specified by a DFA, is
in PSPACE.

Proof. For both claims we make use of the characterization given by Theorem
4.3. We first deal with the case where the restriction language is given by
a DFA R and the target language is given by an NFA T . As a preliminary
remark, observe that, in this case, PSPACE-hardness will follow again from
Corollary 5.10 (below). As for the PSPACE upper bound, we denote by det(T )
the DFA obtained from T by applying the standard subset construction, and
we recall that, by Theorem 4.3, there is a streaming repair strategy for L (R)
and L (T ) (= L (det(T ))) of uniformly bounded aggregate/edit cost iff Eve
wins the reachability game over the arena AR,det(T ). The crucial observation
is that the longest collection of moves of Adam in the arena AR,det(T ) is linear
in the size of dag(R). This implies that the length of any play is at most
∣dag(R)∣ and hence we can simulate the reachability game over AR,det(T ) by an
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alternating polynomial-time procedure [7]. Precisely, we can keep track of the
configuration of the reachability game by maintaining the current SCC C of R
and (a symbolic representation of) the current SCC D of det(T ) (note that a
SCC of det(T ) can be specified by a single state of det(T ) or, equivalently, by
a set of states of T ). At each round of the reachability game, we need to check
a language containment L (R∣C) ⊆ L (det(T )∣D): this can be done using the
characterization given in Lemma 4.5 and a polynomial-space subroutine based
on symbolic reachability analysis. What we have described is an alternating
polynomial-time procedure that simulates the reachability game over AR,det(T )
using a polynomial-space subroutine for language containment. Overall, this
shows that, when the restriction language is given by a DFA, the bounded
repair problem in the streaming setting is in PSPACE.

We now turn to the case where the restriction language is given by an NFA T
and the target language is given by a DFA T . As in the previous proof, we have
to simulate the reachability game over the arena Adet(R),T that results from the
main characterization result. However, we cannot obtain a polynomial bound
to the length of the plays since dag(R) has potentially exponential height. The
idea here is that it is possible to modify the definition of the arena Adet(R),T
(and thus the resulting reachability game) by allowing Adam to move down the
graph dag(det(R)) using shortcuts, namely, by allowing Adam to move from
any SCC of det(R) to some descendant of it (rather than simply a successor
of it). On the one hand, allowing this freedom in the new reachability game
clearly makes it easier for Adam to win. On the other hand, if Adam wins in
the modified arena, then he can also win in the original arena via longer plays.
We now argue that, if Adam wins the modified reachability game, then he can
do so with a polynomial number of moves. Indeed, a winning strategy of Adam
consists in pushing Eve towards a sink node; this however can be done in at
most n rounds, where n is the height of the DAG of SCCs of T , by properly
choosing shortcut moves. The above arguments show that the two versions of the
reachability games are equivalent and, furthermore, one can bound the length
of the plays to a polynomial in the size of the DFA T . Therefore, the bounded
repair problem for L (R) and L (T ) in the streaming setting can be solved by
an alternating polynomial-time procedure similar to the one described above.
This shows that, when the target language is given by a DFA, the bounded
repair problem in the streaming setting is in PSPACE. ◻

5.3. The bounded repair problem in the unrestricted case

We now consider the unrestricted case of the bounded repair problem,
namely, the case where the restriction language is assumed to be Σ∗ and the
target language T is specified by a finite state automaton.

The following result adapts the characterization theorems presented in Sec-
tion 4 to give a necessary and sufficient condition for bounded repairability in
the unrestricted case. This result, which can be viewed as a special case of both
Theorem 4.1 and Theorem 4.3, also shows that there is no difference between
the non-streaming and the streaming settings when the restriction language is
universal.
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Corollary 5.9. Given an alphabet Σ and an NFA T , the following conditions
are equivalent:

1. cost(Σ∗,L (T )) <∞,

2. Σ∗ ⊆ L (T ∣D) for some component D of T ,

3. costaggr0−lookahead(Σ∗,L (T )) ≤ 2∣T ∣.

Using the above characterization, one can easily devise a non-deterministic
logarithmic-space algorithm that solves the bounded repair problem for DFA
in the unrestricted (streaming or non-streaming) setting. Indeed, if the target
automaton T is a DFA andD is a component of T , then we have Σ∗ ⊆ L (T ∣D) iff
for every symbol a ∈ Σ and every state r ∈D, T contains a transition of the form
(r,a, r ′), with r ′ ∈D. Checking this property amounts to performing a standard
NLOGSPACE reachability analysis over T . Conversely, NLOGSPACE-hardness
follows from the fact that the emptiness problem for DFA is reducible to the
bounded repair problem: given a DFA A over an alphabet Σ, we have that
L (A) ≠ ∅ iff Σ∗ is repairable into L (A ′) with uniformly bounded cost, where
A ′ is a DFA that recognizes the language Σ∗ L (A) and that can be constructed
from A in logarithmic space.

In a similar way, one can show that the bounded repair problem for NFA
in the unrestricted case is PSPACE-complete. This follows from Corollary 5.9
and from suitable reductions to/from the universality problem for NFA. Indeed,
checking whether a target NFA T has a SCC D such that Σ∗ ⊆ L (T ∣D) is
equivalent to the problem of deciding whether Σ∗ is repairable into L (T ) with
uniformly bounded cost, and it is clearly reducible to the universality problem
for NFA. As for the PSPACE-hardness, we observe that a given NFA A recog-
nizes the universal language Σ∗ iff (Σ∪ {#})∗ is repairable into (L (A) ⋅ {#})∗
with uniformly bounded cost and # ∉ Σ. Notice that a finite automaton A ′ rec-
ognizing the language (L (A) ⋅ {#})∗ can be computed in linear time from A.

We thus conclude the following:

Corollary 5.10. The bounded repair problem in the unrestricted case, where the
target language is specified by a DFA (resp., NFA) is NLOGSPACE-complete
(resp., PSPACE-complete).

Another consequence of Corollary 5.9 is the following. Suppose that a target
language T is recognized by a DFA T that is complete over the target alphabet
∆, namely, for every symbol a ∈ ∆ and every state r of T , T contains a transition
from r labelled by a (here we no more assume that T is trimmed). Consider
a restriction alphabet Σ ⊆ ∆ and suppose that Σ∗ is not repairable into T with
uniformly bounded cost. Let us consider a SCC D of T that is reachable from
the initial state and terminal, namely, with no outgoing edges. We know that D
does not contain any final state (otherwise, cost(Σ∗,L (T )) < ∞ would follow
from Corollary 5.9). In this case, however, the same component D in the com-
plement DFA T ∁ would contain final states and hence Σ∗ would be repairable
into L (T ∁) with uniformly bounded cost. This shows that:
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Corollary 5.11. Given an alphabet Σ and a regular language T ⊆ ∆∗, with
Σ ⊆ ∆, then either cost(Σ∗, T) <∞ or cost(Σ∗,∆∗ ∖ T) <∞.

5.4. The threshold problem in the non-streaming setting

We now consider the problem of calculating the exact repair cost in the
non-streaming setting. If the restriction and target languages are specified by
DFA, then we know from Theorem 5.2 that we can decide in coNP whether the
worst-case repair cost is finite or infinite. Furthermore, Theorem 4.1 tells us
that if the cost is finite it must be bounded by a polynomial in the input size.
Thus, to determine the exact repair cost in the case where it is finite, it suffices
to test whether the cost is above or below a given threshold θ ∈ N, since then
we can try every number θ below the polynomial bound. Perhaps surprising,
this problem is harder than the bounded repair problem, although still within
polynomial space:

Theorem 5.12. The problem of determining whether cost(R, T) ≤ θ, given two
languages R and T specified by DFA and given a positive number θ, is PSPACE-
complete. The same holds when R and T are specified by NFA.

Proof. We first give the upper bound, assuming that R and T are recognized
by some NFA R and T . First, we recall that, by Theorem 4.1, we have either
cost(R, T) ≤ (1+∣dag(R)∣)⋅∣T ∣ or cost(R, T) =∞. Thus, without loss of generality,
we can assume that the threshold θ ∈ N is represented in unary notation. We
can then construct in polynomial time an NFA Rθ that recognizes the language

Rθ =def {v ∈ ∆∗ ∶ ∃ u ∈ R. dist(u,v) ≤ θ}.

The automaton Rθ is defined by a suitable ‘juxtaposition’ of θ+1 disjoint copies
of R:

� the states of Rθ are the pairs (q, i), where q is a state of R and 0 ≤ i ≤ θ;

� the transitions of Rθ are the triples ((q, i),b, (q ′, j)) that satisfy one of
the following conditions

1. i = j, b ∈ Σ, and (q,b,q ′) is a transition of R,

2. i < j, b ∈ ∆, and q = q ′,
3. i < j, b ∈ ∆, and there is a transition (q,a,q ′) of R, with a ∈ Σ,

4. i < j, b ∈ Σ, and there are two transitions (q,a,q ′′) and (q ′′,a ′,q ′)
of R, with a,a ′ ∈ Σ and b ∈ {a,a ′};

� the initial (resp., final) states of Rθ are the pairs (q, i), where q is an
initial (resp., final) state of R and 0 ≤ i ≤ θ.

Note that the automaton Rθ can be constructed in polynomial time from R and
θ when θ is represented in unary. Moreover, Rθ accepts all and only the words
that are at distance at most θ from some words in R, and hence L (Rθ) = Rθ.
Finally, it is easy to see that

cost(R, T) ≤ θ iff Rθ ⊆ T .
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This reduces the threshold problem cost(R, T) ≤ θ to a containment problem
between languages recognized by NFA, which is known to be in PSPACE [6].

We now discuss the PSPACE lower bound, which holds even for languages
specified by DFA. It is via reduction from the problem of tiling a corridor of
polynomial width (and unbounded height). An instance of the latter problem
is given by a number n (i.e., the width of the corridor, represented in unary
notation), a set S of available tiles, some sets H,V ⊆ S × S of vertical and
horizontal constraints, and two tiles t� and t⊺ for the bottom and top rows. A
tiling of height N (for an instance I = (n,S,H,V, t�, t⊺)) is a mapping g from the
pairs (i, j) ∈ [1,N]× [1,n] to the tiles in S such that g(1, j) = t� and g(N, j) = t⊺
for all 1 ≤ j ≤ n. We say that the tiling g satisfies the constraints of I if

1. (g(i, j),g(i, j + 1)) ∈ H for all 1 ≤ i ≤N and all 1 ≤ j < n,

2. (g(i, j),g(i + 1, j)) ∈ V for all 1 ≤ i <N and all 1 ≤ j ≤ n.

The corridor tiling problem is the problem of deciding, given a tiling instance
I = (n,S,H,V, t�, t⊺), whether there is a tiling g of some height N ≥ 1 that
satisfies the constraints in I. This problem is known to be PSPACE-complete
[9].

Hereafter, we fix an instance I = (n,S,H,V, t�, t⊺) of the corridor tiling prob-
lem and a threshold θ ≥ 1 (note that for θ = 0 the threshold problem becomes
a containment problem between DFA, which is clearly solvable in polynomial
time). Moreover, we assume that the threshold θ is represented in unary nota-
tion (clearly this does not make the threshold problem more difficult). Below,
we reduce the corridor tiling problem for the instance I to a threshold problem
for two DFA R and T .

We let the restriction alphabet Σ consist of pairs of the form ⟨t, j⟩, where
t is a tile from S and j is a number in {1, . . . ,n}. The restriction language R
contains “(θ + 1)-redundant” encodings of tilings, namely, words of the form

⟨g(1, 1), 1⟩θ+1 . . . ⟨g(1,n),n⟩θ+1 . . . . . . ⟨g(N, 1), 1⟩θ+1 . . . ⟨g(N,n),n⟩θ+1

where N is a positive natural number and g ∶ [1,N] × [1,n] → S is a tiling
of height N that satisfies the horizontal constraints and the constraints on the
bottom and top rows (but possibly not the vertical constraints). We claim that
the above language is recognized by a DFA R of size polynomial in I and in
θ: indeed, the automaton R needs to check that the input word is well-formed,
which requires enforcing the horizontal constraints and the initial and final tile
requirements (which clearly can be done with a fixed number of states) and
counting up to θ + 1 and n (which clearly can be done with a number of states
linear in θ and n).

We now turn to the definition of the target language. Its alphabet ∆ contains
all symbols of the restriction alphabet Σ plus marked symbols ⟨t, j⟩, with t ∈ S
and 1 ≤ j ≤ n. The marked symbols ⟨t, j⟩ are used to highlight a violation of
the vertical constraints in such a way that it becomes easy for an automaton to
certify it. Intuitively, a violation of a vertical constraint is certified on a word
v ∈ ∆∗ when v contains a marked symbol of the form ⟨t, j⟩ at some position x
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and a symbol ⟨t ′, j⟩, with (t, t ′) ∉ V, at position x+ (θ+ 1) ⋅n (this would imply
that the tile t ′ is adjacent to t along the vertical axis). More precisely, the
target language is defined as follows:

T =def ⋃
(t,t ′)∉V
1≤j≤n

Σ∗ ⟨t, j⟩ ⟨t, j⟩θ Σ(θ+1)⋅(n−1) ⟨t ′, j⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(θ + 1) ⋅n positions

⟨t ′, j⟩θ Σ∗.

It is easy to construct a DFA T of size polynomial in ∣I∣ and θ that recognizes
the language T .

We now argue that there is a repair strategy for R into T with cost uniformly
bounded by θ iff every tiling g ∶ [1,N] × [1,n] → S violates the constraints in
I. On the one hand, suppose that every tiling g ∶ [1,N] × [1,n] → S violates
the constraints in I. Let us consider a word u ∈ R of the form

⟨g(1, 1), 1⟩θ+1 . . . ⟨g(1,n),n⟩θ+1 . . . . . . ⟨g(N, 1), 1⟩θ+1 . . . ⟨g(N,n),n⟩θ+1

where g is a tiling of [1,N] × [1,n] → S. From the previous assumptions, we
know that g violates the vertical constraints in I. This implies that there are
1 ≤ i <N and 1 ≤ j ≤ n such that (g(i, j),g(i+1, j)) ∉ V, and hence there are two
positions x (= j+(i−1)⋅(θ+1)⋅n) and x+(θ+1)⋅n (= j+(i−1)⋅(θ+1)⋅n+(θ+1)⋅n) in
u that contain the symbols ⟨g(i, j), j⟩ and ⟨g(i + 1, j), j⟩, respectively. Marking
the first of these two occurrences (i.e., replacing the symbol ⟨g(i, j), j⟩ at position
x with the symbol ⟨g(i, j), j⟩) will bring us into the target language T . This shows

that there is a repair strategy for R and T with worst-case cost at most 1 (≤ θ).
On the other hand, suppose that there is a tiling g ∶ [1,N]× [1,n] → S that

satisfies the constraints in I. Let u be the corresponding word:

⟨g(1, 1), 1⟩θ+1 . . . ⟨g(1,n),n⟩θ+1 . . . . . . ⟨g(N, 1), 1⟩θ+1 . . . ⟨g(N,n),n⟩θ+1.

Clearly, u belongs to the restriction language R. We claim that no matter how
we repair u by at most θ edits, the resulting sequence will not belong to the
target language T . Consider a word v produced by such an edit. If there are no
occurrences of marked symbols in v, then v cannot belong to T , and similarly
if there are more than one occurrence of a marked symbol. Suppose that v
contains exactly one occurrence of a marked symbol, say v[x] = ⟨t, j⟩, and let

v[x + (θ + 1) ⋅n] = ⟨t ′, j ′⟩. We distinguish between the following cases:

1. v[x + i] ≠ ⟨t, j⟩ for some 1 ≤ i ≤ θ,

2. j ′ ≠ j or v[x + (θ + 1) ⋅n + i] ≠ ⟨t ′, j ′⟩ for some 1 ≤ i ≤ θ,

3. j ′ = j and v[x + i] = ⟨t, j⟩ and v[x + (θ + 1) ⋅n + i] = ⟨t ′, j⟩ for all 1 ≤ i ≤ θ.

In the first two cases, v cannot belong to T . In the third case, since v was
obtained from u by applying at most θ edit operations, we know that u contains
a sub-string of the form

⟨t, j⟩θ+1 Σ(θ+1)⋅(n−1) ⟨t ′, j⟩θ+1.

Since u is an encoding of a valid tiling g, we have that (t, t ′) ∈ V. This shows
again that v cannot belong to the target language T . ◻
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5.5. The threshold problem in the streaming setting

For the streaming setting, if we consider 0-lookahead repair strategies with
aggregate cost, the threshold problem becomes solvable in polynomial time
(hence it is as difficult as the bounded repair problem). Indeed, one can easily
reduce this threshold problem to a reachability game over a suitable arena that
is constructed in polynomial time from the restriction and target DFA R and T
and from the threshold θ. It follows from this reduction that one can efficiently
compute in polynomial time a streaming repair strategy for R and T whose
aggregate cost does not exceed the threshold θ.

Theorem 5.13. The problem of determining whether costaggr0−lookahead(R, T) ≤ θ,
given two languages R and T specified by DFA and given a numbers θ, is in
PTIME.
Moreover, if costaggr0−lookahead(R, T) ≤ θ, then one can compute in polynomial time
a streaming 0-lookahead repair strategy for R and T that has aggregate cost at
most θ.

Proof. Let R = (Σ,Q,δ,q0,F) and T = (∆,Q ′,δ ′, r0,F ′) be two DFA, let R and
T be the recognized languages, and let θ be the threshold for the aggregate cost.
As a preliminary remark, we observe that, without loss of generality, we can
assume that θ is represented in unary: indeed, we know from Theorem 4.3 and
Corollary 4.6 that either there is a streaming repair strategy for R and T with
aggregate cost uniformly bounded by (1+ ∣dag(R)∣) ⋅ ∣T ∣ (i.e., a polynomial in the
size of R and T ), or all streaming repair strategies for R and T have unbounded
aggregate cost.

We define a reachability game over an arena AθR,T that characterizes the
threshold problem for R and T in the streaming setting. The nodes of the
arena are the pairs (q, r, c) and (q, r, c,a), with q ∈ Q, r ∈ R, c ∈ {0, . . . ,θ},
and a ∈ Σ. The former nodes are owned by Adam (i.e., the player entitled
to emit a word in the restriction language) and the latter nodes are owned by
Eve (i.e., the player entitled to repair the given word into the target language).
The arena AθR,T has an edge (q, r, c) → (q ′, r, c,a) if δ(q,a) = q ′, and it
has an edge (q, r, c,a) → (q, r ′, c ′) if r ′ is reachable from r in T and c ′ =
c + min{dist(a,v) ∶ v ∈ L (Tr,r ′)} (provided that c ′ ≤ θ). Adam plays first,
starting from the node (q0, r0, 0). The player who cannot move loses. Infinite
plays, which are feasible in this type of game, are won by Eve.

Now, we show that Eve has a winning strategy in AθR,T iff there is a stream-
ing 0-lookahead repair strategy for R and T with aggregate cost at most θ.
Easily, assume that Eve has a strategy f for winning the reachability game
over AθR,T . Without loss of generality, we can assume that the strategy f is
positional. It is then easy to construct, using Eve’s positional strategy f, a
transducer S with at most ∣Q∣ ⋅ ∣Q ′∣ ⋅ (θ + 1) states that repairs R into T with
aggregate cost costaggrS (R, T) ≤ θ. For the other direction, suppose that there is a
transducer S = (Σ,∆,Q ′′,δ ′′, s0,Ω) that repairs every word from R into T with
aggregate cost less than or equal to θ. It is straightforward to define a winning
strategy for Eve using the transducer S. Indeed, we only need to maintain the
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current state s of S and move from each node (q, r, c,a) to a successor node
(q, r ′, c ′) such that r ′ = δ(r,v), c ′ = c + dist(a,v), and δ ′′(s,a) = (v, s ′).

To conclude the proof we need show that, assuming costaggr0−lookahead(R, T) ≤ θ,
one can compute in polynomial time a streaming 0-lookahead repair strategy for
R and T that has aggregate cost at most θ. However, this follows immediately
from the fact that (i) given the arena AθR,T whose reachability game is won by
Eve, one can construct in polynomial time a winning positional strategy f for
Eve, and (ii) using Eve’s winning strategy f, one can construct in polynomial
time a repair strategy S for R and T such that costaggrS (R, T) ≤ θ (for this we use
again the above arguments). ◻

Note that in the above result we deal with the model of aggregate cost,
which is very different the model of edit cost (the main characterization result,
however, shows that one is uniformly bounded iff the other is). We do not know
if finding the exact edit cost for two languages specified by DFA is even tractable.
Similarly, we do not know whether the threshold problem for streaming repair
strategies with k-lookahead is tractable, where the parameter k is represented
in binary.

6. Connections to distance automata and games

Both the non-streaming and streaming repair problems correspond to special
cases of prior problems studied in automata and games. The non-streaming
bounded repair problem corresponds to the limitedness problem for distance
automata, while the streaming variant corresponds to energy games. We explain
the correspondences in detail now. In each case, however, we find that the results
for the more general framework do not give tight complexity bounds.

Non-streaming repairs and distance automata. Intuitively, a distance
automaton is a transducer D that receives as input a finite word u and outputs
a corresponding cost D(u) in N∞ = N ∪ {∞}. Formally, a distance automaton
is a transducer of the form D = (Σ,Q,E, I,F), where Σ is the input alphabet,
Q is a finite set of states, E ⊆ Q × Σ × N∞ ×Q is the transition relation, and
I,F ∶ Q → N∞ are the initial and final cost functions. The cost D(u) on input
u = a1 . . .an ∈ Σ∗ is obtained by taking the minimum among the costs of the
runs of D on u, where the cost of each run q0

a1/c1−→ q1
a2/c2−→ . . . an/cn−→ qn is

defined as I(q0)+∑ni=1 ci+F(qn) – in particular, every transition of the run has
a cost, as well as the beginning and the end of the run. We let D(u) =∞ if D
admits no successful run on w.

The main problem that has been studied for distance automata is the lim-
itedness problem, which consists of deciding whether there exists a finite upper
bound to the cost D(u) computed by a given distance automaton D for all words
u ∈ Σ∗ such that D(u) <∞. This problem was shown decidable by Hashigushi
[10]; later in [11] it was shown to be PSPACE-complete. Distance automata
have been related to edit-distance problems in several prior works – see Sec-
tion 7 for further discussion of the connections. Here we only provide a simple
reduction of the bounded repair problem to the limitedness problem.
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Given two NFA R = (Σ,Q,E, I,F) and T = (∆,Q ′,E ′, I ′,F ′), one can con-
struct a distance automaton D that computes the optimal cost of repairing any
word from L (R) into a word from L (T ). First of all, one associates with
each symbol a ∈ Σ a matrix M(a) whose entries M(a)[p,q] are indexed over
the pairs of states p,q of T and give the minimum edit-distance between the
symbol a and a word v ∈ ∆∗ such that T can move from p to q consuming v
(if q is not reachable from p, then one simply lets M(a)[p,q] =∞). One then
defines the distance automaton D as the quadruple (Σ,Q × Q ′,EM, IM,FM),
where EM is the set of all transitions of the form ((p,p ′),a, c, (q,q ′)), with

a ∈ Σ, (p,a,q) ∈ E, and c = M(a)[p ′,q ′]. The initial cost function IM of D
is defined by letting IM(p ′) be the length of the minimum word that can be
parsed by T when moving from an initial state to the state p ′ (if no such word
exist, then IM(p ′) = ∞). Similarly, FM(p) is defined to be the length of the
minimum word that can be parsed by T when moving from the state p to a
final state (or ∞ if no such word exists). It is easy to see that the cost function
computed by D maps a word u ∈ L (R) to the cost of an optimal non-streaming
repair of u into L (T ). Moreover, the distance automaton D has size polyno-
mial in the size of R and T . This reduces the bounded repair problem for NFA
in the non-streaming setting to the limitedness problem for distance automata.
Combining this reduction with the PSPACE upper bound for the limitedness
problem, we see that the bounded repair problem for NFA is in PSPACE.

The same reduction technique can be applied to solve the bounded repair
problem for DFA. In this case, however, the resulting complexity bound is not
optimal: the bounded repair problem for DFA is in fact in coNP (cf. Theorem
5.2). Roughly speaking, the reason why the bounded repair problem for DFA
is easier than the limitedness problem for distance automata is that the dis-
tance automata emerging from bounded repair problems have a more restricted
structure (specifically, they are deterministic on the 0-cost moves). In addition
to not giving tight bounds, approaches via distance automata give less insight
into the problems. We invite the reader, for example, to compare the PSPACE
upper bound that we derive from our characterization of bounded repairability,
Theorem 4.1, with the PSPACE upper bound given in [11].

Streaming repairs and energy games. Just as non-streaming repair
problems can be seen within the framework of distance automata, bounded
repair problems in the streaming setting are special cases of games on graphs
with quantitative objectives. An interesting family of such games is that of
energy games studied in [12], which are played on finite weighted arenas. The
game is played between an energy player, who wants to keep the running sum
of the weights (i.e. the energy) always positive, and her opponent. A variant
of energy games allows the parameterization by an initial credit of energy; the
higher the credit the more possibility for the energy player to win.

It is well known that the problem of determining whether there is a finite
initial credit so that the energy player has a winning strategy is in NP ∩ coNP
[13], but the exact complexity is still unknown. Furthermore, this problem can
be solved in time polynomial in the size of the arena and the largest weight in
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absolute value. As a matter of fact, the latter complexity result implies that
energy games can be solved in polynomial time with respect to the size of the
arena, provided that the weights are represented in unary.

One can easily reduce the bounded repair problem in the streaming setting,
under the aggregate cost model for languages recognized by DFA, to the finite
initial credit problem for energy games. Informally, the choice of the opponent
in the energy game corresponds to the letters emitted by the restriction, while
the edits correspond to choices of the energy player. More formally, we have a
node in the arena for each pair of states of the restriction DFA R and of the
target DFA T – call this node a Restriction Player Node. We also have a node
for each combination of restriction state, target state, and letter played – call
this a Target Player Node. The former represents the pair of states reached by
the restriction and target automata after parsing the unedited and edited words,
respectively; the latter adds the last letter emitted by the restriction. There is
an edge of weight 0 going from a Restriction Player Node (p,p ′) to any Target
Player Node (q,p ′,a) whenever (p,a,q) is a valid transition of R. Similarly,
there is an edge of weight −c going from a Target Player Node (q,p ′,a) to a
Restriction Player Node (q,q ′) whenever there is a word v at distance c from
a (i.e. dist(a,v) = c) such that T can move from p ′ to q ′ consuming v. Clearly,
the energy player wins the game using some initial credit of energy if and only
if the cost of repairing L (R) into L (T ) is uniformly bounded. Note that this
reduction provides a PTIME upper bound to the complexity of the bounded
streaming repair problem for DFA, given that the size of the resulting arena
is polynomial in the size of the restriction and target DFA and, moreover, the
weights are bounded by the size of the target DFA.

Our characterization result (see Theorem 4.3) gives analogous (tight) com-
plexity bounds for bounded repairability languages recognized by DFA and,
moreover, it proves that the bounded repair problem in the streaming setting
is not sensitive to the models of aggregate/edit cost. They also provide tight
bounds for special cases of the problem, which cannot naturally be captured in
the setting of energy games. It is also worth mentioning that the repair strategy
that arises from our characterization result can be seen as a special case of the
notion of good-for-energy strategy, which is introduced in [13] to solve energy
parity games.

Despite the connections mentioned above, many concepts and problems con-
cerning repair do not have natural analogs in the game setting, and vice versa.
For instance, in the game setting one could allow lookahead for one player, but
it is not as natural as in the repair setting. Moreover, while the aggregate cost
metric fits the game setting naturally, our usual cost function does not. Con-
versely, the binary weights that are allowed in the game setting have no natural
analog in the context of edits. Our characterization finally allows us to eas-
ily isolated special cases of lower complexity that are not easily seen from the
embedding into energy games.
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fixed DFA NFA
universal LOGSPACE NLOGSPACE PSPACE

fixed Const PTIME PSPACE
DFA PTIME coNP PSPACE
NFA PTIME coNP PSPACE

Table 1: Bounded repair problem in the non-streaming setting

fixed DFA NFA
universal LOGSPACE NLOGSPACE PSPACE

fixed Const PTIME PSPACE
DFA PTIME PTIME PSPACE
NFA PTIME-PSPACE PTIME-PSPACE PSPACE-EXPTIME

Table 2: Bounded repair problem in the streaming setting

7. Conclusions and Related Work

In this work we have investigated the problem of repairing documents be-
tween different specifications. In our basic setting, a document is represented
by a string and a specification by a language. Specifically, we gave a character-
ization of those pairs of regular languages such that one can repair any string
in the first language to a string in the second, using a uniformly bounded num-
ber of edits and repair processors that either read the entire string offline and
then edit, or have the form of sequential real-time transducers. We then used
the characterizations to provide complexity bounds for the considered bounded
repair problems. These complexity bounds are summarized in Table 1 and Ta-
ble 2 – in the non-streaming setting all bounds are tight (indicated by a single
class), while in the streaming setting we have several gaps (indicated by cells
with lower and upper bounds). We omit the corresponding table for computing
the exact cost: in the case of non-streaming repair we can derive tight bounds
in all cases, and also in the case of streaming repair for aggregate cost. In the
latter case we also know the complexity of computing the optimal stream repair
processor.

Related Work. The problem of finding the minimal distance of a string to
a regular language was first considered by Wagner in [3], who showed that the
problem could be solved by adapting the dynamic programming approach, giv-
ing a polynomial time algorithm. Several authors have extended the definition
to deal with distances between languages. Mohri [14] defines a distance func-
tion between two languages, and more generally between string distributions:
in the case of languages, this is the minimum distance between two strings in
the two respective languages, which is appropriate for many applications. Kon-
stantinidis [15] focuses on the minimum distance between distinct strings within
the same language, giving tractable algorithms for computing it. Our notion
of “distance” is quite distinct from this, since it is asymmetric in the two lan-
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guages, focusing on the maximum of the distance of a string in one language
to the other language. As a matter of fact, this notion of distance between
languages can be seen as a special case of a more general concept, known as
Hausdorff distance. This latter notion has been studied also in [16], but within
a more general setting; in particular, with respect to a generalization of the
boundedness property called “almost reflexivity”.

Grahne and Thomo [17] consider a related problem of “approximate con-
tainment” of regular expressions. Expressions are evaluated with respect to an
edge-labelled graph and are given a numerical semantics by a “distortion”, a
generalization of the notion of edit distance. Approximate containment of T1
and T2 means, roughly speaking, that for every input graph R and every word
w generated by R, the distance to target T1 is bounded by the distance to T2.
Grahne and Thomo also study “k-containment” (distance to T1 is at most k
more than T2) and “approximate containment” (k-containment for some k), re-
lying primarily on a reduction to the limitedness problem for distance automata.
Their problem differs in several fundamental respects from ours: they are in-
terested in bounding the difference over all words, not just the worst-case; in
addition, they quantify over all restrictions (databases, in their terminology).

An entire line of research in XML data management has dealt with com-
parisons and matching algorithms between schema languages. Many of these
lift edit distance between trees to the level of schemas (i.e. languages) – see,
for example, [18]. However, in those cases the lifting is done by looking at the
syntactic structure of the schema description, rather than at the instance level
(distance between documents in each schema).

An extended abstract of this work appeared in [19].
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