A formal framework for Complex Event Processing

Alejandro Grez!, Cristian Riveros!, and Martin Ugarte?

1 Pontificia Universidad Catélica de Chile
{ajgrez, cristian.riveros}Quc.cl

2 Université Libre de Bruxelles
martin.ugarte@ulb.ac.be

—— Abstract

Complex Event Processing (CEP) has emerged as the unifying field for technologies that require
processing and correlating distributed data sources in real-time. CEP finds applications in diverse
domains, which has resulted in a large number of proposals for expressing and processing complex
events. However, existing CEP languages lack from a clear semantics, making them hard to
understand and generalize. Moreover, there are no general techniques for evaluating CEP query
languages with clear performance guarantees.

In this paper we embark on the task of giving a rigorous and efficient framework to CEP.
We propose a formal language for specifying complex events, called CEL, that contains the main
features used in the literature and has a denotational and compositional semantics. We also
formalize the so-called selection strategies, which had only been presented as by-design extensions
to existing frameworks. With a well-defined semantics at hand, we discuss how to efficiently
process complex events by evaluating CEL formulas with unary filters. We start by studying
the syntactical properties of CEL and propose rewriting optimization techniques for simplifying
the evaluation of formulas. Then, we introduce a formal computational model for CEP, called
complex event automata (CEA), and study how to compile CEL formulas with unary filters into
CEA. Furthermore, we provide efficient algorithms for evaluating CEA over event streams using
constant time per event followed by constant-delay enumeration of the results. Finally, we gather
the main results of this work to present an efficient and declarative framework for CEP.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Complex Event Processing (CEP) has emerged as the unifying field of technologies for de-
tecting situations of interest under high-throughput data streams. In scenarios like Network
Intrusion Detection [39], Industrial Control Systems [29] or Real-Time Analytics [42], CEP
systems aim to efficiently process arriving data, giving timely insights for implementing re-
active responses to complex events. Prominent examples of CEP systems from academia
and industry include SASE [49], EsperTech [1], Cayuga [26], TESLA/T-Rex [22, 23], among
others (see [24] for a survey). The main focus of these systems has been in practical issues
like scalability, fault tolerance, and distribution, with the objective of making CEP systems
applicable to real-life scenarios. Other design decisions, like query languages, are generally
adapted to match computational models that can efficiently process data (see for example
[50]). This has produced new data management and optimization techniques, generating
promising results in the area [49, 1].

Unfortunately, as has been claimed several times [27, 51, 22, 11] CEP query languages
lack a simple and denotational semantics, which makes them difficult to understand, extend
or generalize. Their semantics are generally defined either by examples [36, 4, 21], or by
intermediate computational models [49, 44, 40]. Although there are frameworks that intro-
duce formal semantics (e.g. [26, 15, 7, 22, 8]), they do not meet the expectations to pave

m licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2

A formal framework for Complex Event Processing

the foundations of CEP languages. For instance, some of them have unintuitive behavior
(e.g. sequencing is non-associative), or are severely restricted (e.g. nesting operators is
not supported). One symptom of this problem is that iteration, which is fundamental in
CEP, has not yet been defined successfully as a compositional operator. Since iteration is
difficult to define and evaluate, it is usually restricted by not allowing nesting or reuse of
variables [49, 26]. As a result of these problems, CEP languages are generally cumbersome.

The lack of simple denotational semantics makes query languages also difficult to evalu-
ate. A common factor in CEP systems is to find sophisticated heuristics [50, 22] that cannot
be replicated in other frameworks. Further, optimization techniques are usually proposed at
the architecture level [37, 26, 40], which does not allow for a unifying optimization theory.
Many CEP frameworks use automata-based models [26, 15, 7] for query evaluation, but these
models are usually complicated [40, 44], informally defined [26] or non-standard [22, 5]. In
practice this implies that, although finite state automata is a recurring approach in CEP,
there is no general evaluation strategy with clear performance guarantees.

Given this scenario, the goal of this paper is to give solid foundations to CEP systems in
terms of query language and query evaluation. Towards these goals, we first provide a formal
language that allows for expressing the most common features of CEP systems, namely
sequencing, filtering, disjunction, and iteration. We introduce complex event logic (CEL), a
logic with well-defined compositional and denotational semantics. We also formalize the so-
called selection strategies, an important notion of CEP that is usually discussed directly [50,
26] or indirectly [15] in the literature but has not been formalized at the language level.

We then focus on the evaluation of CEL. We propose a formal evaluation framework
that considers three building blocks: (1) syntactic techniques for rewriting CEL queries, (2)
a well-defined intermediate evaluation model, and (3) efficient translation and algorithms
to evaluate this model. Regarding the rewriting techniques, we introduce the notions of
well-formed and safe formulas in CEL, and show that these restrictions are relevant for
query evaluation. Further, we give a general result on rewriting CEL formulas into the so-
called LP-normal form, a normal form for dealing with unary filters. For the intermediate
evaluation model, we introduce a formal computational model for the regular fragment of
CEL, called complex event automata (CEA). We show that this model is closed under I/O-
determinization and provide translations for CEL formulas with unary filters into CEA.
More important, we show an efficient algorithm for evaluating CEA with clear performance
guarantees: constant time per tuple followed by constant-delay enumeration of the output.
Finally, we bring together our results to present a formal framework for evaluating CEL.

Related work. Active Database Management Systems (ADSMS) and Data Stream Man-
agement Systems (DSMS) process data streams, and thus they are usually associated with
CEP systems. Both technologies aim to execute relational queries over dynamic data [19, 2,
9]. In contrast, CEP systems see data streams as a sequence of events where the arrival order
is the guide for finding patterns inside streams (see [24] for a comparison between ADSMS,
DSMS, and CEP). Therefore, DSMS query languages (e.g. CQL [10]) are incomparable with
our framework since they do not focus on CEP operators like sequencing and iteration.
Query languages for CEP are usually divided into three approaches [24, 11]: logic-based,
tree-based and automata-based models. Logic-based models have their roots in temporal
logic or event calculus, and usually have a formal, declarative semantics [8, 12, 20] (see [13]
for a survey). However, this approach does not include iteration as an operator or it does not
model the output explicitly. Furthermore, their evaluation techniques rely on logic inference
mechanisms which are radically different from our approach. Tree-based models [38, 35, 1]
have also been used for CEP but their language semantics is usually non-declarative and

A. Grez, C. Riveros and M. Ugarte

type | H | T | H | H | T |T|T|H| H

id 2 0 0 1 1 0 1 1 0
value | 25 | 45 | 20 | 25 | 40 | 42 | 25 | 70 | 18
index | O 1 2 3 4 5 6 7 8

Figure 1 A stream S of events measuring temperature and humidity. “value” contains degrees
and humidity for T- and H- events, respectively.

their evaluation techniques are based on cost-models, similar to relational database systems.

Automata-based models are close to what we propose in this paper. Previous proposals
(e.g. SASE[5], NextCEP[44], DistCED[40]) do not rely in a denotational semantics; their
output is defined by intermediate automata models. This implies that either iteration cannot
be nested [5] or its semantics is confusing [44]. Other proposals (e.g. CEDR[15], TESLA[22],
PBCED]7]) are defined with a formal semantics but they do not include iteration. An ex-
ception is Cayuga[25], but its language does not allow reusing variables and sequencing is
non-associative, which results in an unintuitive semantics. Our framework is comparable
to these systems, but provides a well-defined language that is compositional, allowing ar-
bitrary nesting of operators. Moreover, we present the first evaluation of CEP queries that
guarantees constant time per event and constant-delay enumeration of the output.

Finally, there has been some research in theoretical aspects of CEP, e.g. in axiomatization
of temporal models [48], privacy [32], and load shedding [31]. This literature does not study
the semantics and evaluation of CEP and, therefore, is orthogonal to our work.

Organization. We give an intuitive introduction to CEP and our framework in Section 2.
In Section 3 and 4 we formally present our logic and selection strategies. The syntactic
structure of the logic is studied in Section 5. The computational model and compilation of
formulas are studied in Section 6. In Section 7 we develop efficient evaluation techniques
and in Section 8 we present a framework summarizing our results. Future work is discussed
in Section 9. Due to space limitations all proofs are deferred to the appendix.

2 Events in action

We start by presenting the main features and challenges of CEP. The examples used in this
section will also serve throughout the paper as running examples.

In a CEP setting, events arrive in a streaming fashion to a system that must detect certain
patterns [24]. For the purpose of illustration assume there is a stream produced by wireless
sensors positioned in a farm, whose main objective is to detect fires. As a first scenario,
assume that there are three sensors, and each of them can measure both temperature (in
Celsius degrees) and relative humidity (as the percentage of vapor in the air). Each sensor is
assigned an id in {0,1,2}. The events produced by the sensors consist of the id of the sensor
and a measurement of temperature or humidity. In favor of brevity, we write T'(id, tmp) for
an event reporting temperature tmp from sensor with id id, and similarly H (id, hum) for
events reporting humidity. Figure 1 depicts such a stream: each column is an event and the
value row is the temperature or humidity if the event is of type T or H, respectively.

The patterns to be detected are generally specified by domain experts. For the sake of
illustration, assume that the position of sensor 0 is particularly prone to fires, and it has been
detected that a temperature measurement above 40 degrees Celsius followed by a humidity
measurement of less than 25% represents a fire with high probability. Let us intuitively
explain how we can express this as a pattern (also called a formula) in our framework:

w1 =(T AS x; H AS y) FILTER (x.tmp >40 Ay.hum <=25 Az.id=0 Ay.id=0)

XX:3

XX:4

A formal framework for Complex Event Processing

This formula is asking for two events, one of type temperature (T') and one of type humidity
(H). The events of type temperature and humidity are given names x and y, respectively, and
the two events are filtered to select only those pairs (z,%y) representing a high temperature
followed by a low humidity measured by sensor O.

What should the evaluation of ¢, over the stream in Figure 1 return? A first important
remark is that event streams are noisy, and one does not expect the events matching a
formula to be contiguous in the stream. Then, a CEP engine needs to be able to dismiss
irrelevant events. The semantics of the sequencing operator (;) will thus allow for arbitrary
events to occur in between the events of interest. A second remark is that in CEP the set of
events matching a pattern, called a complex event, is particularly relevant to the end user.
Every time that a formula matches a portion of the stream, the final user should retrieve the
events that compose that portion of the stream. This means that the evaluation of a formula
over a stream should output a set of compler events. In our framework, each complex event
will be the set of indexes (stream positions) of the events that witness the matching of a
formula. Specifically, let S[i] be the event at position i of the stream S. What we expect
for the output of formula ¢y consists of sets {i,j} such that S[i] is of type T, S[j] is of
type H, i < j, and they satisfy the conditions expressed after the FILTER. By inspecting
Figure 1, we can see that the pairs satisfying these conditions are {1,2}, {1,8}, and {5, 8}.

Formula ¢, illustrates the two most elemental features of CEP, namely sequencing and
filtering [24, 9, 50, 2, 17]. But although it detects a set of possible fires, it restricts the order
in which the two events occur: the temperature must be measured before the humidity.
Naturally, this could prevent the detection of a fire in which the humidity was measured first.
This motivates the introduction of disjunction, another common feature in CEP engines [24,
9]. To illustrate, we extend @7 by allowing events to appear in arbitrary order.

wo=[(T ASx; HASy) OR (H AS y; T AS x)] FILTER
(z.tmp > 40 Ay.hum <=25Az.id =0 Ay.id =0)

The OR operator allows for any of the two patterns to be matched. The result evaluation s
over S (Figure 1) is the same as the evaluation of ¢; plus the complex event {2,5}.

The previous formulas show how CEP systems raise alerts when a certain complex event
occurs. However, from a wider scope the objective of CEP is to retrieve information of
interest from streams. For example, assume that we want to see how does temperature
change in the location of sensor 1 when there is an increase of humidity. A problem here is
that we do not know a priori the amount of temperature measurements; we need to capture
an unbounded amount of events. The iteration operator + (a.k.a. Kleene closure) [24, 9, 30] is
introduced in most CEP frameworks for solving this problem. This operator introduces many
difficulties in the semantics of CEP languages. For example, since events are not required
to occur contiguously, the nesting of + is particularly tricky and most frameworks simply
disallow this (see [49, 10, 26]). Coming back to our example, the formula for measuring
temperatures whenever an increase of humidity is detected by sensor 1 is:

w3 =[H AS x; (T AS y FILTER y.id =1)+; H AS 2]
FILTER (x.hum < 30 A z.hum > 60Ax.id =1 A z.id =1)

Intuitively, variables and z witness the increase of humidity from less than 30% to more
than 60%, and y captures temperature measures between x and z. Note that the filter for y
is included inside the + operator. Some frameworks allow to declare variables inside a + and
filter them outside that operator (e.g. [49]). Although it is possible to define the semantics

A. Grez, C. Riveros and M. Ugarte

for that syntax, this form of filtering makes the definition of nesting + difficult. Another
semantic subtlety of the 4+ operator is the association of y to an event. Given that we want
to match the event (T AS y FILTER y.id = 1) an unbounded number of times: how should
the events associated to y occur in the complex events generated as output? Associating
different events to the same variable during evaluation has proven to make the semantics of
CEP languages cumbersome. In Section 3, we introduce a semantics that allows nesting +
and associate variables (inside + operators) to different events across repetitions.

Let us now explain the evaluation of ¢35 over S (Figure 1). The only two humidity events
satisfying the top-most filter are S[3] and S[7], and the events in between that satisfy the
inner filter are S[4] and S[6]. As expected, {3,4,6,7} is part of the output. However, there
are other complex events in the output. Since, as discussed, there might be irrelevant events
between relevant ones, the semantics of + must allow for skipping arbitrary events. This
implies that the complex events {3,6,7} and {3,4,7} are also part of the output.

The previous discussion raises an interesting question: are users interested in all complex
events? Are some complex events more informative than others? Coming back to the output
of 3 ({3,6,7}, {3,4,7} and {3,4,6,7}), one can easily argue that the largest complex event
is more informative since all events are contained in it. The complex events output by ¢
deserve a more thorough analysis. In this scenario, the pairs that have the same second
component (e.g., {1,8} and {5,8}) represent a fire occurring at the same place and time, so
one could argue that only one of the two is necessary. For cases like above, it is common
to find CEP systems that restrict the output by using so-called selection strategies (see for
example [49, 50, 22]). Selection strategies are a fundamental feature of CEP. Unfortunately,
they have only been presented as heuristics applied to particular computational models, and
thus their semantics are given by algorithms and are hard to generalize. A special mention
deserves the next selection strategy (called skip-till-next-match in [49, 50]) which models
the idea of outputting only those complex events that can be generated without skipping
relevant events. Although the semantics of next has been mentioned in previous papers (e.g
[15]), it is usually underspecified [49, 50] or complicates the semantics of other operators [26].
In Section 4, we formally define a set of selection strategies including nezt.

Before formally presenting our framework, we illustrate one more common feature of
CEP, namely correlation. Correlation is introduced by filtering events with predicates that
involve more than one event. For example, consider that we want to see how does temper-
ature change at some location whenever there is an increase of humidity, like in p3. What
we need is a pattern where all the events are produced by the same sensor, but that sensor
is not necessarily sensor 1. This is achieved by the following pattern:

wq =[H AS z; (T AS y FILTER y.id = z.id)+; H AS z]
FILTER (z.hum < 30 A z.hum > 60 A z.id = z.id)

Notice that here the filters contain the predicates x.id = y.id and z.id = z.id that force all
events to have the same id. Although this might seem simple, the evaluation of formulas that
correlate events introduces new challenges. Intuitively, ¢4 is more complex because the id of
x must be remembered in order to compare it with future incoming events. This behavior
is clearly not “regular” and it will not be captured by a finite state model [33, 43]. In this
paper, we study and characterize the regular part of CEP-systems. In sections 6 and 8 we
focus on formulas without correlation. As we will see, the formal analysis of this fragment
already presents non-trivial challenges, which is why we defer the analysis of formulas like
4 for future work. It is important to mention that the semantics of our language (including
selection strategies) is general and includes binary filters like correlation.

XX:5

XX:6

A formal framework for Complex Event Processing

3 A query language for CEP

Having discussed the common operators and features of CEP, we proceed to formally in-
troduce CEL (Complex Event Logic), our pattern language for capturing complex events.

Schemas, Tuples and Streams. Let A be a set of attribute names and D a set of values.
A database schema R is a finite set of relation names, where each R € R is associated to a
tuple of attributes in A denoted by att(R). If R is a relation name, then an R-tuple is a
function ¢ : att(R) - D. The type of an R-tuple ¢ is R, and denote this by type(t) = R. For
any relation name R, tuples(R) denotes the set of all possible R-tuples, i.e., tuples(R) = {¢:
att(R) - D}. Similarly, for any database schema R, tuples(R) = Uger tuples(R).

Given a schema R, an R-stream S is an infinite sequence S = gty ... where t; € tuples(R).
When R is clear from the context, we refer to S simply as a stream. Given a stream
S = toty... and a position i € N, the i-th element of S is denoted by S[i] = t;, and the
sub-stream t;t;,1 ... of S is denoted by S;. Note that we consider that the time of each
event is given by its index, and defer a more elaborated model (like [48]) for future work.

Let X be a set of variables. Given a schema R, a predicate of arity n is an n-ary
relation P over tuples(R), i.e. P ¢ tuples(R)™. An atom is an expression P(Z) where
P is an n-ary predicate and x € X". As usual, we express predicates as formulas over
attributes, and use z.a to reffer to the attribute a of the tuple represented by z. For
example, P(z) := z.hum < 30 is an atom and P is the predicate of all tuples that have a
humidity attribute of less than 30. We consider that checking if a tuple ¢ is in a predicate
P takes time O(Jt|), and that every atom P(Z) has constant size (and thus the size of a
formula is independent of the type of predicates). We assume a fixed set of predicates P
(i.e. defined by the CEP system). Moreover, we assume that P is closed under intersection,
union, and complement, and P contains the predicate Pr(x) := type(z) = R for checking if
a tuple is an R-tuple for every R € R.

CEL syntax. Now we proceed to give the syntax of what we call the core of CEL (core-
CEL for short), a logic inspired by the operations described in the previous section. This
language contains the most essential CEP features. The set of formulas in core-CEL, or core
formulas for short, is given by the following grammar:

w:=RASz | o FILTER P(Z) | ¢ OR ¢ | ¢; ¢ | p+

where R is a relation name, x is a variable in X and P(z) is an atom in P. For example, all
formulas in Section 2 are CEL formulas. Throughout the paper we use ¢ FILTER (P(Z) A
Q(y)) or ¢ FILTER (P(Z) v Q(y)) as syntactic sugar for (¢ FILTER P(Z)) FILTER Q(%) or
(¢ FILTER P(Z)) OR (¢ FILTER Q(¥)), respectively. Unlike existing frameworks, we do not
restrict the syntax, allowing for arbitrary nesting (in particular of +).

CEL semantics. We proceed to define the semantics of core formulas, for which we need
to introduce some further notation. A complexr event C is defined as a non-empty and finite
set of indices. As mentioned in Section 2, a complex event contains the positions of the
events that witness the matching of a formula over a stream, and moreover, they are the
final output of evaluating a formula over a stream. We denote by |C| the size of C and by
min(C) and max(C) the minimum and maximum element of C, respectively. Given two
complex events Cy and Ca, C - Cy denotes the concatenation of two complex events, that
is, Cy - Cy := C7 U Cy whenever max(C}) < min(Cs) and is undefined otherwise.

In core-CEL formulas, variables are only used to filter and select particular events, i.e.
they are not retrieved as part of the output. As examples in Section 2 suggest, we are

A. Grez, C. Riveros and M. Ugarte

only concerned with finding the events that compose the complex events, and not which
position corresponds to which variable. The reason behind this is that the operator +
allows for repetitions, and therefore variables under (possibly nested) + operators would
have a special meaning, particularly for filtering. This discussion motivates the following
definitions. Given a formula ¢ we denote by var(p) the set of all variables mentioned in ¢
(including filters), and by vdef(y) all variables defined in ¢ by a clause of the form R AS x.
Furthermore, vdef,(¢) denotes all variables in vdef(p) that are defined outside the scope
of all + operators. For example, for ¢ = (T AS x; (H AS y)+) FILTER 2.id = 1 we have that
var(p) = {z,y, 2}, vdef(p) = {x,y}, and vdef,(p) = {x}. Finally, a valuation is a function
v: X — N. Given a finite set of variables U € X and two valuations v and vs, the valuation
v1[v2/U] is defined by v [va/U](x) = va(x) if € U and by v4[ve/U](x) = v1(z) otherwise.

We are ready to define the semantics of a core-CEL formula ¢. Given a complex event
C and a stream S, we say that C' is in the evaluation of ¢ over S under valuation v
(C € [¢](S,v)) if one of the following conditions holds:

=R AS z, C ={v(z)}, and type(S[v(z)]) = R.

@ =1 FILTER P(x1,...,2,), C € [¥](S,v) and (S[v(z1)],...,S[v(x,)]) € P.

@ =11 OR Yy and C € [¢1](S,v) or C € [](S,v).

¢ =11 ; P9 and there are C; € [¢1](S,v) and Cs € [¢2](S,v) such that C = C - Cs.

¢ = 1+ and there exists v such that C € [¢](S,v[V/U]) or C € [¢; v+](S,v[V'[U]),
where U = vdef, (¢).

There are a couple of important remarks here. First, the valuation v can be defined over
a superset of the variables mentioned in the formula. This is important for sequencing
(;) because we require the complex events from both sides to be produced with the same
valuation. Second, when we evaluate a subformula of the form ¥+, we carry the value of
variables defined outside the subformula. For example, the subformula (7" AS y FILTER y.id =
x.id)+ of ¢4 does not define the variable z. However, from the definition of the semantics
we see that x will be already assigned (because R AS z occurs outside the subformula). This
is precisely where other frameworks fail to formalize iteration, as without this construct it is
not easy to correlate the variables inside + with the ones outside, as we illustrate with 4.

As previously discussed, in core-CEL variables are just used for comparing attributes
with FILTER, but are not relevant for the final output. In consequence, we say that C
belongs to the evaluation of ¢ over S (denoted C € [¢](9)) if there is a valuation v such
that C € [¢](S,v). As an example, the complex events presented in Section 2 are indeed
the outputs of 1 to w3 over the stream in Figure 1.

4 Selection strategies

Matching complex events is a computationally intensive task. As the examples in Section 2
suggest, the main reason behind this is that the amount of complex events can grow expo-
nentially in the size of the stream, forcing systems to process large numbers of candidate
outputs. In order to speed up the matching processes, it is common to restrict the set of
results [18, 49, 50]. Unfortunately, most proposals in the literature restrict outputs by intro-
ducing heuristics to particular computational models without describing how the semantics
are affected. For a more general approach, we introduce selection strategies (or selectors) as
unary operators over core-CEL formulas. Formally, we define four selection strategies called
strict (STRICT), next (NXT), last (LAST) and max (MAX). STRICT and NXT are motivated by
previously introduced operators [49] under the name of strict-contiguity and skip-till-next-

XX:7

XX:8

A formal framework for Complex Event Processing

match, respectively. LAST and MAX are useful selection strategies from a semantic point of
view. We define each selection strategy below, giving the motivation and formal semantics.

STRICT. As the name suggest, STRICT or strict-contiguity keeps only the complex events
that are contiguous in the stream. To motivate this, recall that formula ¢; in Section 2
detects complex events composed by a temperature above 40 degrees followed by a humidity
of less than 25%. As already argued, in general one could expect other events between x
and y. However, it could be the case that this pattern is of interest only if the events occur
contiguously in the stream, or perhaps the stream has been preprocessed by other means
and irrelevant events have been thrown out already. For this purpose, STRICT reduces the
set of outputs selecting only strictly consecutive complex events. Formally, for any CEL
formula ¢ we have that C € [STRICT(¢)](.S,v) holds if C € [¢](S,v) and for every i,j € C,
if i <k <jthen ke C (i.e., C is an interval). In our running example, STRICT (1) would
only produce {1,2}, although {1,8} and {5,8} are also outputs for ¢; over S.

NXT. The second selector, NXT, is similar to the previously proposed operator skip-till-
next-match [49]. The motivation behind this operator comes from a heuristic that consumes
a stream skipping those events that cannot participate in the output, but matching patterns
in a greedy manner that selects only the first event satisfying the next element of the query.
In [49] the authors gave the definition of this strategy just as

“a further relaxation is to remove the contiguity requirements: all irrelevant events
will be skipped until the next relevant event is read” (*).

In practice, skip-till-next-match is defined by an evaluation algorithm that greedily adds
an event to the output whenever a sequential operator is used, or adds as many events as
possible whenever an iteration operator is used. The fact that the semantics is only defined
by an algorithm requires a user to understand the algorithm to write meaningful queries. In
other words, this operator speeds up the evaluation by sacrificing the clarity of the semantics.

To overcome the above problem, we formalize the intuition behind (*) based on a special
order over complex events. As we will see later, this allows to speed up the evaluation
process as much as skip-till-next-match while providing clear and intuitive semantics. Let
Cy and Cy be complex events. The symmetric difference between C; and Cy (C; A Cy) is
the set of all elements either in C; or C but not in both. We say that C <pext Co if either
Cy = Cy or min(Cy A Cs) € Cy. For example, {5,8} <pext {1,8} since the minimum element
in {5,8} & {1,8} = {1,5} is 1, which is in {1,8}. Note that this is intuitively similar to
skip-till-next-match, as we are selecting the first relevant event. An important property is
that the <,ext-relation forms a total order among complex events, implying the existence of
a minimum and a maximum over any finite set of complex events.

» Lemma 1. <o is a total order between complex events.

We can define now the semantics of NXT: for a CEL formula ¢ we have that C € [NXT(¢)](S,v)
if C € [¢](S,v) and for every complex event C' € [¢](S,v), if max(C) = max(C’) then
C" <next C. In other words, C must be the < c-maximum match among all matches that
end in max(C). In our running example, we have that {1,8} matches NXT(p;) but {5,8}
does not. Furthermore, {3,4, 6,7} matches NXT(y4) while {3,4,7} and {3,6,7} do not. Note
that we compare outputs that have the same final position. This way, complex events are
discarded only when there is a preferred complex event triggered by the same last event.

LAST. The NXT selector is motivated by the computational benefit of skipping irrelevant
events in a greedy fashion. However, from a semantic point of view it might not be what a
user wants. For example, if we consider again ¢, and stream S (Section 2), we know that

A. Grez, C. Riveros and M. Ugarte

every complex event in NXT(¢;) will have event 1. In this sense, the NXT strategy selects the
oldest complex event for the formula. We argue here that a user might actually prefer the
opposite, i.e. the most recent explanation for the matching of a formula. This is the idea
captured by LAST. Formally, the LAST selector is defined exactly as NXT, but changing the
order <pext by <iast: if Cqp and Cy are two complex events, then C; <5 Co if either Cp = Cy
or max(Cy & Cs) € Cy. For example, {1,8} <jast {5,8}. In our running example, LAST(¢1)
would select the most recent temperature and humidity that explain the matching of ¢; (i.e.
{5,8}), which might be a better explanation for a possible fire. Surprisingly, we show in
Section 7 that LAST enjoys the same good computational properties as NXT, even though it
does not come from a greedy heuristic like NXT does.

MAX. A more ambitious selection strategy is to keep the maximal complex events in terms
of set inclusion, which could be naturally more useful because these complex events are the
most informative. Formally, given a CEL formula ¢ we say that C € [MAX()](S,») holds iff
C e [¢](S,v) and for all C" € [¢](S,v), if max(C) = max(C") then C' ¢ C’. Coming back to
¢1, the MAX selector will output both {1,8} and {5,8}, given that both complex events are
maximal in terms of set inclusion. On the contrary, formula ¢3 produced {3,6,7}, {3,4,7},
and {3,4,6,7}. Then, MAX(p3) will only produce {3,4,6,7} as output, which is the maximal
complex event. It is interesting to note that if we evaluate both NXT(p3) and LAST(w3) over
the stream we will also get {3,4,6, 7} as the only output, illustrating that NXT and LAST also
yield complex events with maximal information.

We have formally presented the foundations of a language for recognizing complex events,
and how to restrict the outputs of this language in meaningful manners. Next we study
practical aspects of the CEL syntax that impact how efficiently can formulas be evaluated.

5 Syntactic analysis of CEL

We now study the syntactic form of CEL formulas. We define well-formed and safe formulas,
which are syntactic restrictions that characterize semantic properties of interest. Then, we
define a convenient normal form and show that any formula can be rewritten in this form.

Syntactic restrictions of formulas. Although CEL has well-defined semantics, there
are some formulas whose semantics can be unintuitive. Consider for example the formula
s = (H AS z) FILTER (y.tmp < 30). Here, x will be naturally bound to the only element in
a complex event, but y will not add a new position to the output. By the semantics of CEL,
a valuation v for 5 must assign a position for y that satisfies the filter, but such position
is not restricted to occur in the complex event. Moreover, ¥ is not necessarily bound to any
of the events seen up to the last element, and thus a complex event could depend on future
events. For example, if we evaluate @5 over our running example S (Figure 1), we have that
{2} € [¥5](9), but this depends on the event at position 6. This means that to evaluate
this formula we potentially need to inspect events that occur after all events composing the
output complex event have been seen, an arguably undesired situation.

To avoid this problem, we introduce the notion of well-formed formulas. As the previous
example illustrates, this requires defining where variables are bound by a subformula of the
form R AS x. The set of bound variables of a formula ¢ is denoted by bound(y) and is
recursively defined as follows:

bound(R AS z) = {z} bound(y FILTER P(z)) = bound(v)
bound (¢ OR ¥2) = bound(t;) nbound(ys) bound(y+) = @
bound(¢1; ¥2) = bound(t1) U bound(ys) bound(SEL(v)) = bound(y)

XX:9

XX:10

A formal framework for Complex Event Processing

where SEL is any selection strategy. We say that a CEL formula ¢ is well-formed if for every
subformula of the form ¢ FILTER P(Z) and every x € Z, there is another subformula v, such
that x € bound(v,) and % is a subformula of v,. This definition allows for including filters
with variables defined in a wider scope. For example, formula ¢4 in Section 2 is well-formed
although it has the not-well-formed formula (7" AS y FILTER y.id = z.id)+ as a subformula.

One can argue that it would be desirable to restrict the users to only write well-formed
formulas. Indeed, the well-formed property can be checked efficiently by a syntactic parser
and users should understand that all variables in a formula must be correctly defined. Given
that well-formed formulas have a well-defined variable structure, in the future we restrict
our analysis to well-formed formulas.

Another issue for CEL is that the reuse of variables can easily produce unsatisfiable
formulas. For example, the formula) = T AS z; T' AS x is not satisfiable (i.e. [¢](S) =@
for every S) because variable z cannot be assigned to two different positions in the stream.
However, we do not want to be too conservative and disallow the reuse of variables in the
whole formula (otherwise formulas like o in Section 2 would not be permitted). This
motivates the notion of safe CEL formulas. We say that a CEL formula is safe if for every
subformula of the form ;; s it holds that vdef, (1) nvdef,(¢2) = @. For example, all
CEL formulas in this paper are safe except for the formula 1 above.

The safe notion is a mild restriction to help evaluating CEL, and can be easily checked
during parsing time. However, safe formulas are a subclass of CEL and it could be the case
that they do not capture the full language. We show that this is not the case. Formally, we
say that two CEL formulas ¢ and ¢ are equivalent, denoted by ¢ = v, if [¢](S) = [¢](S)
for every stream S.

» Theorem 2. Given a core-CEL formula @, there is a safe formula ¢ such that ¢ = ¢’ and
|¢| is at most exponential in |¢|.

By this result, we can restrict our analysis to safe formulas without loss of generality. Un-
fortunately, we do not know if the exponential size of ¢’ is unavoidable. We conjecture that
this is the case, but we do not know yet the corresponding lower bound.

LP-normal form. Now we study how to rewrite CEL formulas to simplify the evaluation of
unary filters. Intuitively, filter operators in a CEL formula can become difficult to handle for
a query engine. To illustrate this, consider again formula ¢ in Section 2. Syntactically, this
formula states “find an event x followed by an event y, and then check that they satisfy the
filter conditions”. However, we would like an execution engine to only consider those events
x with id = 0 that represent temperature above 40 degrees. Only afterwards the possible
matching events y should be considered. In other words, formula ¢; can be restated as:

= [(T AS z) FILTER (z.tmp > 40 A x.id = 0)];
[(H AS y) FILTER (y.hum <= 25 Ay.id =0)]

This example motivates defining the locally parametrized normal form (LP normal form).
Let U be the set of all predicates P € P of arity 1 (i.e. P ¢ tuples(R)). We say that a formula
 is in LP-normal form if, for every subformula ¢’ FILTER P(Z) of ¢ with P € U, it holds
that = {z} and ¢’ = R AS z for some R and z. In other words, all filters containing unary
predicates are applied directly to the definitions of their variables. For instance, formula ¢}
is in LP-normal form while formulas ¢; and ¢y are not. Note that non-unary predicates are
not restricted, and they can be used anywhere in the formula.

One can easily see that having formulas in LP-normal form would be an advantage for
an evaluation engine, because it can filter out some events as soon as they arrive. However,

A. Grez, C. Riveros and M. Ugarte

formulas that are not in LP-normal form can still be very useful for declaring patterns. To
illustrate this, consider the formula:

we = (T AS x); ((T AS y FILTER z.temp > 40) OR (H AS y FILTER z.temp < 40))

Here, the FILTER operator works like a conditional statement: if the z-temperature is greater
than 40, then the following event should be a temperature, and a humidity event otherwise.
This type of conditional statements can be very useful, but also hard to evaluate. Fortu-
nately, the next result shows that one can always rewrite a formula into LP-normal form,
incurring in the worst case in an exponential blow-up in the size of the formula.

» Theorem 3. Let ¢ be a CEL formula. Then, there is a CEL formula ¢ in LP-normal
form such that ¢ =, and || is at most exponential in |p|.

The importance of this result and Theorem 2 will become clear in the next sections,
where we show that safe formulas in LP-normal form have good properties for evaluation.
Similar to Theorem 2, we do not know if the exponential blow-up is unavoidable and leave
this for future work.

6 A computational model for CEL

In this section, we introduce a formal computational model for evaluating CEL formulas
called complex event automata (CEA for short). Similar to classical database management
systems (DBMS), it is useful to have a formal model that stands between the query language
and the evaluation algorithms, in order to simplify the analysis and optimization of the whole
evaluation process. There are several examples of DBMS that are based on this approach like
regular expressions and finite state automata [33, 6], and SQL and relational algebra [3, 41].
Here, we propose CEA as the intermediate evaluation model for CEL and show later how
to compile any (unary) CEL formula into a CEA.

As its name suggests, complex event automata (CEA) are an extension of Finite State
Automata (FSA). The first difference from FSA comes from handling streams instead of
words. A CEA is said to run over a stream of tuples, unlike FSA which run over words
of a certain alphabet. The second difference arises directly from the first one by the need
of processing tuples, which can have infinitely many different values, in contrast to the
finite input alphabet of FSA. To handle this, our model is extended the same way as a
Symbolic Finite Automata (SFA) [47]. SFAs are finite state automata in which the alphabet
is described implicitly by a boolean algebra over the symbols. This allows automata to
work with a possibly infinite alphabet and, at the same time, use finite state memory
for processing the input. CEA are extended analogously, which is reflected in transitions
labeled by unary predicates over tuples. The last difference addresses the need to generate
complex events instead of boolean answers. A well known extension for FSA are Finite State
Transducers [16], which are capable of producing an output whenever an input element is
read. Our computational model follows the same approach: CEA are allowed to generate
and output complex events when reading a stream.

Recall from Section 5 that U is the subset of unary predicates of P. Let e 0 be two
symbols. A complex event autormaton (CEA) is a tuple A = (Q, A, I, F) where @Q is a finite
set of states, A € @ x (U x {e,0}) x @ is the transition relation, and I, F' ¢ @ are the set
of initial and final states, respectively. Given a stream S = tgty ..., a run p of A over S is
a sequence of transitions: p : g Po/mo a1 P Pofmn Gn+1 such that qg € I, t; € P; and
(qi, P;,mi,qiv1) € A for every i < n. We say that p is accepting if g,+1 € F and m,, = o. We

XX:11

XX:12

A formal framework for Complex Event Processing

TRUE | o P'(z)]e TRUE | o

. P(z)]| e %g P(z)|e @

Figure 2 A CEA that can generate an unbounded amount of complex events. Here P(z) :=
type(z) = H and P'(z) := type(x) = T A x.temp > 40.

denote by Run,, (A,5) the set of accepting runs of A over S of length n. Further, events(p)
is the set of positions where the run marks S, namely events(p) = {i € [0,n] | m; = e}.
Intuitively this means that when a transition is taken, if the transition has the e symbol
then the current position of the stream is included in the output (similar to the execution
of a transducer). Note that we require the last position of an accepting run to be marking,
as otherwise an output could depend on future events (see the discussion about well-formed
formulas in Section 5). Given a stream S and n € N, we define the set of complex events of
A over S at position n as [A],,(S) = {events(p) | p € Run, (A, S)} and the set of all complex
events as [A](S) = U, [A],,(S). Note that [A](S) can be infinite, but [A],, (S) is finite.

Consider as an example the CEA A depicted in Figure 2. In this CEA, each transition
P(x)|e marks one H-tuple and each transition P’(z)|e marks a T-tuple with temperature
bigger than 40. Note also that the transitions labeled by TRUE|o allow A to arbitrarily skip
tuples of the stream. Then, for every stream S, [A](S) represents the set of all complex
events that begin and end with an H-tuple and also contain some of the T-tuples with
temperature higher than 40.

It is important to stress that CEA are designed to be an evaluation model for the
unary fragment of CEL (a formal definition is presented in the next paragraph). Several
computational models have been proposed for complex event processing [26, 40, 49, 44], but
most of them are informal and non-standard extensions of finite state automata. In our
framework, we want to take a step back compared to previous proposals and define a simple
but powerful model that captures the regular core of CEL. Intuitively, formulas like 1, ¢
and @3 in Section 2 can be evaluated using a bounded amount of memory. In contrast,
formula 4 needs unbounded memory to store candidate events seen in the past, and thus,
it calls for a more sophisticated model (e.g. data automata [45]). Of course one would like
to have a full-fledged model for CEL, but to this end we must first understand the regular
fragment. A computational model for the whole CEP logic is left as future work.

Compiling unary CEL into CEA. We now show how to compile a well-formed and unary
CEL formula ¢ into a CEA A,. Formally, we say a CEL formula ¢ is equivalent to a CEA A
if [¢](S) = [A](S) for every stream S. A CEL formula ¢ is unary if for every subformula of
¢ of the form ¢’ FILTER P(Z), it holds that P(Z) is a unary predicate (i.e. P(Z) € U). For
example, formulas ¢1, @2, and 3 in Section 2 are unary, but formula ¢, is not (the predicate
y.id = x.id is binary). As motivated in Section 2 and 5, despite their apparent simplicity
unary formulas already present non-trivial computational challenges (see Section 7).

» Theorem 4. For every well-formed formula ¢ in unary core-CEL, there is a CEA A,
equivalent to ¢. Furthermore, Ay, is of size at most linear in || if ¢ is safe and in LP-
normal form, and at most double exponential in |p| otherwise.

The proof of Theorem 4 is closely related with the safeness condition and the LP-normal form
presented in Section 5. The construction first converts ¢ into an equivalent CEL formula ¢’
in LP-normal form (Theorem 3) and then builds an equivalent CEA from ¢’. Unfortunately,
there is an exponential blow-up for converting ¢ into LP-normal form. However, we show

A. Grez, C. Riveros and M. Ugarte

that the output is of linear size if ¢ is safe, and of exponential size otherwise, suggesting
that restricting the language to safe formulas allows for more efficient evaluation.

We have described the compilation process without considering selection strategies. To
include them, we extend our notation and allow selection strategies to be applied over CEA.
Given a CEA A, a selection strategy SEL € {STRICT,NXT,LAST,MAX} and stream S, the set
of outputs [SEL(.A)](S) is defined analogously to [SEL(¢)](S) for a formula ¢. Then, we
say that a CEA A; is equivalent to SEL(Az) if [.A1](S) = [SEL(.A2)](S) for every stream S.

» Theorem 5. Let SEL be a selection strategy. For any CEA A, there is a CEA Asg
equivalent to SEL(A). Furthermore, the size of Asgr is, with respect to the size of A, at most
linear if SEL = STRICT, and at most exponential otherwise.

At first this result might seem unintuitive, specially in the case of NXT, LAST and MAX. It
is not immediate (and rather involved) to show that there exists a CEA for these strategies
because they need to track an unbounded number of complex events using finite memory.
Still, this can be done with an exponential blow-up in the number of states.

Theorem 5 concludes our study of the compilation of unary CEL into CEA. We have
shown that not only is CEA able to evaluate CEL formulas, but it can also be exploited
to evaluate selections strategies. We conclude this section by introducing the notion of
I/O-determinism that will be crucial for our evaluation algorithms in the next section.

I/O-deterministic CEA. To evaluate CEA in practice we will focus on the class of the
so-called I/O-deterministic CEA (for Input/Output deterministic). A CEA A= (Q,A, I, F)
is I/O-deterministic if |I| = 1 and for any two transitions (p, P1,m1,q1) and (p, P2, m2,q2),
either P; and Py are mutually exclusive (i.e. P; n Py = @), or my # mgy. Intuitively, this
notion imposes that given a stream S and a complex event C, there is at most one run over
S that generates C' (thus the name referencing the input and the output). In contrast, the
classic notion of determinism would allow for at most one run over the entire stream.
1/0O-deterministic CEA are important because they allow for a simple and efficient eval-
uation algorithm (discussed in Section 7). But for this algorithm to be useful, we need to
make sure that every CEA can be I/O determinized. Formally, we say that two CEA A;
and Ajg are equivalent (denoted A; = Ay) if for every stream S we have [A4;](S) = [A2](S).

» Proposition 1. For every CEA A there is an I/O-deterministic CEA A’ such that A =
A’ and A’ is of size at most exponential over |A|. That is, CEA are closed under 1/0-
determinization.

This result and the compilation process allow us to evaluate any CEL formula by means
of I/O-deterministic CEA without loss of generality.

7 Algorithms for evaluating CEA

In this section we show how to efficiently evaluate CEA. We start by formalizing the notion
of efficient evaluation in CEP, which has not been formalized before in the CEP literature.

Efficiency in CEP. Defining a notion of efficiency for CEP is challenging since we would
like to compute complex events in one pass and using a restricted amount of resources.
Streaming algorithms [34, 28] are a natural starting point as they usually restrict the time
allowed to process each tuple and the space needed to process the first n items of a stream
(e.g., constant or logarithmic in n). However, an important difference is that in CEP the
arrival of a single event might generate an exponential number of complex events as output.
To overcome this problem, we propose to divide the evaluation in two parts: (1) consuming

XX:13

XX:14

A formal framework for Complex Event Processing

new events and updating the internal memory of the system and (2) generating complex
events from the internal memory of the system. We require both parts to be as efficient as
possible. First, (1) should process each event in a time that does not depend on the number
of events seen in the past. Second, (2) should not spend any time processing and instead it
should be completely devoted to generating the output. To formalize this notion, we assume
that there is a special instruction yieldg that returns the next element of a stream S. Then,
given a function f: N —= N, a CEP evaluation algorithm with f-update time is an algorithm
that evaluates a CEA A over a stream S such that:

1. between any two calls to yieldg, the time spent is bounded by O(f(|A|)-|t|), where ¢ is
the tuple returned by the first of such calls, and

2. maintains a data structure D in memory, such that after calling yieldg n times, the set
[A],,(S) can be enumerated from D with constant delay.

The notion of constant-delay enumeration was defined in the database community [46, 14]
precisely for defining efficiency whenever generating the output might use considerable time.
Formally, it requires the existence of a routine ENUMERATE that receives D as input and out-
puts all complex events in [A], (S) without repetitions, while spending a constant amount
of time before and after each output. Naturally, the time to generate a complex event C
must be linear in |C|. We remark that 1. is a natural restriction imposed in the streaming
literature [34], while 2. is the minimum requirement if an arbitrarily large set of arbitrarily
large outputs must be produced [46].

Note that the update time O(f(|.A]) - |¢|) is linear in |¢| if we consider that A is fixed.
Since this is the case in practice (i.e. the automaton is generally small with respect to the
stream, and does not change during evaluation), this amounts to constant update time when
measured under data complexity (tuples can also be considered of constant size).

Efficient evaluation of CEA. Having a good notion of efficiency, we proceed to show how
to evaluate CEA efficiently. As it was previously discussed in Section 6, I/O deterministic
CEA are specially designed for having CEP evaluation algorithms with linear update time.
Furthermore, given that any CEA can be I/O-determinized (Proposition 1), this implies a
CEP evaluation algorithm to evaluate any CEA. Unfortunately, the determinization pro-
cedure has an exponential blow-up in the size of the automaton, increasing the update time
when the automaton is not I/O deterministic.

» Theorem 6. For every I/O-deterministic CEA A, there is a CEP evaluation algorithm
with |A|-update time. Furthermore, if A is any CEA, there is a CEP evaluation algorithm
with 2 update time.

We can further extend the CEP evaluation algorithm for I/O-deterministic CEA to any selec-
tion strategies by using the results of Theorem 5. However, by naively applying Theorem 5
and then I/O-determinizing the resulting automaton, we will have a double exponential
blow-up. By doing the compilation of the selection strategies and the I/O-determinization
together, we can lower the update time. Moreover, and rather surprisingly, we can evaluate
NXT and LAST without determinizing the automaton, and therefore with linear update time.

» Theorem 7. Let SEL be a selection strategy. For any CEA A, there is a CEP evaluation
algorithm for SEL(A). Furthermore, the update time is |A| if SEL € {NXT,LAST}, 2MI 4f
SEL = STRICT and 4! if SEL = MAX.

The algorithms of Theorem 6 and 7 are probably the most interesting technical results of
the paper and, unfortunately, given space restrictions they are deferred to the appendix.

A. Grez, C. Riveros and M. Ugarte

Stream
Query Tors :
CEL Parser Rewrite [Compllatlon Evaluation Complex
(Th. 2) : (Th. 3) : (Th. 4, 5) : (Th. 6, 7) Events
A\ 4 A\ 4 \4
WF and safe LP-normal form CE automaton

Figure 3 Evaluation framework for CEL.

8 An evaluation framework for CEL

Having all the building blocks, we put all the results in perspectives and show how to evaluate
unary CEL formulas. In Figure 3, we show the evaluation cycle of a CEL formula in our
framework and how all the results and theorems fit together. To explain this framework,
consider a unary CEL formula ¢ (possibly with selection strategies). The process starts in the
parser module, where we check if ¢ is well-formed and safe. These conditions are important
to ensure that ¢ is satisfiable and make a correct use of variables. Note that a CEP system
could translate unsafe formulas (Theorem 2), incurring however in an exponential blow-up.

The next module rewrites a well-formed and safe formula ¢ into LP-normal form by
using the rewriting process of Theorem 3. In the worst case this produces an exponentially
larger formula. To avoid this, in many cases one can apply local rewriting rules [3, 41].
For example, in Section 2 we converted ¢, into ¢} by applying a filter push, avoiding the
exponential blow-up of Theorem 3. Unfortunately, we cannot apply this over formulas like
e in Section 5. Nevertheless, formulas like ¢ are rather uncommon in practice and local
rewriting rules will usually produce LP-formulas of polynomial size.

The third module receives a formula in LP-normal form and builds a CEA A, of poly-
nomial size (Theorem 4 and 5). Then, the last module runs A, over the stream by using
our CEP evaluation procedure for I/O deterministic CEA (Theorem 6). If there is no se-
lection strategy, A, must be determinized before running the CEP evaluation algorithm.
In the worst case, this determinization is exponential in Ay, nevertheless, in practice the
size of A, is rather small. If a selection strategy SEL is used, we can use the algorithms of
Theorem 7 for evaluating SEL(.A,), having a similar update time than evaluating A, alone.
It is worth mentioning that evaluating NXT(A,) or LAST(.A,) has even better performance
than evaluating A, directly, given that the update time is linear in the size of A.,.

9 Future work

This paper settles new foundations for CEP systems, stimulating new research directions.
In particular, a natural next step is to study the evaluation of non-unary CEL formulas.
This requires new insight in rewriting formulas and a more powerful computational model
with CEP evaluation algorithms. Another relevant problem is to understand the expressive
power of different fragments of CEL and the relationship between the different operators.
In this same direction, we envision as future work a generalization of the concept behind
selection strategies, together with a thorough study of their expressive power.

Finally, we have focused on the fundamental features of CEP languages, leaving other
features outside to keep the language and analysis simple. These features include correlation,
time windows, aggregation, consumption policies, among others. We plan to extend CEL
gradually with these features to establish a more complete and formal framework for CEP.

XX:15

XX:16

A formal framework for Complex Event Processing

—— References

1
2

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

Esper enterprise edition website. http://www.espertech.com/. Accessed on 2018-01-05.

D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,
M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan,
and S. Zdonik. Aurora: A data stream management system. In SIGMOD, 2003.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases: the logical level. Addison-
Wesley, 1995.

A. Adi and O. Etzion. Amit-the situation manager. VLDB Journal, 2004.

J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over
event streams. In SIGMOD, 2008.

A. V. Aho. Algorithms for finding patterns in strings. In Handbook of Theoretical Computer
Science. 1990.

M. Akdere, U. Cetintemel, and N. Tatbul. Plan-based complex event detection across
distributed sources. VLDB, 2008.

D. Anicic, P. Fodor, S. Rudolph, R. Stithmer, N. Stojanovic, and R. Studer. A rule-based
language for complex event processing and reasoning. In RR, 2010.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Wi-
dom. Stream: The stanford stream data manager (demonstration description). In SIG-
MOD, 2003.

A. Arasu, S. Babu, and J. Widom. The cql continuous query language: Semantic founda-
tions and query execution. The VLDB Journal, 2006.

A. Artikis, A. Margara, M. Ugarte, S. Vansummeren, and M. Weidlich. Complex event
recognition languages: Tutorial. In DEBS, pages 7-10. ACM, 2017.

A. Artikis, M. Sergot, and G. Paliouras. An event calculus for event recognition. IEEFE
Transactions on Knowledge and Data Engineering, 27(4):895-908, 2015.

A. Artikis, A. Skarlatidis, F. Portet, and G. Paliouras. Logic-based event recognition. The
Knowledge Engineering Review, 27(4):469-506, 2012.

G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant
delay enumeration. In CSL, 2007.

R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent streaming through time: A
vision for event stream processing. In CIDR, 2007.

J. Berstel. Transductions and context-free languages. Springer-Verlag, 2013.

A. Buchmann and B. Koldehofe. Complex event processing. IT-Information Technology
Methoden und innovative Anwendungen der Informatik und Informationstechnik, 2009.

J. Carlson and B. Lisper. A resource-efficient event algebra. Science of Computer Pro-
gramming, 2010.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous query
system for internet databases. In SIGMOD, 2000.

F. Chesani, P. Mello, M. Montali, and P. Torroni. A logic-based, reactive calculus of events.
Fundamenta Informaticae, 105(1-2):135-161, 2010.

G. Cugola and A. Margara. Raced: an adaptive middleware for complex event detection.
In Middleware, 2009.

G. Cugola and A. Margara. Tesla: a formally defined event specification language. In
DEBS, 2010.

G. Cugola and A. Margara. Complex event processing with t-rex. The Journal of Systems
and Software, 2012.

G. Cugola and A. Margara. Processing flows of information: From data stream to complex
event processing. ACM Computing Surveys (CSUR), 2012.

A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. A general algebra and
implementation for monitoring event streams. Technical report, Cornell University, 2005.

A. Grez, C. Riveros and M. Ugarte

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
44

45

46

47
48

49

50

51

A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive pub-
lish/subscribe systems. In EDBT, 2006.

A. Galton and J. C. Augusto. Two approaches to event definition. In DEXA, 2002.

L. Golab and M. T. Ozsu. Issues in data stream management. Sigmod Record, 2003.

M. P. Groover. Automation, production systems, and computer-integrated manufacturing.
Prentice Hall, 2007.

D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman. On supporting kleene closure over
event streams. In ICDE 2008, pages 1391-1393. IEEE, 2008.

Y. He, S. Barman, and J. F. Naughton. On load shedding in complex event processing. In
ICDT, pages 213-224, 2014.

Y. He, S. Barman, D. Wang, and J. F. Naughton. On the complexity of privacy-preserving
complex event processing. In PODS, pages 165-174, 2011.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. 1979.

E. Ikonomovska and M. Zelke. Algorithmic techniques for processing data streams. Dagstuhl
Follow-Ups, 2013.

M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and A. Mehta. E-
cube: multi-dimensional event sequence analysis using hierarchical pattern query sharing.
In SIGMOD, pages 889-900, 2011.

D. Luckham. Rapide: A language and toolset for simulation of distributed systems by
partial orderings of events, 1996.

M. Mansouri-Samani and M. Sloman. Gem: A generalized event monitoring language for
distributed systems. Distributed Systems Engineering, 1997.

Y. Mei and S. Madden. Zstream: a cost-based query processor for adaptively detecting
composite events. In SIGMOD, pages 193-206. ACM, 2009.

B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection. IEFFE
network, 1994.

P. Pietzuch, B. Shand, and J. Bacon. A framework for event composition in distributed
systems. In Middleware, 2003.

R. Ramakrishnan and J. Gehrke. Database management systems (8 ed.). McGraw-Hill,
2003.

B. Sahay and J. Ranjan. Real time business intelligence in supply chain analytics. Inform-
ation Management & Computer Security, 2008.

J. Sakarovitch. Elements of automata theory. Cambridge University Press, 2009.

N. P. Schultz-Mgller, M. Migliavacca, and P. Pietzuch. Distributed complex event pro-
cessing with query rewriting. In DEBS, 2009.

L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL,
2006.

L. Segoufin. Enumerating with constant delay the answers to a query. In ICDT 2013, pages
10-20, 2013.

M. Veanes. Applications of symbolic finite automata. In CIAA, 2013.

W. White, M. Riedewald, J. Gehrke, and A. Demers. What is next in event processing?
In PODS, pages 263-272, 2007.

E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams.
In SIGMOD, 2006.

H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization of expensive
queries in complex event processing. In SIGMOD, 2014.

D. Zimmer and R. Unland. On the semantics of complex events in active database man-
agement systems. In ICDFE, 1999.

XX:17

XX:18

A formal framework for Complex Event Processing

A Proofs of Section 4

A.1 Proof of Lemma 1

For <pext to be a total order between complex events, it has to be reflexive (trivial), anti-
symmetric, transitive, and total. The proof for each property is given next.

Anti-symmetric. Consider any two complex events C'; and Cy such that C <pext Co and
Cy <next C1. Ca <pext C1 means that either €7 = Cy or (1) min(Cy A C) € C, and
C <next Co that either Cy = Cy or (2) min(C; A Cy) € Cy. By contradiction, consider that
Cy # Cy. Then, both (1) and (2) must be true, but because of the definition of C; A Cs,
min(Cy A C3) can not be in both Cy and Cs, reaching a contradiction. Therefore, Cy = Cs.

Transitivity. Consider any three complex events Cy, Cy and C3 such that Cy <o Co and
C3 <next C3. Because O <pext C2 holds, then either C7 = Cy or (1) min(C; A Cy) € Co. If
C = Cq, then C] <pext C3 because Oy <pext Cs. Now, if Cp # Cy, then (1) must hold, which
implies that the lowest element that is either in Cy or Cs, but not in both, has to be in Cs.
Let’s call this element /1. Because Cy <pext Cs, then either Co = C3 or (2) min(CoACS) € Cs.
Again, if Cy = C3, then Cq <pext C3 because Cp <pext Co. Now, if Co # Cs, then (2) must
hold, so the lowest element that is either in Cs or C3, but not in both, has to be in C3. Let’s
call this element [5.

Given that C # Cp and Cy # Cs, define for every i € {1,2,3} and j € {1,2} the set C;lj
as the set of elements of C; which are lower than [;, i.e., C’;lj ={z|zeCinz<l;}. Itis
clear that O = C5" and C3" = C5", because of (1) and (2), respectively. Also, because
of (2) it holds that Iy ¢ Ca, so I3 # lo.

Consider first the case where [< l3. This means that (3) Cfll = C;ll. Moreover, if Iy
were not in Cj, it would contradict (2), so (4) I; € C3 must hold. With (3) and (4), it
follows that [y is the lowest element that is either in C; or C's but not in both, and it is in
C3. This proves that min(C; A C3) € C3, and thus C <pext C3.

Now consider the case where I <l;. Then, (5) Cle = C;lz must hold. Because [5 is not
in Oy, it cannot be in Cy, otherwise it would contradict (1), so (6) Iz ¢ C1 must hold. Also,
because of (2) we know that (7) Iz € C3 must hold. With (5), (6) and (7), it follows that Is
is the lowest element that is either in C7 or C3 but not in both, and it is in C3. This proves
that min(Cy A C3) € C3, and thus C <pexy Cs.

Total. Consider any two complex events C; and Cs. If C; = Cs, then Cf <pext Co holds.
Consider now the case where C7 # Cy. Define the set C = C7 A Cy. Because C; # Cy, there
must be at least one element in C. In particular, this implies that there is a minimum
element [in C. If [is in Cy, then Cy <pext Co holds, and if [is in Cy, then Cy < ext C1 holds.

B Proofs of Section 5

B.1 Proof of Theorem 2

To prove this theorem, we first show that one can push disjunction (by means of OR) to the
top-most level of every core-CEL formula. Formally, we say that a CEL formula ¢ is in
disjunctive-normal form if ¢ = (o1 OR -+ OR ¢,,), where for each i € {1,...,n}, it is the case
that:

Every OR operator in ¢; occurs in the scope of a + operator.

A. Grez, C. Riveros and M. Ugarte

For every subformula of ¢; of the form (¢})+, it is the case that ¢ is in disjunctive normal
form.

Now we show that every formula can be translated into disjunctive normal form.

» Lemma 8. FEvery formula o in core-CEL can be translated into disjunctive-normal form
in time at most exponential ||

Proof. We proceed by induction over the structure of .

If p = R AS z, then ¢ is already free of OR.

If ¢ = 1 OR s, the result readily follows from the induction hypothesis.

If ¢ = (¢’)+, by induction hypothesis ¢ can be translated into disjunctive normal form.

If ¢ = ¢’ FILTER P(z) with £ = (x1,...,2%), we know by induction hypothesis that
¢’ is equivalent to a formula (¢; OR --- OR ¢,). Therefore, ¢ is equivalent to the for-
mula (¢1 OR - OR ¢,,) FILTER P(Z). We show that this latter formula is equival-
ent to (¢1 FILTER P(Z)) OR --- OR (@, FILTER P(Z)). Let S be a stream and as-
sume C' € [(¢1 OR -+ OR ¢,,) FILTER P(Z)](S). Then, there is some v such that C €
[(¢1 OR - OR ¢,,)](S,v) and (S[v(x1)],...,S[v(zk)]) € P(z). By definition of OR,
this implies that there is an ¢ € {1,...,n} such that C € [(¢;)](S,v). Now, because
(S[v(z1)],...,S[v(zk)]) € P, we have C € [(p;) FILTER P(Z)](S,v). We can then im-
mediately conclude that C is in [(p; FILTER P(z)) OR --- OR (¢, FILTER P(Z))](S,v),
and therefore that C' is in [(p; FILTER P(z)) OR --- OR (¢, FILTER P(Z))](S). The con-
verse follows from an analogous argument.

If ¢ = (¢1; @2), by induction hypothesis ¢; is equivalent to a formula (] OR - OR })
and ¢y is equivalent to a formula (% OR - OR ¢2,). Let ¢’ be defined by

¢ =(p1;¢1) OR (¢1; ©3) OR -+ OR (¢1; ¢2,) OR (055 ¢7) OR - OR (35 ©5,)
OR - OR (¢, 5 %7) OR - OR () ; ¢,

We show that ¢ = ¢’. Let S be a stream and let C be a complex event. If C' € [¢](5),
then there is a valuation v and two complex events C7 and Cs such that C' = C7 - Cy,
Cy € [¢1](S,v) and Cy € [2](S,v). Then, there are two numbers ¢ and j such that
C1 € [¢;1(S,v) and Cy € [@3](S,v). As C = Cy - Oy, it immediately follows that C' e
)5 $21(S), and thus C € ['](5).

For the converse assume C' € [¢'](S). Then, there is a valuation v, a complex event C
and two numbers i and j such that C € [} ; @?}](S, v). Therefore there are two complex
events C; and Cy such that C = Cy-Cy, Cy € [¢}](S,v) and Cy € [[@?}](S, v). By semantics
of OR, we have C; € [p1](S,v) and Cs € [¢2](S,v). As C = C; - Cy, it readily follows that
Cellpr: 921(8) = [41(S).

<

Having this result, we proceed to show that a core-CEL formula in disjunctive normal
form can be translated into a safe formula. To this end, we need to show the following two
lemmas.

» Lemma 9. Let ¢ be a core-CEL formula in which every OR occurs inside the scope of a +
operator, and let x € vdef,(v). Then, for every complex event C, valuation v and stream S
such that C € [¢](S,v), it is the case that x € dom(v) and v(x) € C.

Proof. We proceed by induction on the structure of ¢. Let v be a valuation, S a stream
and C' a complex event.

XX:19

XX:20

A formal framework for Complex Event Processing

Assume ¢ = R AS z and that C € [¢](S,v). By definition, we have C = {v(z)}.

Assume ¢ = ¢’ FILTER P(Z) and that C € [¢](S,v). Let x € vdef,(¢). By definition,
we have that C' € [¢'](S,v). Since z € vdef,(¢"), by induction hypothesis we have
x € dom(v) and v(x) € C.

If ¢ = (¢')+ the condition trivially holds as vdef,(¢) = @.

If ¢ = p1; @2, then x € vdef, (¢1) or x € vdef, (o). Assume w.l.o.g. that z € vdef, (¢1).
If C € [e](S,v), then C = Cy - Co, where Cy € [p1](S,v). As x € vdef,(¢1), by induction
hypothesis we have that « € dom(v) and v(x) € Cy € C, concluding the proof.

<

» Lemma 10. Let ¢ be a core-CEL formula in which every OR occurs inside the scope of a
+ operator, and let S be a stream. If o has a subformula ' that is not under the scope of a
+ operator such that [¢'](S) = @, then [¢](S) = @.

Proof. We proceed by induction on the structure of ¢. Let S a stream and assume ¢’ is
a subformula of ¢ such that [¢'](S) = @. We assume that ¢’ is a proper subformula, as
otherwise the result immediately follows. For this reason, we can trivially skip the case when
=R AS z or ¢ = (1)+.

If ¢ = p1; o, then ¢’ is a subformula of p; or of ps. Assume w.lo.g. that ¢ is a
subformula of ;. By induction hypothesis, as [¢'](S) = @ we have that [p1](S) = @,
which immediately implies that [¢](S) = @.

If ¢ = ¢y FILTER P(Z), we know that ¢’ is a subformula of ;. By induction hypothesis
we have [¢'](S) = @ and by definition of FILTER we obtain [¢](S) = @.

<

Now we are ready to show that any core-CEL formula in disjunctive-normal form can be
translated into a safe formula, and moreover, this can be done in linear time.

» Lemma 11. Let ¢ be a core-CEL formula in disjunctive-normal form. Then ¢ can be
translated in linear time into a safe core-CEL formula ¢'.

Proof. Assume that ¢ = ¢ OR --- OR ¢, is a core-CEL formula in disjunctive-normal form.
By induction, we assume that every subformula of the form (¢')+ is already safe. Now we
show that every unsafe ¢; is unsatisfiable, and therefore it can be safely removed from the
disjunction. Proceed by contradiction and assume ¢; is unsafe and satisfiable. Then, it must
contain a subformula of the form 7 ; ¥9 occurring outside the scope of all + operators, and
such that vdef, (1) nvdef,(12) # @. Let x € vdef,(¢1) nvdef,(1)s). By Lemma 10, we
know that 17 ; ¥» must be satisfiable. Therefore, there is a stream S, a valuation v and a
mapping C such that C € [¢1; ¥2](S,v). This implies the existence of two complex events
Cy and Cs such that C; € [¢1](S,v) and Cy € [¥2](S,v). Since x € vdef, (1) and v can
only mention OR inside a + operator, by Lemma 9 we obtain that v(x) € Cy. Similarly, as
x € vdef, (1)2), we have v(x) € Cy. But as C' = C;-Cs, we have that C1nCy = @, contradicting
the facts that v(x) € Cy and v(x) € Cs.

We have obtained that if any disjunct is unsafe, it cannot produce any results. Therefore,
as safeness is easily verifiable, the result readily follows by removing the unsafe disjuncts of
. Notice that this need to be done in a bottom-up fashion, starting from the subformulas
of the form (¢’)+. “

Theorem 2 occurs as a corollary of Lemmas 8 and 11. Indeed, given a core-CEL formula
©, one can construct in exponential time an equivalent core-CEL formula ¢’ in disjunctive

A. Grez, C. Riveros and M. Ugarte

normal form. Then, from ¢’ one can construct in linear time a safe formula in core-CEL)
that is equivalent to ¢, which is exactly what we wanted to show. <

B.2 Proof of Theorem 3

Without lost of generality, in the proof we consider only unary predicates, since these are
the ones that we need to modify in order for the formula to be in LP-normal form. Indeed,
if the formula contains non-unary filters, this can be treated as normal operators, similar
than OR or ; operators. Consider a well-formed core-CEL formula ¢ with unary predicates.
We first provide a construction for a core-CEL formula in LP normal form and then prove
that it is equivalent to ¢. The construction consists of two steps: (1) pop predicates up,
and (2) push predicates down.

1. The first step is focused on rewriting the formula in a way that for every subformula
of the form ¢’ FILTER P(x) it holds that x € vdef,(¢"). Recall that a well-formed
formula could still have a subformula ¢’ FILTER P(x) such that x ¢ vdef,(¢'). The
construction we provide to achieve this is the following. For every subformula of the
form ¢’ FILTER P(x) and every predicate, let o, be the lowest subformula of ¢ with
x € vdef,(p,) and that has ¢’ as a subformula. Here we use the fact that ¢ is well-
formed, which ensures that ¢, must exist. Then, we rewrite the subformula ¢, inside
¢ as ¢ FILTER P(z) OR @) FILTER -P(z), where ¢! and o] are the same as ¢, but
replacing the inside P(z) with TRUE and FALSE, respectively.

2. Now that we moved each predicate up to a level where all its variables are defined,
the next step is to move each one down to its variable’s definition. This is done
straightforward: for every subformula of the form ¢’ FILTER P(z), the P(x) filter
is removed from ¢’ and instead applied over every subformula of ¢’ with the form
R AS z, rewriting it as R AS x FILTER P(z). After all predicates were moved to
the lowest possible, each assignment R AS x now has a sequence of filters applied to
it, eg. R AS z FILTER Pi(z)... FILTER Py(z), and moreover, all filters appear in
this form. Because the predicate set P is closed under intersection, we know there
is some P € P that equals P, n...n P;. Then, we replace each sequence of filters
R AS x FILTER Pi(x)... FILTER Py(x) with R AS x FILTER P(x), thus resulting in a
formula in LP-normal form.

Now we prove that the construction above satisfies the lemma, i.e., [¢i,](.S) = [¢](S) for
every stream S, where ¢y, is the resulting formula after the construction. To prove that the
first step does not change the semantics, we show that it stays the same after each iteration.
Consider a subformula ¢’ FILTER P(z) of ¢ such that x ¢ vdef,(¢"). In particular, the only
part of ¢ that is modified by the algorithm is ¢, so it suffices to prove that C € [¢.](S,v)
holds iff C € [¢!, FILTER P(x) OR @/ FILTER -P(z)](S,v).

For the only-if direction, let S, C', v be any stream, complex event and valuation,
respectively, such that C € [.](S,v). If S[v(z)] € P, then it is enough to prove
that C € [¢.](S,v). In a similar way, the only part in which ¢ differs with ¢, is
that in the former the atom P(x) was set to TRUE. Therefore, it is enough to prove
that, for any C’ and ¢', if S[v/(x)] € P holds, then C" € [¢’ FILTER P(x)](S,v")
ifft C' € [¢' FILTER TRUE](S,v’), which is trivially true. Notice that we can assure
S[v'(x)] € P holds because S[v(z)] € P holds and, when evaluating this part of the
formula, the mapping for x must stay the same, otherwise x must have been inside a
+-operator, which cannot be the case because x € bound(p,). Moreover, ' has to be

XX:21

XX:22

A formal framework for Complex Event Processing

equal to v. The proof for the case S[v(z1)] € ~P is analogous considering o/ instead of
@b, thus C € [}, FILTER P(z) OR @/ FILTER -P(z)](S,v).

For the if direction, let S, C, v be some arbitrary stream, complex event and valu-
ation, respectively, such that C e [o!, FILTER P(z) OR o) FILTER —P(z)](S,v). Then,
by definition, C is either in [¢! FILTER P(z)](S,v) or in [¢f FILTER -P(z)](S,v).
Without loss of generality, consider the former case, which implies that S[v(x)] € P.
Then, because C’ € [’ FILTER P(z)](S,v") iff C' € [’ FILTER TRUE](S,v’), it holds
that C € [¢.](S,v). It is the same for S[v(z)] € =P, thus C € [,](S,v) iff C €
[¢! FILTER P(x) OR ¢! FILTER -P(z)](S,v).

Therefore, if we name ; as the result of applying the first part, we get that ¢ = ¢.

Now, we prove that moving the predicates to their definitions does not affect the se-
mantics either, for which we show that it stays the same after each iteration. Consider a
subformula of ¢ of the form ¢’ FILTER P(x). The same way as before, we focus on the
modified part, i.e., we need to prove that C' € [’ FILTER P(z)](S,v) iff C € [¢B](S,v),
where ¢ is the result of adding the filter P(x) for each definition of x inside ¢’, i.e., replace
R AS = with R AS x FILTER P(«) where R is any relation.

First, we show the only-if direction. Let S, C, v be any stream, complex event and valu-
ation, respectively, such that C € [¢" FILTER P(z)](S,v), which implies that S[v(z)] €
P. We know that, when evaluating every subformula R AS z of ¢, the valuation v
must stay the same, because x € bound(¢"), and thus its definition cannot be inside a +-
operator (notice that if it appears inside a +, it represents a value different to x, thus the
+ subformula can be rewritten using a new variable z'). Similar to the reasoning above,
it holds that for any C” and ', if S[v/(z)] € P, then C’ € [R AS x FILTER P(z)](S,v")
ifft C" € [R AS x](S,v"). Then, every subformula R AS x behaves the same, thus C €
[¢%1(S,v) holds.

We now show the if direction. Let S, C, v be any stream, complex event and valuation,
respectively, such that C' € [¢%B](S,v). We prove that S[v(z)] € P must hold, thus
proving that C € [¢' FILTER P(x)](S,v) holds using the same argument as above. By
contradiction, assume that S[v(x)] ¢ P. Because we showed that when evaluating every
R AS z FILTER P(x) in ¢’, the valuation v must be the same, the only possible way
for C € [¢B](S,v) to hold is if all R AS x appear at one side of an OR -operator.
However, this would contradict the fact that « € bound(¢"), thus S[v(x)] € P, and also
C e[y’ FILTER P(x)](S,v).

Then, ¢" FILTER P(z) and ¢’ are equivalent, therefore, if ¢y, is the result of applying
step 2, we get that ¢y, = @1 = .

Finally, it is easy to check that the size of ¢, will be at most exponential in the size of
. Each iteration of step 1 could duplicate the size of the formula in the worst case, thus
lo1] = O(21#1). Then, step 2 does not really increase the size of the formula due to the final
replacing of predicates Py, ..., P, with P. The size of ¢;, w.r.t. ¢ is then (’)(2'“"). However,
in our framework (Section 3) we assumed that ¢ did not use the syntactic sugar A and v
inside its filters. If so, we argue that this would not turn into an extra exponential growth
(turning the result to a double-exponential). To explain why, consider that ¢ uses the A
and Vv syntactic sugar. Then, if we apply step 1 to each predicate, the resulting formula
1 would still be equivalent to ¢ and of size at most exponential w.r.t. ||, avoiding the
double-exponential blow-up mentioned above. Finally, we have that |¢,| = O(21%]), even if
@ uses A and V. <

A. Grez, C. Riveros and M. Ugarte

C Proofs of Section 6

C.1 Proof of Theorem 4

So simplify the proof, we will add to the model of CEA the ability to have e-transitions.
Formally, now a transition relation has the structure A ¢ @ x ((U x {e,0}) U {e}) x Q. This
basically means the automaton can have transitions of the form (p, ¢, q) that can be part of
a run and, if so, the automaton passes from state p to ¢ without reading nor marking any
new tuple. This does not give any additional power to CEA, since any e-transition (p, ¢, q)
can be removed by adding, for each incoming transition of p, an equivalent incoming one to
q, and for each outgoing transition of ¢ an equivalent outgoing one from p.

The results of Theorem 3 and Theorem 2 show that we can rewrite every core-CEL
formula as a safe formula in LP-normal form. We consider that, if ¢ is not in LP-normal
form, then it is first turned into one that is, adding an exponential growth from the beginning.
Furthermore, if it is not safe the it is turned into a safe one, adding another exponential
growth. We now give a construction that, for every safe core-CEL formula ¢ in LP-normal
form, defines an equivalent CEA A, i.e., that for every complex event C, C € [A](S) iff
C € [¢](S). This construction is done recursively in a bottom-up fashion such that, for
every subformula, an equivalent CEA is built from the CEA of its subformulas. Moreover,
we assume that the CEA for each subformula has one initial state and one final state, since
each recursive construction defines a CEA with those properties. Let ¥ be a subformula of
. Then, the CEA A is defined as follows:

If ¢» = R AS x FILTER P(z) then A = (Q, A, {¢'},{q’}) with the set of states Q = {¢*, ¢’}
and the transitions A = {(¢’, (TRUE,0),¢%), (¢*, (P',®),q7)}, where P'(z) = (type(zx) =
R) A P(x). Graphically, the automaton is:

If ¢ has no FILTER the automaton is the same but with P’(x) = (type(z) = R).

If ¥ =11 OR 92, and A = (leAl,{qi}v{q{}) and Ay = (Qg,Az,{q§}7{q§}) are the
CEA for 1, and)9, respectively, then A = (Q, A, {q'},{¢’}) where Q is the union of
the states of A; and Ay plus the new initial and final states ¢’, ¢/, and A is the union
of Ay and A, plus the empty transitions from ¢° to the initial states of 4; and As,
and from the final states of A; and Ay to ¢f. Formally, Q = Q1 U Q2 U {¢*,¢/} and
A=AjuAyu {(qiv e,qi), (qiv € qé), (Q{, € qf)a (qg, € qf)}'

If) = 41 ; 1o, comsider that A; = (Q1,Aq,{gi},{g/}) and As = (Q2, A2, {5}, {g}}) are
the CEA for 1, and vy, respectively. Then, we define A = (Q, A, {q}}, {qg})7 where the
set of states is @ = 1 U Q2 and the transition relation is A = A uAgyu {(q{7 €,G5)}.

If ¢ = 11+, consider that A; = (Ql,Al,{qi},{q{}) is the automaton for ;. Then,
we define A = (Q1,A, {¢:},{q]}) where A = A, U{(¢],€e,¢})}. Basically, is the same
automaton for 1; with an e-transition from the final to the initial state.

Now, we need to prove that the previous construction satisfies Theorem 4. We will prove
this by induction over the subformulas of ¢, i.e., assume as induction hypothesis that the
theorem holds for any subformula 1 and its respective CEA A.

XX:23

XX:24

A formal framework for Complex Event Processing

First, consider the base case ¢ = R AS 2 FILTER P(z). If C € [A](S) then there is a run
p that gets to the accepting state such that events(p) = C. Moreover, p must pass through
the transition (q¢', (type(z) = R A P(z),9),¢’) while reading a tuple ¢; at some position j.
Then, consider a valuation v such that v(x) = j. Clearly, C' = {v(z)}, type(t;) = R, and
S[v(z)] € P, thus C € [¢](S,v). For the other direction, consider that C € [¢](S,v) for
some valuation v. Then C must contain only one position j = v(x) such that type(S[j]) = R
and S[j] € P hold. Then p = (¢*, (TRUE, 0),q¢")’ - (¢}, (P'(x),9),q’) is an accepting run of
A over S, where (¢', (TRUE,0),¢")’ means that it takes the initial loop transition j times.
Because events(p) = {j} = C, then C ¢ [A](S).

Now, consider the case 1) = 11 OR ¥o. If C € [A](S), then there is an accepting run
p that also represents either an accepting run of A4; or A, (removing the e transitions at
the beginning and end). Assume w.l.o.g. that it is the former case. Then, by induction
hypothesis, there is a valuation v such that C € [11](S,r). By definition this means that
C € [¢](S,v). For the other direction, consider that C' € [¢](S,r) for some valuation v.
Then, either C € [11](S,v) or C € [12](S,v) holds. Without loss of generality, consider the
former case. By induction hypothesis, it means that C € [A;](S), so there is an accepting
run p’ of A; over S such that events(p’) = C. Because A contains A; then the run p =
(¢',e,q8)-p - (q{7 €,q%) is an accepting run of A over S.

Next, consider the case ¢ = ¢y ; 9. If C € [A](S), then there is an accepting run p of
the form p : py - (q{,e,qé) - p2 and, because of the construction, C; = events(p;) € [A1](5)
and Cy = events(pz) € [A2](S;), with j = max(Cy) + 1. Then by induction hypothesis
there are valuations 7 and vs such that Cy € [¢¥1](S,11), Co € [12](S,v2). Moreover,
because ¢ is safe, we know that vdef, (1) nvdef,(1s) = @. Therefore, we can define v such
that v(x) = vi(x) if x € vdef,(11) and v(x) = vo(x) if x € vdef,(w2). Clearly, because v
represents both vy and v, it holds that C € [¢](S,v). For the other direction, consider a
complex event C' such that C € [¢](S,v) for some valuation v. Then there exist complex
events C and Cs such that Cy € [¢1](S,v), Cs € [¥2](S,v) and C = Cy - Cy. By induction
hypothesis, there exist an accepting run p; of A; over S such that events(p;) = C;. Similarly,
there exist an accepting run ps of A over S; with j = max(C1)+1 such that events(pz) = Cs.
Then, the run of A that simulates p; ends at a state q{ , thus it can continue by simulating
p2 and reaching a final state. Therefore, such run p is an accepting run of A. Notice that
events(p) = C, thus C € [A](S).

Finally, consider the case ¢ = ¢1+. If C € [A](S), it means that there is an accepting
run p of A over S. We define k to be the number of times that p passes through the final
state ¢/, and prove by induction over k that C € [¢](S,v). If k = 1, it means that p is
also an accepting run of A;, thus C € [4;](S) and, by (the first) induction hypothesis,
there exists some valuation v such that C € [¢1](S,v), which implies C € [¢](S,v). Now,
consider the case k > 1. It means that p has the form p = p1 - (¢, €,¢°) - p2 where po
passes through ¢ k -1 times. Then, C = events(py) is an accepting run of A;, hence
Cy € [¢1](S,v) for some v. Furthermore, ps is an accepting run of A, thus if Cs = events(ps)
then by induction hypothesis Co € [¢](S;,v) for some v, where j = max(Cy) + 1. Since
C =C;-Cy then C € [[1p1; v1+](S,v), thus C € [4](S,v). Note that we do not care about
v because the +-operator of @ overwrites it. For the other direction, consider a complex
event C such that C € [¢](S,v) for some valuation v. Then there exists v’ such that either
C € [v1](S,v[v' = U]) or C € [t1; 1+](S,v[v" — U]) where U = vdef,(v1). We now
prove, by induction over the number of iterations, that C € [A](S). If there is just one
iteration, then C' € [¢1](S,v[v' - U]) and, by induction hypothesis, C € [.A1](S), so there
is an accepting run p of A; over S such that events(p) = C. Because Ay € A, then p is also

A. Grez, C. Riveros and M. Ugarte

an accepting run of A, thus C € [A](S). If there are k iterations with k > 1, it means that
C € [¢1; ¥1+](S,v[v — U]). Therefore, there exist complex events C; and Cy such that
C=Cy-Cy, Cre[n](S,v[v - U]) and Cs € [¢1+](S;,v[v - U]), where j = max(Cy) + 1.
Then, by induction hypothesis, there exist accepting runs p; of A; over S and py of A
over S; such that events(p;) = C; and events(ps) = C and, because A; € A, py is also an
accepting run of A. Then, the run p = p; - (qf,e,qi) - p2 is an accepting run of A over S.
Furthermore, events(p) = C; - Cy = C thus C € [A](S).

Finally, it is clear that the size of A is linear with respect to the size of ¢ if ¢ is already
safe and in LP-normal form. As stated at the beginning, if ¢ is not safe and/or in LP-normal
form, it first has to be turned into an equivalent ¢ that is, and such that 1| = O(exp?(|p|)) in
the worst-case scenario, where exp(z) = 2%. Then, |A| = O(|p]|) if ¢ is safe and in LP-normal
form, and |A| = O(|¥)|) = O(exp?(||)) otherwise. “

C.2 Proof of Theorem 5
C.2.1 STRICT operator

Consider a CEA A = (Q,A,I,F). We will first define the CEA Agmgrcr as Asmrcr =
(Qstrict, Astrrcr, Istricr, Fstaier) and then prove that it is equivalent to STRICT(.A). The
set of states is defined as Qstricr = {¢™ | ¢ € @ and m € {o,0}}, the transition relation is
Asrricr = {(pma (P,m),qm) | (pa (Pam)vQ) € A)} U {(p°7(P,O),q') | (pv(Pv.)vq) € A}v the
initial states are Istaicr = {¢° | ¢ € I} and the final states are Fsmrrcr = {¢* | ¢ € F'}. Basically,
there are two copies of A, the first one which only have the o transitions, and the second
one which only have the e ones, and at any e transition it can move from the first on to
the second. On an execution, Agrrcr starts in the first copy of A, moving only through
transitions that do not mark the positions, until it decides to mark one. At that point it
moves to the second copy of A, and from there on it moves only using transitions with e
until it reaches an accepting state.

Now, we prove that the construction is correct, that is, [Astrrcr](S) = [STRICT(A)](S)
for every S. Let S be any stream. First, consider a complex event C' € [STRICT(A)](S).
This means that C € [A](S) and that C has the form C = {m,...,mg} with m; =m;_1 + 1.
Therefore, there is an accepting run of A of the form:

Py/o Py /o P, —1/0 Py, /' Py, /' Pm,/.
13 g Blg . Fm Gm, — Gmy —2 = —55 Gmye1

P90
Such that events(p) = C. Consider now the run over Agmgicr of the form:

/. o Pylo o Pi]o Prj-1/0 o Pmy/® e Pm,/e Pr /o o
P 4 q1 Am, A, Ay +1

It is clear that all transitions of p” are in Agrrcr, because the ones with o are in the first copy
of A, the first one with e passes from the first copy to the second, and the following ones with
e are in the second copy. Therefore p’ is indeed run of Agmrrcr over S, and because ¢y, € F,
then ¢, € F and p is an accepting run. Moreover, events(p’) = C, thus C' € [Astacr](S).

Now, consider a complex event C € [Asrricr](S), of the form C = {my,...,my}. It means
that there is an accepting run of Agrgricr of the form:

o Pi/o Pm—/°o Pm/'o Pm/' Pm/'o
p.qo 1/ e 1-1 qml 1 qm2 2 cee k qu+1

Such that events(p) = C. Notice that p must have this form because of the structure of
Astrict, which force p to have o transitions at the beginning and e ones at the end. Consider
then the run of A of the form:

/. Py /o P10 Py /e P, /e Py [
P 40 ! dmy L dmo 2 k qmy+1

XX:25

XX:26

A formal framework for Complex Event Processing

Similar to the converse case, it is clear that all transitions in p’ are in A. Therefore p’ is an
accepting run of A over S, and because events(p') = C, it holds that C € [STRICT(A)](S).

Finally, notice that Agrgrer consists in duplicating A, thus the size of Agrgrcr is two times
the size of A. <

C.2.2 NXT operator

Let R be a schema and A = (Q,A,I,F) be a CEA over R. In order to define the new
CEA Apxr = (Quxr, Anxr, Iyxr, Fuxr) we first need to introduce some notation. We begin by
imposing an arbitrary linear order < between the states of @, i.e., for every two different
states p,q € Q, either p < g or ¢ < p. Let T1...T} be a sequence of sets of states such
that 7; € Q. We say that a sequence 11 ...T} is a total preorder over Q if T; nT; = & for
every ¢ # j. Notice that the sequence is not necessarily a partition, i.e., it does not need to
include all states of Q). A total preorder naturally defines a preorder between states where
“p is less than ¢” whenever p € T;, ¢ € T}, and 4 < j. To simplify notation, we define the
concatenation between set of states such that T-T’ = TT" whenever T' and T” are non-empty
and T-T' = T uT’ otherwise. The concatenation between sets will help to remove empty
sets during the final construction. Now, given any sequence 77 ... T} (not necessarily a total
preorder), one can convert T;...7T} into a total preorder by applying the operation Total
Pre-Ordering (TPO) defined as follows:
i-1
TPO(TlTk):UlUk where Uz = T‘%_UTJ
j=1

Let P = {P,P,,...,P,} be the set of all predicates in the transitions of A. Define the
equivalence relation =p between tuples such that, for every pair of tuples ¢; and ts, t; =p to
holds if, and only if, both satisfy the same predicates, i.e., t; € P; holds iff ¢5 € P; holds, for
every i. Moreover, for every tuple ¢ let [t]p represent the equivalence class of ¢ defined by
=p, that is, [t]p = {¢' | t =p t'}. Notice that, even though there are infinitely many tuples,
there is a finite amount of equivalence classes which is bounded by all possible combinations
of predicates in P, i.e., 2/PI. Now, for every S ¢ {1,...,n}, define the predicate:

Ps=(/\P)n(N\-F)
ieS i¢S
and define the new set of predicates P-types = {Ps | S c {1,...,n}}. Notice that for every
tuple t there is exactly one predicate in P-types that is satisfied by ¢; we call that predicate
P;. Finally, we extend the transition relation A as a function such that:

A(T, P,m) ={qeQ|exist pe T and P’ € P such that P c P’ and (p,(P',m),q) € A}

for every T € Q, P € P-types, and m € {e,0}.
In the sequel, we define the CEA Ayxr = (Quxr, Anxr, Inxr, Fuxr) component by component.
First, the set of states Qyxr is defined as

Quxr = {(T1...Tg,p) | T1...T is a total preorder over @ and p € T; for some i < k}

Intuitively, the state p is the current state of the ‘simulation’ of A and the sets T} ... T
contain the states in which the automaton could be, considering the prefix of the word
read until the current moment. Furthermore, the sets are ordered consistently with respect
t0 <next, €.8., if a run p; reach the state ({1,2}{3},1) and other run py reach the state
({1,2}{3},3), then events(p2) <next events(p;). This property is proven later in Lemma 12.

A. Grez, C. Riveros and M. Ugarte

Secondly, the transition relation is defined as follows. Consider P € P-types, m € {e o}
and (7,p), (U, q) € Quxr where T =T ... Ty and p € T; for some 7 < k. Then we have that
((T,p), P,m,(U,q)) € Ayxr if, and only if,

1. (p,P',m,q) € A for some P’ such that P c P’,

q ¢ A(T;, P,m') for every m' € {e,0} and j <1,

U=TPO(UL-Us-...-Up-Ug) where U? = A(T}, P,#) and US = A(T}, P,o) for 1< j <k,
q ¢ A(T;, P,e) when m = o, and

(p', P',m,q) ¢ A for every p’ € T; such that p’ < p and every P’ such that P c P'.

LAl S

Intuitively, the first condition ensures that the ‘simulation’ respects the transitions of A,
the second checks that the next state could not have been reached from a ‘higher’ run, the
third ensures that the sequence is updated correctly and the fourth restricts that if the next
state can be reached either marking the letter or not, it always choose to mark it. The
last condition is not strictly necessary, and removing it will not change the semantics of the
automaton, but is useful because it ensures that there are no two runs p; and ps that end
in the same state such that events(p;) = events(ps).

Finally, the initial set Iyxr is defined as all states of the form (I, q) where g € I and the
final set Fyxr as all states of the form (7} ...Tk,p) such that p € F and there exists i < k
such that peT; and T; n F' = & for all j <.

Let S =t1t5... be any stream. To prove that the construction is correct, we will need
the following lemma.

» Lemma 12. Consider a CEA A=(Q,A,I,F), a stream S, two states (T,p), (T, q) € Quxr
with the same sequence T = T ...T} such that p € T;, q € T} for some i and j, and two
runs p1, pa of Awxr over S that have the same length and reach the states (T,p) and (T,q),
respectively. Then, i < j if, and only if:

events(pa) <pext events(py)

Proof. We will prove it by induction over the length of the runs. Let qo, ¢ € I be any two
initial states of A, not necessarily different. First, assume that both runs consist of reading
a single tuple ¢t. Then, the runs are of the form:

pri(Lqo) 2L (Top) and p2:(1,qh) 2% (Tq)

where T =T1To = TPO(A(I, P;,)A(I, P;,0)) and neither T} nor T3 can be empty because
p and ¢ are in different sets. For the if direction, the only option is that events(p;) = {1}
and events(pz) = {}, which implies that m; = e and mo = o. Then 7 < j because p € T}
and ¢ € T5. For the only-if direction, because i < j then p € T} and q € T5, so necessarily
my = e and ms = o. Because of this, events(p;) = {1} and events(ps) = {}, therefore
events(ps) <pext events(py). Now, let S =t1to...¢, ... and consider that the runs are of the
form:

P, P P - Py, [ma
o1 (Lao) "o/ (Tiyqn) P2l oo Dot (T, Ly g y) Pl (T)
(I.d Py, [m) 1y Pey/ms Pi, q/my_y / Py, [m,
pQ'(aQO) I (7-17(]1) —_— > — (771—1,%—1) I (Taq)
Notice that both runs have the same sequences Ti,...,7,.1 because each sequence 7; is
defined only by the previous sequence 7;_; and the tuple ¢; which implicitly defines the

predicate P;,. Furthermore, all the runs over the same word must have the same sequences.
Define the runs p} and pj}, respectively, as the runs p; and ps without the last transition.

XX:27

XX:28

A formal framework for Complex Event Processing

Consider that 7,-1 has the form 7,-1 = U1Us...Uy, and that g,-1 € U, and ¢,_; € Us for
some r and s. Notice that, because of the construction, if it is the case that r < s (r > s), then
i <j (i>j resp.) must hold. For the if direction, consider that events(ps) <pext events(p).
If events(p]) = events(p}), by induction hypothesis it means that r = s. Moreover, the only
option is that m, = e and m!, = o, therefore, by the construction it holds that ¢ < j. If
events(ph) <next events(p]), by induction hypothesis it means that r < s and because of
the construction, ¢ < j. Notice that events(p]) <next €vents(py) cannot occur because the
lower element of events(p5) not in events(p]) would still be the lower element of events(ps)
not in events(py), thus contradicting events(ps) <pext €vents(py). For the only-if direction,
consider that 7 < j. It is easy to see that, if r > s, then i cannot be lower than j, thus we
do not consider this case. Now, consider the case that r = s. Because i < j, it must occur
that m, = e and m;, = o, so events(p;) = events(p]) U {n} and events(pz) = events(p5).
By induction hypothesis, events(p]) = events(p}), therefore events(ps) <pext events(pi).
Consider now the case that r < s. By induction hypothesis, events(p}) <pext events(p})
and, because the last transition can only add n to both complex events, it follows that
events(pz) <next events(pi). <

Now, we need to prove that if C' € [NXT(A)](S), then C € [Axxr](S) and vice versa.
First, consider a complex event C € [Ayxr](S). To prove that C € [NXT(A)](S), we need
to show that C € [A](S) and that for all complex events C’ such that C' <yxr C’ and
max(C) =max(C"), C' ¢ [A](S). Assume that the run associated to C is:

p: (Uosq0) "2 Uy q) T2l Pl ey, g,)

Because of the construction of A (in particular, the first condition), for every 4 it holds that
(gi-1, P;,m;,q;) € A for some P; such that P;, € P;. Because t; € Py, then t; € P;, thus the

run:

pl ‘4o Py /ma T Py/ma Pp/mag

an

is an accepting run of A over S, and thus C € [A](S). Now, recall from construction of Fyxr
that there exists ¢ < k such that ¢, € T; and T;nF = @ for all j <4, where T ... T}, = U,,. Then,
because of Lemma 12, C' <,y C for every other C € [A](S) such that max(C') = max(C"),
otherwise the run of C” would end in an accepting state inside a 7T); such that j < ¢, which
cannot happen. Therefore, C' € [NXT(.A)](S).

Now, consider a complex event C' € [NXT(.A)[(S). Assume that the run associated to C
is:

P qo Py /my T Py/ma Pn/mg,

qn

To prove that C € [Auxr](S) we will prove that there exists an accepting run on Ayxr. Based
on p, consider now the run:

P, /m Py, /m 'ty [,
o Uopo) "L Uy, py) T2l Pl g)

Where the complex events myq,...,m, are the same, each condition F;, is defined by ¢; and
each U; is the result of applying the function TPO based on ¢;_; and P;, Moreover, each p; is
defined as follows. As notation, consider that U; = T .. T,z and that every ¢; is in the r;-th
set of U;, i.e., q; € T,fl Then, p; is the lower state in Tfi such that (p;, (Pr,,,,Mis1),Pis1) € A,
and p, = ¢q,. Notice that p’ is completely defined by p and S. We will prove that p’ is an
accepting run by checking that all transitions meet the conditions of the transition relation
Apxr- Now, it is clear that the first condition is satisfied by all transitions, i.e., for every ¢ it
holds that (p;-1, (P’,m;),p;) € A for some P’ such that P, € P’ (just consider P’ = P;). For

A. Grez, C. Riveros and M. Ugarte

the second condition, by contradiction suppose that it is not satisfied by p’. It means that
for some i, p; € A(Tj‘l,Pi,m') for some m’ € {o,0} and j < r;. In particular, consider that
the state p’ € T;_l is the one for which (p’, P’,m’,p;) € A. Recall that every state inside
a sequence is reachable considering the prefix of the word read until that moment. This
means that there exist the accepting runs:

1 P{/m} 1 Py/m} P7{71/mr,571q’ Pj[m} Piy/min Py /my,
1

0 :qy q qi
o Uy, pl) T Uy, p) PalmE L Pl gy)

,)
PtL/m7(u“pZ) PHL/")““ PM"(Z/{n,pn)

dn

Where p! are defined in a similar way to p;. Define for every run v and every i the run
~; as v until the ¢-th transition. For example, p; is equal to the run p until the state g;.
Then, by Lemma 12, events(p}_;) < events(o;_;), but events(p’) = events(c’). This is a
contradiction, since events(p’) and events(o’) differ from events(p;_;) and events(o;_;) in
that the formers can contain additional positions from ¢ to n, but the minimum position
remains in events(o;_;), and therefore in events(o’). The fourth condition is proven by
contradiction too. Suppose that it is not satisfied by p’, which means that for some ¢,
p; € A(T'"1 P, o) when m; = o. Then, the run:

i-17

0 ipo Tl py Pl Pl Pulsy, Pen e Pl

is an accepting run such that events(p) < events(c), which is a contradiction, since C' €
[NXT(A)](S). The third and last conditions are trivially proven because of the construction
of the run. Therefore, p’ is a valid run of Ayxr over S. Moreover, because p,, = ¢, € F then
p’ is an accepting run, therefore events(p) = C € [Ayxr](.9).

Now, we analyze the properties of the automaton Ayxr. First, we show that |Ayxr| is at
most exponential over |A|. Notice that each state in Quxr represents a sequence of subsets
of @, thus each state has at most |Q| subsets. Moreover, for each one of the subsets there
are at most 2/€! possible combinations. Therefore, there the resulting automaton Ayxr is of
size exponential over |Al. <

C.2.3 LAST operator

The LAST case is done in the same way as the NXT one, with some minor changes. We now
define the CEA Appst = (Quast, Arast, ILast, Frasr) component by component. First, the set
of states Qragr is defined exactly like Quxr:

Quist = {(T1...Tk,p) | Ti...Ty is a total preorder over @ and p € T; for some i < k}

The intuition in this case is that the sets will be ordered consistently with respect to <jast,
e.g., if a run p; reach the state ({1,2}{3},1) and other run py reach the state ({1,2}{3},3),
then events(ps) <iast events(py). This property can be proven in the same way as Lemma
12.

Secondly, the transition relation is defined as follows. Consider P € P-types, m € {e,0}
and (T,p),(U,q) € Qrast where T =T} ... Ty and p € T; for some i < k. Then we have that
((T,p), P,m,(U,q)) € Apssr if, and only if,

1. (p,P',m,q) € A for some P’ such that P c P,
2. q¢ A(T;, P,m’") for every m' € {8, 0} and j <1,
3. U =TPO(U}-....Up-Us-..-UP) where US = A(Tj, P,o) and US = A(Tj, P,o) for 1 < j <k,

XX:29

XX:30

A formal framework for Complex Event Processing

4. q ¢ A(T;, P,e) when m = o, and
5. (p',P',m,q) ¢ A for every p" € T; such that p’ <p and every P’ such that P ¢ P'.

The only condition that changes with respect to the NXT case is the third one. In this case,
it ensures that the sequence is updated correctly according to the last-order. In particular,
it changes the order Uy - Uy -...-Up - Uy in the NXT case with Uy -...-Up -Uy -... - U;.
Intuitively, in the first one, if the run reads event at position ¢ and adds it to its complex
event C' (turning into C'u {i}), then it “wins" over the case in which that same run did not
mark it. On the other hand, in the second case, if the run reads event at position ¢ and adds
it to its complex event C' (turning into C'U{i}), then it “wins" over every other run that did
not mark it.

Finally, the initial and final sets are defined like for the NXT: Ipgsr is defined as all states
of the form (I,q) where q € I and Fysr as all states of the form (77 ... Ty, p) such that pe F
and there exists ¢ < k such that pe T; and T; n F' = & for all j <.

The proof of correctness is a direct replicate of the one for the NXT case, changing only
the notation from NXT to LAST.

C.2.4 MAX operator

Let A=(Q,A,I,F) be a CEA. Similarly to the construction of CEA for the NXT, we define
the set P-types such that for every tuple ¢ there is exactly one predicate P; in P-types that
is satisfied by ¢, and extend the transition relation A as a function A(T, P,m) for every
T <@, PeP-types, and m € {o,0}. Further, we overload the notation of A as a function
such that A(T,P) = A(T,P,e) U A(T, P,o).

We now define the CEA Awx = (Quax, Auax, Inax, Fiax) component by component. First,
the set of states is Quux = {(S,T) | S,TcQ, S+ @ and SNT = @}. At each (S,T) € Qux,
S will keep track of the states of A that are reached by runs that define the same complex
event C' (and are not in T'), and T will keep track of the states that are reached by runs that
define a complex event C’ such that C' ¢ C’. The transition relation is Ayyx = Agpx U Apaxs
with

A]‘7[AX {((SlﬁTl)’(Pv.)7(52aT2)) | 15 = A(Tlapv.) A S = A(Slvpa.) \TQ}
A1?'[1&)(= {((517T1)7(P70)7(S27T2)) | T = A(Tlvp) UA(Sth') A Sg = A(Sl,P,O) N T2}

The former updates 77 to T using e-transitions from 77, and S; to S; the same way but
removing the ones from 75. The latter updates 77 to T using all transitions from T; plus
the e-transitions from S, while it updates S; to S5 using o-transitions from .S;. Finally,
Inx={(I,2)}, and Fuux = {(S,T) € Quax | SN F +#@ and Tn F = @}.

Next, we prove the above, i.e., C € [MAX(A)](S) iff C € [Aumx](S). To simplify the
proof, we assume that A is I/O-deterministic, therefore each state of Quax now has the form
(¢,T). The proof can easily be extended for non I/O-deterministic A. First, we prove
the if direction. Consider a complex event C such that C' € [Awux](S). To prove that
C € [MAX(A)](S), we first prove that C € [LA](S) by giving an accepting run of A associated
to C. Assume that the run of Awyx over S associated to C is:

P, [m
p: (g0, To) "al% (1, T0)

Where Ty = @, T, n F = @ and ((gi-1,Ti-1), (Pr,,m:), (¢:, 1)) € Awax. Furthermore, go € T
and ¢, € F. Also, from the construction of Ay, we deduce that for every i there is a
predicate P; such that (g;—1, (P;,m;),q;) € A. This means that the run:

Piy/ma P, [mn (qann)

q() Pl/ml q1 PQ/mQ . Pn/mn

Qn

A. Grez, C. Riveros and M. Ugarte XX:31

Is an accepting run of A associated to C. Now, we prove by contradiction that for every C’
such that C c O, C" ¢ [A](S). In order to do this, we define the next lemma, in which we
use the notion of partial run, which is the same as a run but not necessarily beginning at
an initial state.

» Lemma 13. Consider an I/O-deterministic CEA A = (Q,A,I,F), a stream S = tity...
and two partial runs of Amx and A over S, respectivelly:

o : (g0, To) "0l (qu,Ty) P2l . Penlme (g, T

P ’ P ’ P ’
o_/ : Do 1/m] D1 2/my n /My,

Pn
Then, if po € To and m! = e at every i for which m; = e, it holds that p, € T),.

Proof. This is proved by induction over the length n. First, if n = 0, then p,, = py and
T, = Ty, so p, € T,,. Now, assume that the lemma holds for n — 1, ie., po_1 € Tp_1.
Consider the case that m,, =e. Then m/, = e also, thus (p,-1, (P, ®),pn) € A. Furthermore,
T, = A(Ty-1, P, , o) and therefore p, € T, because p,—1 € T,,-1. Now, consider the case
m, = o. Either (pp-1,(Pn,®),pn) € A or (pn-1,(Pn,0),0n) € A, s0 pp, € A(Ty-1,P,).
Moreover, A(T,_1, P;,) € T,, because of the construction of Ayyx, therefore p,, € T,,. <

Now, by contradiction consider a complex event C’ such that C ¢ C" and C’ € [A](S).
Then, there must exist an accepting run of A over S associated to C’ of the form:

/. P]/m/ Py /ms P! /m!
pipp A= pr 2 Dn

such that m} = e at every 4 for which m; = e, and there is at least one ¢ for which m; = o
and m} = e. Consider i to be the lower position for which this happens. Because A is
I/O-deterministic, p’ can be rewritten as:

P P i P! P . /m/ P /m’
’ 1/m 1/mia /e i1/ Mg Pp/m

P 490 qi-1 —— Di =" Dn

Similarly, to ease visualization we rewrite p as:
i (qo,Tp) Talmr o Prcalmioe oy PalS (g,) Pasalmin Pralmn (0

In particular, the transition ((g;-1,7Ti-1),(P:;,°),(qi,T3)) is in Aupx, which means that
A({gi-1}, P;,,®) € T;. Moreover, (gi-1,(F/,),p;) € A and, because ¢; € P/, then P,, ¢ P/
thus p; € T;. Now, by Lemma 13 it follows that p, € T,,. But because p is an accepting
run, we get that T, n F' = @ and so p, ¢ F, which is a contradiction to the statement
that p’ is an accepting run. Therefore, for every C’ such that C c C’, C’ ¢ [A](S), hence
C € [MAX(A)](S).

Next, we will prove the only-if direction. For this, we will need the following lemma;:

» Lemma 14. Consider an I/O-deterministic CEA A= (Q,A,I,F), a stream S = t1t5. ..,
a run of Awmx over S:

Py, /m P, /m P, /man
o (g0, To) "o/ (o, Ty) Pz o Pralmin (g,)

And a state pe Q. If p €Ty, then there is a run of A over S:

’ Py /m} Py/m} Pp_1/m! _, P /m],
2y

g Po b1 Pn-1

p

Such that events(o) c events(o”).

XX:32

A formal framework for Complex Event Processing

Proof. It will be proved by induction over the length n. The base case is n = 0, which is
trivially true because Ty = @. Assume now that the Lemma holds for n — 1. Define the run
On-1 as the run o without the last transition. For any state q € T;,_1, let o; be the run
that ends in ¢ such that events(o,-1) c events(oy). Consider the case m,, = o. Then, either
peA(Ty-1,P;,) or pe A({gn-1}, P, ,®). In the former scenario, there must be a ¢q € T),_4
and P € U such that (¢, (P,,m),p) € A and P;, € P, with m € {o,0}. Define ¢’ as the run
o, followed by the transition (¢, (P, m),p). Then o' satisfies events(o) c events(c’). In the
latter scenario, there must be an P € U such that (g,-1, (P, e),p) € A and P;, ¢ P. Define ¢’
as oy,-1 followed by the transition (g,-1, (P, ®),p). Then ¢’ satisfies events(c) c events(o’).
Now, consider the case m, = . Here, p has to be in A(T,_1, P}, ,e), so there must be a
q€T,-1 and P € U such that (q,(P,),p) € A and P, ¢ P. Define ¢’ as the run o, followed
by the transition (g, (P,e),p). Then ¢’ satisfies events(o) c events(¢’). Finally, the Lemma
holds for every n. <

Consider a complex event C such that C' € [MAX(A)](S). This means that there is an
accepting run of A over S associated to C'. Define that run as:

p:qo Py /ma ¢ Py/ma Pp/ms,

an

Where qg € I, g, € F and (g;-1, (P;,m;),q;) € A. To prove that C € [Awx](S) we give an
accepting run of Awx over S associated to C. Consider the run:

P (o To) "o/l (i, Ty) PelmE L Pl (g,)

Where Ty = @, T; = A(Tj-1, P,)JUA({qi-1}, Py,) if m; = o, and T; = A(Tj-1, Py,) if m; = e.
To be a valid run, every transition (7T;_1, P;,, m;,T;) must be in Ayyx, which we prove now
by induction over ¢. The base case is ¢ = 0, which is trivially true because no transition is
required to exist. Next, assume that transitions up to i — 1 exist. We know that there is
a P; such that Py, ¢ P; and (g;-1, (P;,m;),¢;) € A, so that condition is satisfied. We only
need to prove that ¢; ¢ T;. By contradiction, assume that ¢; € T;. Consider the case that
m; = o. It means that either ¢; € A({gi-1}, Ps,,®) or q; € A(T;-1, P;,). In the first scenario,
consider a new run ¢ to be exactly the same as p, but changing m; with e. Then ¢ is also
an accepting run, and events(p) c events(o), which is a contradiction to the definition of
the MAX semantic. In the second scenario, there must be some p € T;_; and P € U such that
(p, (P,m),q;) € A, where m € {o,0}. Because of Lemma 14, it means that there is a run o’
over S:

P /m/, Pj/m} P! ,/m’_ P! /m_
1 112 2 .., Ti=2 szi—2 i—1 i—1

o’ :po p
Such that events(p;—1) c events(o’), where p;_1 is the run p until transition 7 — 1. Moreover,

because (p, (P,m),q;) € A we can define the run:

o po Py [m P Py/my Py [mi_, p P/m 4 Pivi/miv1 | Pn/mn n

Such that events(p) c events(o), which is also a contradiction. Then, ¢; ¢ T; for the case m; =
o. Now, consider the case m; = o. Assuming that g; € T}, it means that ¢; € A(T;_1, P;,, »).
Then, there must be some p € T;_1 and P € U such that (p, (P,e),q;) € A. Alike the previous
case, because of Lemma 14, there is a run:

o Po Py [m m Py [m; Py [mi_, P Ple i Pisifmiv1 | Pn/mn In

Such that events(p) c events(o), which is a contradiction. Then, ¢; ¢ T;, thus it holds that
(Ti1, (P, m;), T;) € Ayax for every i. The above proved that p’ is a run of Aux, but to be a

A. Grez, C. Riveros and M. Ugarte

accepting run it must hold that 7T, n F' = @. By contradiction, assume otherwise, i.e., there
is some q € @ such that g € T,, n F.. Then, because of Lemma 14, there is another accepting
run o of Awx over S such that C c events(o), which contradicts the fact that C' is maximal.
Thus, T, n F = @ and p’ is an accepting run, therefore C € [Awx](S). Finally, note that
Ausx is of size exponential in the size of A, even when A is not 1/O-deterministic. <

C.3 Proof of Proposition 1

We prove CEA closure under 1/O-determinization. For the following proof consider an
arbitrary CEA A = (Q,A,I,F). We define the CEA Ay = (Q4, 94,4, Fy) component by
component. First, the set of states is Qg4 = 29, that is, each state in Qg represents a different
subset of (). Second, the transition relation is:

54 = {(T,(P,m),U) | P e P-types, and q € U iff there are pe T and P’ ¢ U
such that (p, (P',m),q) € A and P c P'}.

Here, P is the set of all predicates in the transitions of A and we use the notion of P-types
defined in the proof of Theorem 5 (see Section C.2.2 for the definition). Finally, the sets of
initial and final states are Iy = {I} and F; = {T € Q4 | Tn F # @}. The key notion here is
the one of P-types, which partitions the set of all tuples in a way that if a tuple ¢ satisfies a
predicate P; € P-types, then P; is a subset of the predicates of all transition that a run of A
could take when reading ¢. This allows us to then apply a determinization algorithm similar
to the one for FSA. Notice that PinP; = & for every two different predicates Py, P, € P -types,
so the resulting CEA A, is I/O-deterministic. <

D Proofs of Section 7

D.1 Proof of Theorem 6

To prove the theorem, we first show how to evaluate an I/O-deterministic CEA. Then we
extend the evaluation algorithm to evaluate any CEA by doing a determinization of the
automaton “on the fly”.

D.1.1 Evaluation of 1/0O-deterministic CEA

We describe a CEP evaluation algorithm with f(n) = n update time for I/O-deterministic
CEA. We define the algorithm’s underlying data structure, then show how to update this
data structure upon new events, and finally how to enumerate the resulting complex events
with constant delay.

Data structure. The atomic element in our data structure is the node. A node is defined
as a pair (p,l), where p € N represents a position in the stream and [is a list of nodes. A
node is initialized by calling Node(p,!), and the methods position and list return p and
l, respectively.

The data structure maintained by our algorithm is composed by linked-lists of nodes.
For operating a linked-list [we use the methods add, append and lazycopy. Specifically,
add(n) adds the node n at the beginning of I, and append(l’) appends a list " at the end of
. An important property of the data structure is that no element is ever removed from the
lists, only adding nodes or appending lists is allowed. This allows us to represent a list as a
pair [= (s, e), where s is its starting node and e its ending node. Then, lazycopy returns a

XX:33

XX:34

A formal framework for Complex Event Processing

Algorithm 1 Evaluate A over a stream S

Require: An I/O deterministic CEA A = (Q, 9, qo, F)
1. procedure EVALUATE(S)

2 for all e @~ {qo} do

3 list, < €

4 listg, < [L]

5: while ¢ < yieldg do

6 for all g€ @@ do

7 lis‘cgl‘i < list,.lazycopy, list, < €
8 for all g € Q with list>™ # € do

9 if p* < 6(q,t,e) then

10: list,».add(Node(t.position, listzld))
11: if p° < d(q,t,0) then

12: list o .append(listgld)

13: ENUMERATE({list } qeq, F, t.position)

Algorithm 2 Enumerate all complex events

1: procedure ENUMERATE({list, }4eq, F, now)

2 for all g € F' with list, # ¢ do

3: list;.begin

4 while n « list.next and n.position = now do
5 ENUMALL(n.1list,{n.position})

6: procedure ENUMALL(list, C)
T list.begin

8 while n < list.next do

9 if n =1 then

10: Output(C)
11: else
12: ENUMALL(n.1list, C' U {n.position})

copy of I, defined by the pointers (s, e), and the generated copy of the list is not affected by
future changes on [. Furthermore, it is trivial to see that lazycopy runs in constant time
(i.e. O(1)). The methods used for navigating the list are begin and next. begin gives a
pointer to the first node of the list, and next returns the next element of the list and false
when it reaches the end.

Evaluation. The CEP evaluation algorithm for an I/O-deterministic CEA A = (Q, §, go, F)
is given in Algorithms 1 and 2. To ease the notation, we extend ¢ as a function 6(q,t,m)
that retrieves the (unique) state p = §(gq, P, m) for some predicate P such that ¢ € P; if there
is no such P, it returns false. Basically, if a run is in state g, then p is the state it moves
when reading ¢t and marking m.

The procedure EVALUATE keeps the evaluation of A by simulating all its possible runs,
and has a list list, for each state g to keep track on the complex events. Intuitively, each list,
keeps the information of the partial complex events generated by the partial runs currently
ending at ¢. Each node n in list, represents (through its n.1list) a subset of these complex
events, all of them having n.position as their last position. These sets are pairwise disjoint

A. Grez, C. Riveros and M. Ugarte

(which is an important property for constant-delay enumeration of the output). Each list,
is initialized as the empty list, represented by €, except for list,,, which begins with only the
sink node 1 in it. The algorithm then reads S using yieldg to get each new event. For each

new event t, the procedure updates the data structure as follows. It starts by creating a
old
q

it extends the runs that are currently at ¢ by simulating the possible outgoing transitions

satisfied by ¢ (lines 8-12). After doing this for all ¢, it calls the ENUMERATE procedure to
enumerate all output complex events generated by ¢.

copy of each list,, and storing it in list; © (lines 6-7). Then, for each ¢ with non-empty list,

The core processing of Algorithm 1 is in updating the structure by extending the runs
currently at ¢ (lines 9-12). Specifically, line 10 considers the e-transition and line 12 the
o-transition (recall that A is I/O-deterministic). As we said before, each list, represents
the complex events of runs currently at q. To extend these runs with a e-transition, line 10
creates a new node n* with the current position in S (i.e. t.position) as its position, and
the old value of list, as its predecessors list. Then, n* is added at the top of the new list of
p® =d(q,t,®). On the other hand, to extend the runs with a o-transition, it only needs to
append the old list of ¢ to the list of p° = 6(q,t,0) (line 12).

By looking at Algorithm 1, one can see that the update of each list, takes time O(]¢t|-]0])
by checking containment of ¢ in each predicate P of the outgoing transitions, because we
considered that containment ¢ € P is checked in time O(|t|). Moreover, while iterating over
each state (the for in line 8), we pass over each transition at most once, thus the time
needed to iterate over all states is O(J¢|-|d]). This, added to the O(|Q]) of the lazy copying
of the lists, gives us an overall O(|A|-|t|) bound on the time between each call to yieldg,
satisfying condition 1. with f(|A4]) = |A].

Enumeration. One can consider the data structure maintained by EVALUATE as a directed
acyclic graph: vertices are nodes and there is an outgoing edge from node n to node n’ if
n' appears in n.list. By following Algorithm 1, one can easily check that the sink node 1
is reachable from every node in this directed acyclic graph, namely, for any ¢ and any node

n in list, there exists a path n = ng,...,ng, L. Furthermore, each of this path represents
a complex event {ny.position,...,nj.position} outputted by some run of A over S that
ends at q.

Given the previous discussion, the ENUMERATE procedure in Algorithm 2 is straightfor-
ward: it simply traverses the directed acyclic graph in a depth-first manner, computing a
complex event for each path. To ensure that all outputs are enumerated, it needs to do this
for each node n in an accepting state and whose position is equal to the current position
(i.e. now). Because new nodes are added on top, it iterates over each accepting list from
the beginning, stopping whenever it finds a node with a position different from now.

Constant Delay. It is important to note that ENUMERATE does not satisfy condition 2.
of a CEP evaluation algorithm, namely, taking a constant delay between two outputs. The
problem relies in the depth-first search traversal of the acyclic graph: there can be an
unbounded number of backtracking steps, creating a delay that is not constant between
outputs. To solve this, we provide the method ENUMALL* in Algorithm 3 which does the
same as ENUMALL in Algorithm 2 and runs with constant delay. Moreover, the algorithm
takes constant time between each output event (i.e. position), and constant time between
complex events.

We start by explaining the notation in Algorithm 3. For doing a wise backtracking
during the enumeration, we use an extended stack of nodes (denoted by s in the algorithm)
that we call a black-white stack. This stack works as a traditional stack with the difference
that stack elements are colored with black and white. For coloring the nodes, we provide

XX:35

XX:36

A formal framework for Complex Event Processing

Algorithm 3 Algorithm equivalent to ENUMALL that runs with constant delay

Require: n # | and n.1list is non-empty.
1: procedure ENUMALL*(n)

2 n.list.begin

3 s.push-black(n)

4 while s.empty = false do
5: n < s.pop()

6: if n =1 then

7 n « s.pop-whites()
8

9

Output(s)
: else
10: Output(n)
11: n' < n.list.next
12: if n.list.atEnd then
13: s.push-white(n)
14: else
15: s.push-black(n)
16: n'.list.begin
17: s.push-black(n')

the methods push-black(n) and push-white(n) that assign the colored black and white,
respectively, when the node n is push into the stack. This stack also has the traditional
method pop() and empty for popping the top node and checking if the stack is empty,
respectively. The colors are used when the method pop-whites() is called. When this
method is called, the stack pops all the white nodes that are at the top of the stack. For
example, if s = @QEYEX6)T) is a black-white stack with node 7 the top of the stack,
then when s.pop-whites() is called the resulting stack will be @23)@, namely, all white
nodes at the top of the stack are popped. Note that by keeping pointers to the previous
black node, each method of a black-white stack can be run in constant time.

For printing the output, we assume a method Output(n) which prints the position of the
node n.position in the user output tape. Furthermore, if s = ny ...n;_1n; is the current con-
tent of a black-white stack with n; the top of the stack, we assume a method Output(s) that
prints #nj.position ... n;_j.position in the output (if s is empty or has one node, it does
not print any symbol). Note that the output will be printed as a sequence C1#Co# ... #Cy
where each C; is a sequence of positions (i.e. a complex event) printed in reverse order,
namely, if C' = {iy,...,4,} with i; <... <4, then C =iy ...i;. For lists, we assume an extra
method atEnd, which returns true if the iterator of the list is at the end of the list. Finally,
we assume that the node 1 always has an empty list (i.e. we can apply 1.list.begin but
L.list.atEnd is always true).

The intuition behind ENUMALL* is the following. As we previously stated, we will see
the data structure that stores the complex events as an acyclic directed graph, where each
node n has edges to the nodes of n.1ist. Both ENUMALL and ENUMALL* are based on the
same intuition: to navigate through the graph in a depth-first-search manner and compute
a complex event for each path from the root to a leaf (i.e. 1). The main difference is that,
while ENUMALL does this with recursion and moves one node at a time, ENUMALL* can
move up an arbitrary number of nodes when it acknowledges that there are no more paths
(i.e. complex events) at that section of the graph. This is achieved by the use of the black-

A. Grez, C. Riveros and M. Ugarte

white stack and, specifically, in line 7 where the pop-whites method is called to backtrack
an arbitrary number of nodes in constant time. This is particularly useful in cases when, for
example, the graph consists of only two disjoint paths that meet at the root. In this scenario,
after enumerating the complex event C; of the first path, ENUMALL would have to go back
to the root through |C4| nodes before enumerating the complex event Cs for the second path,
thus taking time O(|C1|) between C; and C3. On the other side, ENUMALL* uses the black-
white stack s to store the exact point at which it has to go back (in the example, the root
node), therefore it takes constant time between each complex event output. Moreover, to
print the partial complex event, ENUMALL* uses the method Output(s) to recap the output
from the current position and continue printing from there (line 8). This way, ENUMALL*
ensures that the time it takes in enumerating between positions or complex events is bounded
by a constant.

Algorithm 4 Evaluate non-deterministic .4 over a stream S
Require: A non-deterministic CEA A= (Q,A,I,F)
procedure NDETEVALUATE(S)
for all T €29\ {I} do

1:

2

3 list7 < €

4: list; < [J_]

5: active « {I}

6 while t < yieldg do

7 active®™® « active.copy, active < &
8 for all T € active®*® do

9

list3™® « listy .lazycopy, listy < ¢

10: for all T ¢ active®® do

11: U* < A(T,t,e)

12: if U® # @ then

13: list;re .add(Node(t.position, list5?))

14: active < activeu{U*}

15: U° « A(T,t,0)

16: if U° # @ then

17: list;ro .append (list®

18: active < active u{U°}

19: ENUMERATE({listr } 7e0e,{T | T N F # @}, t.position)

D.1.2 Evaluation of any CEA

Here we provide Algorithm 4, an evaluation algorithm for evaluating an arbitrary CEA A.
The procedure NDETEVALUATE is strongly based on EVALUATE from Algorithm 2, modified
to do a determinization of A “on the fly”. It handles subsets of @) as its new states by keeping
a list listy for each subset of states 1" instead of the lists list, for each state g. Moreover, it
extends the transition A as a function A(T,¢,m) that returns the set of all states reachable
from some state in T' ¢ @ after reading event ¢ and marking with m € {e o}; a similar
extension to the one defined for Algorithm 1. With this modifications, the update of each
list listy is done the same way as EVALUATE. To extend it considering e-transitions when
reading ¢, it creates a new node n* with the current position ¢.position and linked to the
old list; then adds n* at the top of the list listys of U® = A(T,¢,e). On the other hand, to

XX:37

XX:38

A formal framework for Complex Event Processing

extend it with o-transitions, it appends the old list of T to the list of U° = A(T,t,0).

Further, a mild optimization is added in Algorithm 4. It utilizes a set active, which
contains the sets 7" that have non-empty list, avoiding the need to iterate over all subsets
of () when it is not necessary. However, the exponential update time is still maintained
for the worst-case scenario. It is worth noting that there is an alternative algorithm for
evaluating A that consists in first determinizing A and then running Algorithm 1 on the
resulting I/O-deterministic CEA .A9°t. This evaluation algorithm updates in time linear to
the size |A%t| = O(2M), resulting in the same update time as Algorithm 4.

D.2 Proof of Theorem 7

Here we provide for each selection strategy SEL € {NXT,LAST,STRICT,MAX} an evaluation
algorithm for evaluating SEL(A) for an arbitrary CEA A. Each algorithm comes from
combining the automata constructions of Theorem 5 and the evaluation algorithm for 1/0O
deterministic CEA. Moreover, each algorithm uses the ENUMERATE procedure to enumerate
all matchings, similar than the algorithm for I/O-deterministic CEA.

D.2.1 NXT evaluation

Algorithm 5 Evaluate A over a stream S with NXT semantics

Require: CEA A= (Q,A,I,F)

1: procedure NEXTEVALUATE(S)

2 for all ge @~ I do

3 listy <€

4 for all g¢ I do

5: listy < [1]

6 O < [I]

7 while ¢ < yieldg do

8 for all g€ @Q do

9 listgld < listy.lazycopy, list, < €
10: 0«0, 0«]

11: for all AeO°¢ do

12: UPDATEMARKING (A, t,e)

13: UPDATEMARKING (A, t,0)

14: ENUMERATE({list, } qeq, F; t.position)
15: procedure UPDATEMARKING(A, t,m)

16: B«

17: for all g€ A and p e A(q,t,m) ~ O.set do
18: B < Bu{p}

19: if m = e then
20: list,, < [Node(t.position, listgl‘j1]
21: else
22: list,, < listZ1d

23: if B+ @ then
24: O.enqueue(B)

A. Grez, C. Riveros and M. Ugarte

An evaluation algorithm for NXT(A) is given in Algorithm 5. The procedure NEXTE-
VALUATE uses the same approach as the construction of the CEA Ayxr of Theorem 5, which
simulated A while keeping an order of priority over the states. This order was used so that
Ayxr could simulate a run p of A that reaches ¢ only if there was no other simultaneous run
p’ reaching ¢ and such that events(p) <pext events(p’). To mimic this behavior, Algorithm 5
keeps that order in a queue of set of states, called O. We assume that O has two methods:
enqueue(A) to add a set of states A to the queue and set to take the union of all set of
states inside the queue. Furthermore, at each update, list, stores at most one node, defined
by the first state in the O-order that reaches ¢q. This way, when traversing the structure
in the ENUMERATE procedure, the result is at most one complex event for each list, with
q € F, which is exactly the maximum complex event in the <,.xt order that reaches ¢q. This,
however, could result in giving the same complex event more than once, when it is defined
by different runs that end at different states of F'. To avoid this issue, one can make sure
that |F'| = 1 by adding a new final state ¢y to A and adding a transition (p, P,m,q;) for
each (p, P,m,q) that reaches some g € F.

Regarding the update time of Algorithm 5, we examine the while iteration of line 7.
First of all, note that the O-queue keeps disjoint set of states and, therefore, its length
is bounded by the number of states in). Furthermore, for each set of states A € O the
function UPDATEMARKING iterates over each state in A and each transition A(q,¢,m). As
we said, the sets A € O are disjoint which implies that each state and transition is checked
at most once in UPDATEMARKING, namely, |A|. By using a smart data structure to check
membership in O in logarithmic time, the update time of Algorithm 5 is at most linear in
the size of A.

D.2.2 LAST evaluation

Algorithm 6 Evaluate A over a stream S with LAST semantics
Require: CEA A= (Q,A,I,F)

1: procedure LASTEVALUATE(.S)

2 for all ge QI do

3 listy < €

4: for all g€ I do

5: listy < [1]

6 O < [I]

7 while ¢ < yieldg do

8 for all g€ Q do

9 listgld < listq.1lazycopy, listy < €
10: 0« 0, 0« []
11: for all A€ 0°* do
12: UPDATEMARKING(A,t,e)
13: for all A€ 0°* do
14: UPDATEMARKING(A,t,0)
15: ENUMERATE({listy } qeq, F, t.position)

Algorithm 6 is an evaluation algorithm for LAST(.A). One can se the resemblance of
procedure LASTEVALUATE with NEXTEVALUATE. In fact, both have the same approach:

XX:39

XX:40

A formal framework for Complex Event Processing

keeping an order O defining how to update the lists. The difference is that LASTEVALUATE
follows the order of Apssr of Theorem 5, i.e. simulates a run p of A that reaches ¢ only if
there was no other simultaneous run p’ reaching ¢ and such that events(p) <jast events(p’).
To achieve this, it prioritizes the updates that add the last position: it iterates over all e-
transitions before all o-transitions, unlike NEXTEVALUATE which iterates over each A state
checking both e-transitions and o-transitions from A at the same time. The same argument
about the complexity of NEXTEVALUATE applies to LASTEVALUATE, thus its update time
is also O(JA]).

D.2.3 MAX evaluation

Algorithm 7 Evaluate A over a stream S with MAX semantics

Require: CEA A= (Q,A,I,F)
1: procedure MAXEVALUATE(S)

2 for all r € 29 x 29 \ {(I,2)} do
3 list, < €

4 liSt(]_’@) « [1]

5: active < {(I,2)}

6 while ¢ < yieldg do

7

8

9

old

active®® <« active.copy, active < &

for all r € active®’? do
list>* < list,..lazycopy, list, < €
10: for all r € active®*® do
11: MOVEMARKING(7, 1)
12: MOVENOTMARKING(r, t)
13: ENUMERATE({list; }re2@x00, {((T,U) | TN F+@AUNF =@}, t.position)

14: procedure MOVEMARKING((T,U),t)

15: U < A(U,t,e)

16: T <« A(T,t,e)\U’

17: if 7"+ @ then

18: list (7 ;7y.add(Node(t.position, list‘(’leU)))
19: active < active u{(T",U")}

20: procedure MOVENOTMARKING((T,U),t)

21: U <« A(U,t,0) uA(U,t,0) UA(T,t,e)

22: T <« A(T,t,0)\U’

23: if 7"+ @ then

24: list (77,07 .append(list?le’U))
25: active < active u{(T",U")}

The algorithm for evaluating MAX(A) is Algorithm 7, which is arguably the most convo-
luted one so far. Here we use the extension of A we defined for Algorithm 4.

Procedure MAXEVALUATE keeps for each pair (T,U) € 2% x 29 a list list(7,¢ry. Similar
than for the algorithm for I/O deterministic CEA, here each list keeps the complex event data
for a set of runs. The procedure initializes all lists as empty except for list(;), which begins
with 1 in it. At each update (lines 7-13), it first creates a lazycopy of each list. Then, each
list is updated by procedures MOVEMARKING and MOVENOTMARKING (lines 11 and 12).
MOVEMARKING updates the list with e transitions the same way as Algorithm 1, i.e. adding

A. Grez, C. Riveros and M. Ugarte

a new node to the target list with the current tposition, and linking it with the origin list
(line 18). However, it differs in that the origin and target lists are not defined by a transition,
e.g. (p,P,e,q). Instead, the origin list(7 /) and target list(zv ;) are bound by the relations
(lines 15-16):

U' = A(Ut,9)
)V oAU

Moreover, MOVENOTEMARKING updates the list with o transitions by appending the origin
list to the target list (line 24), as in Algorithm 1. In this case, the origin list(y ;) and target
list(7+ yy are bound by relations (lines 21-22):

(+4) U'=A(U,t,e) uA(U,t,0) UA(T,t,e)
T = A(T,t,0)\NU'

Both (*) and (#x) are motivated by the standard automata determinization: to compress
all the runs that define the same output in a single run p, keeping track of the set of current
states T and updating it using the transition relation A. Here we also need to store the set U
of states that are reached by runs that define superset complex events of the current one, i.e.
the states that can be reached by some simultaneous run p’ such that events(p) < events(p').
Because of (*) and (*#), the runs represented by list(p) are the ones that end at some
q € T, and if there is other simultaneous run p’ such chat events(p) ¢ events(p’) then p’ must
end at some state p € U. This way, in the call ENUMERATE at line 13, we give as final-states
argument the pairs (T,U) such that T has an accepting state and U does not, which means
that the runs in list(p ;) define complex events that are maximal.

As a basic optimization, a set active is stored which keeps the pairs (7,U) with non-
empty list 7), avoiding the need to iterate over all pairs of 2@ x 29 when it is not necessary.
Still, the complexity in the worst-case scenario remains exponential (O(4H41)).

D.2.4 STRICT evaluation

Algorithm 8 Evaluate A over a stream S with STRICT semantics

Require: An I/O deterministic CEA A = (Q, 4, qo, F)
procedure STRICTEVALUATE(S)
for all ge @~ {go} do

1:

2

3 listy < €

4: dinit < 40, HStqinit < [l]

5: while ¢ <+ yieldg do

6 for all g€ Q do

7 listgld < listy.1lazycopy, list, « €
8 for all g € Q with list;™ # € do

9 if p* < 6(q,t,) then

10: listp-.add(Node(t.position,listgld))
11: if Jinit < 5(qinitata O) then

12: listq,, ., -append([L])

13: ENUMERATE({list, } qeq, F, t.position)

An evaluation algorithm for STRICT(.A) is given in Algorithm 8. First, it requires A

XX:41

XX:42

A formal framework for Complex Event Processing

to be deterministic, so for evaluating an arbitrary CEA it first needs to be determinized,
incurring in an additional 2! blow-up.

Procedure STRICTEVALUATE is very similar to EVALUATE of Algorithm 1. The core
difference is that it keeps track of a special qin;t state that represents (if it exists) the run done
by following only o transitions, i.e. the empty run that still have not marked any position.
At each update, it follows the same idea as EVALUATE to update the lists considering e
transitions. On the other hand, it does not update the lists in the same way for o. This is
because it only computes the runs that define continuous intervals of events, therefore no
o transition can be taken if some event was marked with a e transition. Therefore, it only
considers the o transitions in the empty run: it updates qinit With 6(dinit,,0) (line 11) and
adds the L node to the new list,,,, (line 12). The call of ENUMERATE is the same as in
EVALUATE.

As mentioned above, we first need to determinize A before running Algorithm 8, which
results in a 2! blow-up on the size of the complex event automaton. Moreover, since the
algorithm runs in linear time over the input CEA (by the same arguments as Algorithm 1),
the overall update time is O(24!).

	Introduction
	Events in action
	A query language for CEP
	Selection strategies
	Syntactic analysis of CEL
	A computational model for CEL
	Algorithms for evaluating CEA
	An evaluation framework for CEL
	Future work
	Proofs of Section 4
	Proof of Lemma 1

	Proofs of Section 5
	Proof of Theorem 2
	Proof of Theorem 3

	Proofs of Section 6
	Proof of Theorem 4
	Proof of Theorem 5
	STRICT operator
	NXT operator
	LAST operator
	MAX operator

	Proof of Proposition 1

	Proofs of Section 7
	Proof of Theorem 6
	Evaluation of I/O-deterministic CEA
	Evaluation of any CEA

	Proof of Theorem 7
	NXT evaluation
	LAST evaluation
	MAX evaluation
	STRICT evaluation

