
On the Expressiveness of Languages for Complex
Event Recognition
Alejandro Grez, Cristian Riveros, Martín Ugarte
PUC & IMFD Chile

Stijn Vansummeren
Université Libre de Bruxelles

Abstract
Complex Event Recognition (CER for short) has recently gained attention as a mechanism for
detecting patterns in streams of continuously arriving event data. Numerous CER systems and
languages have been proposed in the literature, commonly based on combining operations from
regular expressions (sequencing, iteration, and disjunction) and relational algebra (e.g., joins and
filters). While variables in these languages can only bind single elements, they also provide capabilities
for filtering sets of events that occur inside iterative patterns; for example requiring sequences of
numbers to be increasing. Unfortunately, these type of filters usually present ad-hoc syntax and
under-defined semantics, precisely because variables cannot bind sets of events. As a result, CER
languages that provide filtering of sequences commonly lack rigorous semantics and their expressive
power is not understood.

In this paper we embark on two tasks: First, to define a denotational semantics for CER that
naturally allows to bind and filter sets of events; and second, to compare the expressive power of
this semantics with that of CER languages that only allow for binding single events. Concretely,
we introduce Set-based Complex Event Logic (S-CEL for short), a variation of the CER language
introduced in [18] in which all variables bind to sets of matched events. We then compare S-CEL
with Event-based CEL (E-CEL), the language proposed in [18] where variables bind single events.
We show that they are equivalent in expressive power when restricted to unary predicates but,
surprisingly, incomparable in general. Nevertheless, we show that if we restrict to sets of binary
predicates, then S-CEL is strictly more expressive than E-CEL. To get a better understanding of
the expressive power, computational capabilities, and limitations of S-CEL, we also investigate the
relationship between S-CEL and Complex Event Automata (CEA), a natural computational model
for CER languages. We define a property on CEA called the *-property and show that, under unary
predicates, S-CEL captures precisely the subclass of CEA that satisfy this property. Finally, we
identify the operations that S-CEL is lacking to characterize CEA and introduce a natural extension
of the language that captures the complete class of CEA under unary predicates.

2012 ACM Subject Classification Information systems → Data streams; Information systems →
Query operators; Theory of computation → Formal languages and automata theory

Keywords and phrases Query languages, Complex Event Recognition, Logics, Automata theory

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.8

Acknowledgements A. Grez, C. Riveros and M. Ugarte were partially funded by the Millennium
Institute for Foundational Research on Data.

1 Introduction

The timely processing of data streams, where new data is continuously arriving, is a key
ingredient of many contemporary Big Data applications. Examples of such applications
include the recognition of: attacks in computer networks [9,10]; human activities in video
content [19]; traffic incidents in smart cities [4]; and opportunities in the stock market [21].
Numerous systems for processing streaming data have been proposed over the decades (see,
e.g., [12,20] for surveys). Complex Event Recognition (CER for short) systems are specialized

© Alejandro Grez, Cristian Riveros, Martín Ugarte and Stijn Vansummeren;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 8; pp. 8:1–8:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2020.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 On the Expressiveness of Languages for Complex Event Recognition

type T H H T H T H H T H . . .
value -2 30 20 -1 27 2 45 50 -2 65 . . .
index 0 1 2 3 4 5 6 7 8 9 . . .

Figure 1 A stream S of events measuring temperature (T) in Celsius degrees and humidity (H)
as a percentage of water in the air.

stream processing systems that allow to detect higher-level complex events from streams of
simple events. In CER systems, users write so-called patterns that describe the sequences of
simple events that trigger the recognition of a complex event.

To support the above-mentioned application scenarios, several CER systems and languages
have been proposed in the literature—see e.g., the surveys [3, 12] and the references therein.
Most notably, CER is supported by several contemporary Big Data streaming engines,
such as Trill [8] and Flink [6]. However, as noted in [12], the literature focuses mostly
on the practical aspects of CER, resulting in many heterogeneous implementations with
fundamentally different capabilities. As a result, little is known on the formal foundations of
CER and, in contrast to the situation for relational databases, we currently lack a common
understanding of the trade-offs between expressiveness and complexity in the design of CER
languages, as well as an established theory for optimizing CER patterns.

Towards a better understanding of the formal foundations of CER, a subset of the authors
has recently proposed and studied a formal logic that captures the core features found in most
CER languages [18]. This logic, which we will call Event-based Complex Event Logic or simply
E-CEL, combines the regular expression operators (sequencing, to require that some pattern
occurs before another; iteration, to recognize a pattern a number of times; and disjunction)
with data filtering features as well as limited data outputting capabilities. E-CEL follows
the approach that seems to be taken by most of the CER literature (e.g., [1, 11,14,15,25],
see also [12, 20]) in that data filtering is supported by binding variables to individual events
in the stream, which can later be inspected by means of one or more predicates.

One of the main contributions of E-CEL is to provide formal semantics for a language
that combines filtering capabilities with iteration. In particular, a challenging yet common
task in CER systems is to filter variables occurring inside a Kleene closure in a wider scope,
stating properties that involve all the events captured in different iterations. For this reason,
variables that bind single events interact rather awkwardly with Kleene closure. Indeed, if a
variable occurs inside a Kleene closure operator, what does the variable refer to when used
outside this operator? In many of the practical CER languages, variables that bind single
events are used inside Kleene Closure to express properties on sequences of events rather
than on individual events, making the semantics confusing and unnatural.

To illustrate this semantics issue, let us introduce the following running example. Suppose
that sensors are positioned in a farm to detect freezing plantations. Sensors detect temperature
and humidity, generating a stream of events of two types, T and H, both of which have
a value attribute that contains the measured temperature or humidity, respectively. We
encode each event as a relational tuple, and an event stream is an infinite sequence of events.
Furthermore, events are assumed to appear in generation order in the stream. Figure 1 shows
an example, where index marks the position of the event in the stream.

Suppose now that a farmer is interested in checking events of freezing plantations. One
possible specification representing this could be the following:

“after having a temperature below 0 degrees, there is a period where humidity increases
until humidity is over 60%”.

To motivate the semantics mismatch between event-based variables and more general filters

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:3

in CER languages, let us consider how one can define this complex event with two of the most
influential CER languages in the literature [12], namely Cayuga [13–15] and SASE [1,24, 25].
The CER languages of contemporary big data systems such as Trill [8] and Flink [6] are
based on the former, and are therefore prone to the same mismatch.

1. In Cayuga, this complex event can be defined as follows:

FILTER{value < 0} T
FOLD

{
$2.value < $.value, $2.value ≥ $.value AND $2.value ≥ 60

}
H (1)

Here, the subexpression (FILTER {value < 0} T) takes the stream of all events of type
T and produces a new stream only with those events satisfying value < 0. Then, this
output stream is processed by the FOLD operator. A stream expression of the form
S1 FOLD{filter_next,filter_stop} S2 is processed as follows1. Every time you receive an
event from the stream S1, start collecting all elements from the stream S2 that satisfy
filter_next, until you see an element from the stream S2 satisfying filter_stop. This allows
to perform some incremental computations and variables ‘$2’ and ‘$’ refer to the previous
and current iteration, respectively. In our Cayuga query, $2.value < $.value is checking
that we see an increasing sequence of H values, until we see the last non-increasing H
value that is over 60% (i.e. $2.value ≥ $.value AND $2.value ≥ 60).

2. In SASE, we can define the complex event more directly with the following query:

PATTERN SEQ(T t, H+ h1[], H h2)
WHERE t.value < 0 AND h1[i− 1].value < h1[i].value AND h2.value ≥ 60 (2)

The query looks for a T event (t), followed by one or more H events (collectively called
h1[]), followed by a final H event (h2). The query then states that t’s value is below zero,
that subsequent events in h1[] have increasing values, and h2’s value is above 60.

The two previous queries motivate the aforementioned ad-hoc semantics where events
and sets of events are somehow intermingled. Cayuga uses event variables (e.g. $ and $2) to
define, in a procedural way, a property over the set of H events. Instead, the SASE query
implicitly combines event variables (e.g. t and h2) with set variables (e.g. h1[]). Indeed,
SASE uses the ad-hoc notation h1[i− 1].value < h1[i].value to declare a predicate over a set
of events captured by h1[]. It is important to mention that in both languages the semantics
of the sets is not formally defined and, moreover, sets are actually not acknowledged as
such. As a consequence, CER languages are designed without a good understanding of the
implications of using event variables versus set variables, or how to compare them with other
formalisms proposed in the literature. Moreover, while both Cayuga and SASE propose a
computational model based on automata for evaluating queries, the relationship in expressive
power between the CER language and their computational models has not been studied.

In this paper, we embark on the task of understanding the expressive power of CER
languages that only allow binding and filtering individual events versus those that allow
binding and filtering sets of events, as well as their corresponding computational models.
Concretely we consider E-CEL [18] as a model of the former class of languages, and we

1 Cayuga’s FOLD operator actually also takes a third parameter that specifies the event to be output once
the termination condition is met; for the sake of simplification we omit this parameter here.

ICDT 2020

8:4 On the Expressiveness of Languages for Complex Event Recognition

introduce Set-based Complex Event Logic (S-CEL for short) as a model for the second class
of languages. Variables in S-CEL can only bind and filter sets of matched events.

Specifically, we compare E-CEL against S-CEL and show that they are equivalent in
expressive power when equipped with the same unary predicates but, surprisingly, incompar-
able when equipped with n-ary predicates, n > 1. In particular, when equipped with sets of
binary predicates, S-CEL is strictly more expressive than E-CEL. However, when equipped
with sets of ternary predicates, the languages are incomparable. The intuition behind this
is that S-CEL cannot distinguish the events captured by a single variable inside a Kleene
closure, while this is possible in E-CEL by using a clever trick that relies on ternary filters
(Section 4).

Since E-CEL and S-CEL coincide when they are restricted to unary predicates, we study
the expressiveness of this core CER language and compare it with a computational model
for detecting complex events called Complex Event Automata [18] (CEA for short). We
show that, in this setting, E-CEL and S-CEL are strictly weaker than CEA, but capture the
subclass of CEA that satisfy the so-called ∗-property. Intuitively, this property indicates
that the CEA can only make decisions based on events that are part of the output. As a
by-product of our development we are able to show that certain additional CER operators
that have been proposed in the literature, such as AND and ALL, do not add expressive
power to E-CEL and S-CEL while others, such as UNLESS, provide the languages with new
capabilities (Section 5).

Finally, we identify the operations that S-CEL lacks to capture CEA and introduce a
natural extension that captures the complete class of CEA under unary predicates. This is
the first time that a CER language is proposed to capture the full expressive power of its
underlying computational model. As a result we are also able to give insight into the STRICT
selection policy and strict operator that are usually supported by CER languages (Section 6).
Related Work. As already mentioned, the focus in the majority of the CER literature is on
the systems aspects of CER rather than on the foundational aspects, and there is no formal
study of the expressiveness of CER languages. A notable exception is the work by Zhang et
al on SASE+ [25], which considers the descriptive complexity of a core CER language. The
syntax and semantics of SASE+ are defined in a technical report [16], but unfortunately they
are underdefined. Moreover, the semantics is not denotational but operational: the paper
describes how to compile a subset of the language into a computational model, and defines
the semantics simply as the output of the resulting instance.

Extensions of regular expressions with data filtering capabilities have been considered
outside of the CER context. Extended regular expressions [2, 5,7] extend the classical regular
expressions operating on strings with variable binding expressions of the form x{e} (meaning
that when the input is matched, the substring matched by regular expression e is bound to
variable x) and variable backreference expression of the form &x (referring to the last binding
of variable x). Variables binding expressions can occur inside a Kleene closure, but when
referred to, a variable always refers to the last binding. Extended regular expressions differ
from S-CEL and E-CEL in that they operate on finite strings over a finite alphabet rather
than infinite streams over an infinite alphabet of possible events; and use variables only to
filter the input rather than also using them to construct the output. Regular expressions with
variable bindings have also been considered in the so-called spanners approach to information
extraction [17]. There, however, variables are only used to construct the output and cannot be
used to inspect the input. In addition, variable binding inside Kleene closures is prohibited.

Languages with variables binding sets, such as monadic second order logic (MSO), are
standard in logic and databases [22]. However, we are not aware of any CER language such

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:5

as S-CEL that combines regular operators with variables that bind sets of events.

2 Preliminaries

In this section we introduce the formal definitions for streams and complex events, and recall
the definition of E-CEL, as introduced in [18].
Schemas, Tuples and Streams. Let A be an infinite set of attribute names and D an
infinite set of values. A database schema R is a finite set of relation names, where each
relation name R ∈ R is associated to a tuple of attributes denoted by att(R). If R is a relation
name, then an R-tuple is a function t : att(R)→ D. We say that the type of an R-tuple t is
R, and denote this by type(t) = R. For any relation name R, tuples(R) denotes the set of
all possible R-tuples. Similarly, for any database schema R, tuples(R) =

⋃
R∈R tuples(R).

Given a schema R, an R-stream S is an infinite sequence S = t0t1 . . . where ti ∈ tuples(R).
When R is clear from the context, we refer to S simply as a stream. Given a stream
S = t0t1 . . . and a position i ∈ N, the i-th element of S is denoted by S[i] = ti, and the
sub-stream titi+1 . . . is denoted by Si. We consider in this paper that the time of each event
is given by its index, and defer a more elaborated time model (like [23]) to future work.

E-CEL syntax. Let X be a set of variables. Given a schema R, an event predicate of arity
n is an n-ary relation P over tuples(R), P ⊆ tuples(R)n. If P is a set of event predicates
then an atom over P is an expression P (x1, . . . , xn) with P ∈ P of arity n and x1, . . . , xn
variables in X. The set of formulas of E-CEL(P) over schema R is given by the grammar:

ϕ := R AS x | ϕ FILTER P (x̄) | ϕ OR ϕ | ϕ ; ϕ | ϕ+ .

Here, R ranges over relation names in R, x over variables in X and P (x̄) over P.

E-CEL semantics. For the semantics of E-CEL we first need to introduce the notion of
complex event. A complex event C is defined as a non-empty and finite set of natural numbers.
We denote by min(C) and max(C) the minimum and maximum element of C, respectively.
Given two complex events C1 and C2, we write C1 · C2 for their concatenation, which is
defined as C1 ·C2 := C1 ∪C2 whenever max(C1) < min(C2) and empty otherwise. Given an
E-CEL formula ϕ, we denote by vdef(ϕ) all variables defined in ϕ by a clause of the form
R AS x and by vdef+(ϕ) all variables in vdef(ϕ) that are defined outside the scope of all
+-operators. For example, in the formula:

ϕ = (T AS x ; (H AS y FILTER y.id = x.id)+; (T AS z)+) FILTER (u.id = 1)

we have vdef(ϕ) = {x, y, z} and vdef+(ϕ) = {x}. Note that in this formula the variable u
is only mentioned in the filter, and is therefore somehow unsafe. The problem of unsafe
variables in CER is recurrent when trying to correlate variables occurring outside a Kleene
closure with variables occurring inside a Kleene closure. We refer the interested reader
to the extended safeness discussion in [18]. A valuation is a function ν : X → N. Given
a finite subset U ⊆ X and two valuations ν1 and ν2, we define the valuation ν1[ν2/U] by
ν1[ν2/U](x) = ν2(x) whenever x ∈ U and ν1[ν2/U](x) = ν1(x) otherwise.

Now we are ready to define the semantics of E-CEL. Given an E-CEL-formula ϕ, we say
that a complex event C belongs to the evaluation of ϕ over a stream S starting at position i,
ending at position j, and under the valuation ν (denoted by C ∈ JϕK(S, i, j, ν)) if i ≤ j and
one of the following conditions holds:

ϕ = R AS x, C = {ν(x)}, type(S[ν(x)]) = R and i ≤ ν(x) = j.

ICDT 2020

8:6 On the Expressiveness of Languages for Complex Event Recognition

ϕ = ρ FILTER P (x1, . . . , xn), and both C ∈ JρK(S, i, j, ν) and (S[ν(x1)], . . . , S[ν(xn)]) ∈ P
hold.
ϕ = ρ1 OR ρ2, and C ∈ Jρ1K(S, i, j, ν) or C ∈ Jρ2K(S, i, j, ν).
ϕ = ρ1 ; ρ2 and there exists k ∈ N and complex events C1 and C2 such that C = C1 · C2,
C1 ∈ Jρ1K(S, i, k, ν) and C2 ∈ Jρ2K(S, k + 1, j, ν).
ϕ = ρ+ and C ∈

⋃∞
k=1 Jρ[k]K(S, i, j, ν) where C ∈ Jρ[k]K(S, i, j, ν) if there exists a valuation

ν′ such that either C ∈ JρK(S, i, j, ν[ν′/U]) if k = 1 or C ∈ Jρ ; ρ[k − 1]K(S, i, j, ν[ν′/U])
otherwise, where U = vdef+(ρ).

We say that C belongs to the evaluation of ϕ over S at position n ∈ N, denoted by
C ∈ JϕKn(S), if C ∈ JϕK(S, 0, n, ν) for some valuation ν. Notice that the definition of E-CEL
in [18] did not use the bounds i and j. We use them here just for consistency with the other
definitions in the paper (S-CEL and S-CEL+). Note also that since ν(x) = j in the first
bullet, the event in position j will always be part of the matched complex event. The reason
behind this design decision is that one would like to be able to produce an output as soon as
the final event participating in the output is processed.

I Example 1. Consider that we want to use E-CEL to see how temperature changes at some
location whenever there is an increase of humidity from below 30 to above 60. Assume, for
this example, that the location of an event (i.e. the location of a sensor) is recorded in its id
attribute. Then, using a self-explanatory syntax for predicates, we would write:

[H AS x ; (T AS y FILTER y.id = x.id)+ ; H AS z]
FILTER (x.value < 30 ∧ z.value > 60 ∧ x.id = z.id)

Inside the Kleene closure, y is always bound to the current event being inspected. The filter
y.id = x.id ensures that the inspected temperature events are of the same location as the
first humidity event x. Note that, in this case, the output is a complex event, and includes
in particular the positions of the inspected T events.

3 Set-based Complex Event Logic

In this section, we formally define S-CEL, a core complex event recognition language in
which all variables bind complex events instead of individual events. Before giving the formal
definition, we first give a gentle introduction to S-CEL and the design decisions behind its
syntax and semantics.

As discussed in the Introduction, practical CER languages use variables that bind both
single events (e.g. ‘$’ in (1) and t in (2)) and complex events (e.g. h[] in (2)). In S-CEL
variables bind to complex events, and predicates are over complex events instead of individual
events. As an example, recall our statement for detecting freezing plantations: “after having
a temperature below 0 degrees, there is a period where humidity increases until humidity is
over 60%”. This statement can be defined in S-CEL with the following formula:

ϕ = T ; (H+ IN HS); (H IN LH) FILTER (T.value < 0∧ incr(HS)∧LH.value ≥ 60) (3)

To understand the meaning of this formula, note that T and H are relation names while HS
(Humidity Sequence) and LH (Last Humidity) are variables. These two variables, HS and
LH, are assigned to the complex events defined by the subformulas H+ and H, respectively,
by using the IN-operator. For example, if {4, 6, 7} is a complex event defined by H+ (i.e. a
sequence of one or more H-events) then HS will be assigned to {4, 6, 7}. We denote this as

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:7

HS → {4, 6, 7}. Similarly, if the subformula H (i.e. only one H event) defines the complex
event {9}, then LH → {9}. Strictly speaking LH represents a complex event, although
because of the pattern it will always contain only a single event. Note that T is not assigned
to any variable in ϕ despite that we later used T in the filter clause. In S-CEL we use
relational names themselves also as variables; this generally decreases the number of variables
in a formula and aids readability. Thus, T is also used as a variable in ϕ and T → {3} is a
valid assignment of the T -events.

Now that all variables are assigned to complex events, we can check that they respect
the order imposed by the sequencing operator (;): T → {3} is followed by the sequence
HS → {4, 6, 7}, which is followed by LH → {9}. All together they form the complex event
C = {3, 4, 6, 7, 9}. Indeed, variables T , HS and LH are assigned to the relevant part C which
are used in the filter clause to check through built-in predicates that they satisfy the required
conditions: (1) the temperature is below 0, (2) the humidity forms an increasing sequence
and (3) the last humidity is over 60%. The first and third properties are naturally checked
with the predicates T.value < 0 and LH.value ≥ 60. The second property can be checked
through a S-CEL predicate that restricts the complex event in HS to form an increasing
sequence of humidity values (similar to the predicate h1[i− 1].value < h1[i].value in (2)).

In S-CEL we allow to use arbitrary predicates over complex events. This might seem too
relaxed at first, as predicates could specify arbitrary properties. However, the goal of this
approach is to separate what is inherent to a CER framework and what is particular to an
application. In particular, each application is free to choose any set of predicates that can
be useful and meaningful for users, as well as the algorithms and evaluation strategies to
evaluate them. Next, we give the syntax and semantics of S-CEL.

S-CEL syntax. Let L be a finite set of variables containing all relation names (i.e. R ⊆ L).
A set predicate of arity n is an n-ary relation P over sets of tuples, P ⊆ (2tuples(R))n.
We write arity(P) for the arity of P . Let P be a set of set predicates. An atom over P
is an expression of the form P (A1, . . . , An) where P ∈ P is a predicate of arity n, and
A1, . . . , An ∈ L (we also write P (Ā) for P (A1, . . . , An)). The set of formulas in S-CEL(P) is
given by the following syntax:

ϕ := R | ϕ IN A | ϕ FILTER P (Ā) | ϕ OR ϕ | ϕ ; ϕ | ϕ+

where R ranges over relation names, A over labels in L and P (Ā) over P.
S-CEL semantics. A set valuation (or just valuation if clear from the context) is a function
µ : L→ 2N such that µ(A) is a finite set for every A ∈ L. The support of such a valuation is
defined as supp(µ) =

⋃
a∈L µ(A). Given two valuations µ1 and µ2, their union is defined by

(µ1 ∪ µ2)(A) = µ1(A) ∪ µ2(A) for every A ∈ L. Finally, given a complex event C we define
S[C] = {S[i] | i ∈ C}, namely, the set of tuples in S positioned at the indices specified by C.

Now we are ready to define the semantics of S-CEL formulas. Given a S-CEL formula ϕ,
a stream S, and positions i ≤ j, we say that a complex event C belongs to the evaluation of
ϕ over a stream S starting at position i and ending at position j, and under the set valuation
µ (denoted by C ∈ JϕK(S, i, j, µ)) if one of the following conditions holds:

ϕ = R, C = µ(R) = {j}, type(S[j]) = R and µ(A) = ∅ for every A 6= R.
ϕ = ρ IN A, µ(A) = C, and there exists a valuation µ′ such that C ∈ JρK(S, i, j, µ′) and
µ(B) = µ′(B) for all B 6= A. Intuitively, µ extends µ′ assigning C to A.
ϕ = ρ FILTER P (A1, . . . , An), and both C ∈ JρK(S, i, j, µ) and (S[µ(A1)], . . . , S[µ(An)]) ∈
P hold.
ϕ = ρ1 OR ρ2 and C ∈ Jρ1K(S, i, j, µ) or C ∈ Jρ2K(S, i, j, µ).

ICDT 2020

8:8 On the Expressiveness of Languages for Complex Event Recognition

ϕ = ρ1 ; ρ2 and there exists k ∈ N, complex events C1 and C2, and valuations µ1 and µ2
such that C = C1 · C2, µ = µ1 ∪ µ2, C1 ∈ Jρ1K(S, i, k, µ1) and C2 ∈ Jρ2K(S, k + 1, j, µ2).
ϕ = ρ+, and C ∈

⋃∞
k=1 JρkK(S, i, j, µ) where ρk = ρ; · · · ; ρ k-times.

Observe that, by definition, if C ∈ JϕK(S, i, j, µ) then C is a subset of {i, . . . , j} and j ∈ C.
Furthermore, one can easily show by induction over the size of ϕ that the support of µ is equal
to C, namely, C = supp(µ). Similar to E-CEL we say that C belongs to the evaluation of a
S-CEL formula ϕ over S at position n ∈ N, denoted by C ∈ JϕKn(S), if C ∈ JϕK(S, 0, n, µ)
for some set valuation µ.

I Example 2. Consider the formula ϕ in (3) that detects possible freezing plantations. We
illustrate the semantics of ϕ over the stream S depicted in Figure 1 where event types T and
H have both a value attribute and an index attribute recording their index in the stream.

First, note that although conjunction of predicates is not directly supported in S-CEL,
this can be easily simulated by a nesting of filter operators. Then, for the sake of sim-
plification, we can analyze ϕ by considering each filter separately. For the subformula
ϕT = T FILTER T.value < 0 we can see that (i) {3} ∈ JϕT K(S, 0, 3, µ1) with µ1(T) =
{3}. On the other hand, the last event (i.e. 9) is the only event that satisfies ϕH =
(H IN LH) FILTER LH.value ≥ 60 and then (ii) {9} ∈ JϕHK(S, 8, 9, µ2) with µ2(LH) =
µ2(H) = {9}.

Now, the intermediate formula ϕ+ = (H+ IN HS) FILTER incr(HS) captures a sequence
of one or more H-events representing an increasing sequence of humidities. Because Kleene
closure allows for arbitrary events to occur between iterations, these sequences can be
selected from the powerset of all H-events that produced an increasing sequence like, for
example, {4, 6, 7} or {2, 4}. In particular, we have that (iii) {4, 6, 7} ∈ Jϕ+K(S, 4, 7, µ3)
with µ3(LH) = µ2(H) = {4, 6, 7}. Putting together (i), (ii) and (iii) and noticing that
ϕ = ϕT ;ϕ+;ϕH , we have that {3, 4, 6, 7, 9} ∈ JϕK(S, 0, 9, µ) with µ = µ1 ∪ µ2 ∪ µ3. Finally,
we remove µ and {3, 4, 6, 7, 9} is a complex event in JϕK9(S).

The reader might find the semantics of S-CEL more flexible and simpler than the one of
E-CEL: the assignment of variables is more flexible and the semantics of iteration simpler
(since variables are not re-assigned). We argue that the reason for this relies on the use of
event-binding variables in order to manage sets (i.e. complex events). For example, in E-CEL
variables can only be assigned at the event definition, with the atomic formula R AS x. In
contrast, variables in S-CEL can manage complex events, allowing to use the IN-operator
anywhere in a formula. Another more interesting example is iteration. In order to use event
variables in a formula of the form ϕ+ we are forced to reassign these variables every time
the subformula ϕ is evaluated (i.e. the use of the valuation ν1[ν2/U]). On the other hand,
set valuations can naturally be merged by union (i.e. µ1 ∪ µ2) and, therefore, the iteration is
just a simple generalization of the sequencing operator (;).

It is important to notice that it is possible to define a more general language CEL that
includes event and set variables. Given that in this paper our expressiveness analysis is
always between E-CEL and S-CEL, we decide to present both language separately. We leave
for future work the study of a CER query language that includes both approaches.

4 Set Variables Versus Event Variables

In this section, we compare the expressiveness of E-CEL and S-CEL. Since in traditional
logics languages with variables binding sets (like MSO) can usually encode all formulas of a
corresponding language binding single elements (like FO), this could suggest that S-CEL

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:9

is more expressive than E-CEL. We show that this is only partially true: S-CEL includes
E-CEL for binary predicates but they are incomparable in general.

In order to make a fair comparison between E-CEL and S-CEL we first need to agree on
how we relate the event predicates that can be used in E-CEL to the set predicates that can
be used in S-CEL. Indeed, the expressive power of both languages inherently depends on the
allowed predicates, and we need to put them on equal ground in this respect. In particular,
without any restrictions on the predicates of S-CEL we can easily express formulas that
are beyond the scope of E-CEL. For this reason, we will restrict ourselves to set predicates
created as extensions of event predicates. Given an event predicate P (x1, . . . , xn), we define
its set-extension P S to be the set predicate of the same arity as P such that (S1, . . . , Sn) ∈ P S

iff ∀x1 ∈ S1, . . . , xn ∈ Sn it is the case that (x1, . . . , xn) ∈ P . We extend this definition to
sets of predicates: if P is a set of event predicates, PS is the set {P S | P ∈ P}. In what
follows we will compare E-CEL(P) to S-CEL(PS).

I Example 3. Using the set-extensions of the unary event predicates (e.g. X.value < 30 :=
∀x ∈ X x.value < 30) and the binary id-comparison predicate (e.g. X.id = Y.id := ∀x ∈
X∀y ∈ Y x.id = y.id), the E-CEL expression of Example 1 can be written in S-CEL as:

(H IN X; (T + IN Y);H IN Z) FILTER

(X.value < 30 ∧ Z.value > 60 ∧X.id = Y.id ∧X.id = Z.id).

One could ask why do we focus on universal extensions of event predicates. After all,
one could also consider existential extensions of the form P ∃ where (S1, . . . , Sn) ∈ P ∃ iff
∃x1 ∈ S1, . . . , xn ∈ Sn. (x1, . . . , xn) ∈ P . Under this notion, S-CEL cannot meaningfully
filter events captured by a Kleene closure. For example, if X.id = Y.id is used with an
existential semantics in Example 3, it would include in Y the T events occurring between
the first H event and the second H event, as long as there is one such T event with the
corresponding id. Therefore, although existential extensions could be useful in some particular
CER use-cases, we compare E-CEL with S-CEL by considering only universal extensions.

We now compare both languages, considering the arity of the allowed predicates. We
start by showing that if U is a set of unary event predicates, E-CEL(U) and S-CEL(US)
have the same expressive power. Formally, we say that two formulas ψ and ϕ are equivalent,
denoted by ψ ≡ ϕ, if JψKn(S) = JϕKn(S) for every stream S and position n.

I Theorem 4. Let U be any set of unary event predicates. For every formula ψ ∈ E-CEL(U)
there exists a formula ϕ ∈ S-CEL(US) such that ψ ≡ ϕ, and vice versa.

The previous theorem is of particular relevance since it shows that both languages coincide
in a well-behaved core. E-CEL with unary predicates was extensively studied in [18] showing
efficient evaluation algorithms and it is part of almost every CER language [12].

Now we show that if we go beyond unary predicates there are S-CEL formulas that cannot
be equivalently defined in E-CEL (under the same set of predicates). Let P= be the smallest
set of event predicates that allows to express equality between attributes of tuples and is
closed under boolean operations.

I Theorem 5. There is a formula in S-CEL(PS
=) that cannot be expressed in E-CEL(P=).

An example of a formula that can be defined in S-CEL(PS
=) but cannot be defined

in E-CEL(P=) is ϕ := (R+ ; T+) FILTER R.id 6= T.id, where X.id 6= Y.id is defined as
∀x ∈ X∀y ∈ Y (x(id) 6= y(id)). Intuitively, an equivalent formula in E-CEL(P=) for ϕ
would need to compare every element in R with every element in T , which requires a

ICDT 2020

8:10 On the Expressiveness of Languages for Complex Event Recognition

quadratic number of comparisons. The proof establishes that the number of comparison in
the evaluation of an E-CEL formula is at most linear in the size of the output and, thus, ϕ
cannot be defined by any formula in E-CEL(P=). It is important to note that this result
shows the limitations of a CER language based on event variables and what can be gained if
set variables are used.

A natural question at this point is whether S-CEL can define every E-CEL formula. For
binary predicates (e.g. x.id = y.id) the answer is positive, as the following result shows.

I Theorem 6. Let B be any set of event binary predicates closed under complement. Then
for every formula ψ ∈ E-CEL(B) there exists a formula ϕ ∈ S-CEL(BS) such that ψ ≡ ϕ.

It is important to notice that closedness under complement is a mild restriction over B.
In particular, if the set B is closed under boolean operations (as usually every CER query
language supports), the condition trivially holds.

Interestingly, it is not true that S-CEL is always more expressive than E-CEL. In
particular, there exists an E-CEL formula with ternary predicates that cannot be defined
by any S-CEL formula. For the next result, consider the smallest set of event predicates P+
containing the sum predicate x = y + z that is closed under boolean operations.

I Theorem 7. There is a formula in E-CEL(P+) that cannot be expressed in S-CEL(PS
+).

In the appendix, we show that the formula R AS x ; (S AS y ; T AS z FILTER (x = y + z))+
cannot be defined in S-CEL(PS

+). This formula injects the x-variable inside the Kleene
closure in order to check that each pair (y, z) sums x. This capability of injecting variables
inside Kleene closure cannot be simulated in S-CEL given that in S-CEL a sub-formula
cannot filter variables outside its own scope. It is important to recall that this does not occur
if binary predicates are used (Theorem 6), which are of common use in CER.

5 On the Expressiveness of Unary Formulas

What is the expressiveness of E-CEL(P) or S-CEL(P)? To obtain more insight into the the
expressive power of the fundamental operators of these languages, we will study this question
in the setting where P is limited to the class U of unary event predicates. As we showed in
Section 4, E-CEL(U) and S-CEL(US) are equally expressive in this setting, suggesting that
this is a robust subfragment of CER query languages. In this section, we compare E-CEL
and S-CEL with complex event automata (CEA), a computational model proposed in [18]
for efficiently evaluating E-CEL with unary event predicates. We show that the so-called
∗-property of CEA captures the expressiveness of E-CEL and S-CEL with unary predicates.
Furthermore, we use this property to understand the expressiveness of E-CEL and S-CEL
under the extension with new CER operators.

Let R be a schema and U be a set of unary event predicates over R. We denote
by U+ the closure of U ∪ {tuples(R) | R ∈ R} under conjunction. A complex event
automaton [18] (CEA) over R and U is a tuple A = (Q,∆, I, F) where Q is a finite set
of states, ∆ ⊆ Q × U+ × {◦, •} × Q is a finite transition relation, and I, F ⊆ Q are
the set of initial and final states, respectively. Intuitively, the elements {◦, •} indicate
whether or not the element used to take the transition will be part of the output. Given
an R-stream S = t0t1 . . ., a run ρ of length n of A over S is a sequence of transitions
ρ : q0

P0/m0−−→ q1
P1/m1−−→ · · · Pn/mn−−→ qn+1 such that q0 ∈ I, ti ∈ Pi and (qi, Pi,mi, qi+1) ∈ ∆

for every i ≤ n. ρ is accepting if qn+1 ∈ F . Runn(A, S) denotes the set of accepting runs
of A over S of length n. Further, we define the complex event C ⊆ 2N induced by ρ as

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:11

q1 q2 q3
tuples(H) | ◦

TRUE | ◦ TRUE | ◦

tuples(T) | •

Figure 2 A complex event automaton that has no equivalent formula in S-CEL.

Cρ = {i ∈ [0, n] | mi = •}. Given a stream S and n ∈ N, we define the set of complex events
of A over S at position n as JAKn(S) = {Cρ | ρ ∈ Runn(A, S)}.

In [18], it was shown that for every formula ϕ ∈ E-CEL(U) there exists an equivalent
CEA A such that JϕKn(S) = JAKn(S) for every stream S and position n. By Theorem 4,
it follows that for every formula ϕ ∈ S-CEL(US) there is an equivalent CEA A such that
JϕKn(S) = JAKn(S) for every stream S and position n. It is then natural to ask whether the
converse also holds, namely, if every CEA A over U has an equivalent formula in S-CEL(US)
(and thus in E-CEL(U)). Here, however, the answer is negative because CEA can make
decisions based on tuples that are not part of the output complex event, while formulas
cannot. Consider for example the CEA of Figure 2. This automaton will output complex
events of the form C = {i}, provided that S[i] is of type T and there is a previous position
j < i such that S[j] is of type H. It is straightforward to prove that this cannot be achieved
by S-CEL formulas because such a formula would either not check that the H events occurs,
or include the position j of H in C – which the automaton does not.

In order to capture the exact expressiveness of E-CEL or S-CEL formulas with unary
predicates, we restrict CEA to a new semantics called the ∗-semantics. Formally, let
A = (Q,∆, I, F) be a complex event automaton and S = t1, t2, . . . be a stream. A ∗-run ρ∗ of
A over S ending at n is a sequence of transitions: ρ∗ : (q0, 0) P1/•−−→ (q1, i1) P2/•−−→ · · · Pk/•−−→(qk, ik)
such that q0 ∈ I, 0 < i1 < . . . < ik = n and, for every j ≥ 1, (qj−1, Pj , •, qj) ∈ ∆ and
S[ij] ∈ Pj . We say that ρ∗ is an accepting ∗-run if qk ∈ F . Furthermore, we denote by
Cρ ⊆ 2N the complex event induced by ρ∗ as Cρ∗ = {ij | j ≤ k}. The set of all complex
events generated by A over S under the ∗-semantics is defined as: JAK∗n(S) = {Cρ∗ |
ρ∗ is an accepting ∗-run of A over S ending at n}. Notice that under this semantics, the
automaton no longer has the ability to verify a tuple without marking it but it is allowed to
skip an arbitrary number of tuples between two marking transitions.

We can now effectively capture the expressiveness of unary formulas as follows.

I Theorem 8. For every set U of unary event predicates, S-CEL(US) has the same expressive
power as CEA(U) under the ∗-semantics, namely, for every formula ϕ in S-CEL(US), there
exists a CEA A over U such that JϕKn(S) = JAK∗n(S) for every S and n, and vice versa.

For every stream S and complex event C, let S[C〉 refer to the subsequence of S induced
by C. An interesting property of the ∗-semantics is that, for every CEA A, stream S, and
complex event C ∈ JAK∗(S), we can arbitrarily modify, add and remove tuples in S that
are not mentioned in S[C〉, and the original tuples in S[C〉 would still form a complex
event of A over the new stream. To formalize this, we need some additional definitions. A
stream-function f is a function f : streams(R) → 2C, where streams(R) is the set of all
R-streams and C is the set of all complex events. Although f can be any function that
returns a set of complex events on input streams, we are interested in the processing-functions
f that can be described either by a S-CEL formula ϕ (i.e. f = JϕK) or by a CEA A (i.e.
f = JAK). Let S1, S2 be two streams and C1, C2 be two complex events. We say that S1
and C1 are ∗-related with S2 and C2, written as (S1, C1) =∗ (S2, C2), if S1[C1〉 = S2[C2〉.

ICDT 2020

8:12 On the Expressiveness of Languages for Complex Event Recognition

Consider now a stream-function f . We say that f has the ∗-property if, for every stream
S and complex event C ∈ f(S), it holds that C ′ ∈ f(S′) for every S′ and C ′ such that
(S,C) =∗ (S′, C ′). A way to understand the ∗-property is to see S′ as the result of fixing the
tuples in S that are part of S[C] and adding or removing tuples arbitrarily, and defining C ′
to be the complex event that has the same original tuples of C. The following proposition
states the relation that exists between the ∗-property and the ∗-semantics over CEA.

I Proposition 9. If the stream-function defined by a CEA A has the ∗-property, then there
exists a CEA A′ such that JAKn(S) = JA′K∗n(S) for every S and n.

By combining Theorem 8 and Proposition 9 we get the following result.

I Corollary 10. Let f be a stream-function. Then f can be defined by a CEA over U and
has the ∗-property iff there exists a formula ϕ in S-CEL(US) such that f = JϕK.

With the previous corollary we have captured the exact expressiveness of E-CEL(U)
and S-CEL(US) based on a restricted subclass of CEA. Interestingly, we can use this
characterization to show that other operators for CER that have been proposed in the
literature [12] can be captured by S-CEL(US). Some languages include additional useful
operators like AND, ALL and UNLESS, which have the following semantics in S-CEL. Given a
complex event C, a stream S, a valuation µ, and i, j ∈ N:

C ∈ Jρ1 AND ρ2K(S, i, j, µ) iff C ∈ Jρ1K(S, i, j, µ) ∩ Jρ2K(S, i, j, µ).
C ∈ Jρ1 ALL ρ2K(S, i, j, µ) if and only if there are i1, i2, j1, j2 ∈ N, complex events C1,
C2, and valuations µ1, µ2 such that Ck ∈ JρkK(S, ik, jk, µk), C = C1 ∪ C2, µ = µ1 ∪ µ2,
i = min{i1, i2} and j = max{j1, j2}.
C ∈ Jρ1 UNLESS ρ2K(S, i, j, µ) iff C ∈ Jρ1K(S, i, j, µ) and, for every complex event C ′,
valuation µ′, and i′, j′ ∈ N such that i ≤ i′ ≤ j′ ≤ j, it holds that C ′ /∈ Jρ2K(S, i′, j′, µ′).

The AND operator selects those matches produced by both formulas. Although this is
natural for sets, it is restrictive for capturing events. On the contrary, ALL is more flexible
and allows to combine complex events. In this sense, ALL is similar to sequencing but allows
the complex events to occur at any point in time, even overlapping or intersecting. For
example, suppose that we want to capture a temperature below 0 degrees and a humidity
over 60% that can occur in any order. This can be written as (T ALL H) FILTER (T.value <
0∧H.value ≥ 60). The motivation for introducing UNLESS in CER languages is to have some
sort of negation [12]. It is important to mention that the negated formula (the right-hand
side) is restricted to complex events between the start and end of complex events for the
formula in the left-hand side. This is motivated by the fact that a complex event should not
depend on objects that are distant in the stream. For example, consider that we want to see
a drastic increase in temperature, i.e., a sequence of a low temperature (less than 20 degrees)
followed by a high temperature (more than 40 degrees), where no other temperatures occur
in between. This can be expressed by the following pattern with the UNLESS operator:[

(T IN TF ; T IN TL) FILTER (TF.value < 20 ∧ TL.value > 40)
]

UNLESS [T FILTER (T.value >= 20 ∧ T.value <= 40)]

Interestingly, from a language design point of view, the operators AND and ALL are
redundant in the sense that AND and ALL do not add expressive power in the unary case.
Indeed, AND and ALL can be defined by CEA and both satisfy the ∗-property.

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:13

I Corollary 11. Let U be a set of unary event predicates. For every expression ϕ of the
form ϕ1 OP ϕ2, with OP ∈ {AND, ALL} and ϕi in S-CEL(US), there is a S-CEL(US) formula
ϕ′ such that JϕKn(S) = Jϕ′Kn(S) for every S and n.

In contrast, the UNLESS operator can be defined by CEA but one can show that there
are formulas mentioning UNLESS that do not satisfy the ∗-property. Then, by Corollary 10,
UNLESS is not expressible in S-CEL(US) with U unary event predicates. This shows that
UNLESS adds expressibility to unary S-CEL formulas while remaining executable by CEA.

6 Capturing the Expressive Power of Complex Event Automata

As discussed in Section 5, given a set U of unary event predicates, S-CEL(US) captures the
class of CEA over U that have the ∗-property (Corollary 10). However, in [18] it was shown
that all CEA can be evaluated efficiently, and not only those satisfying the ∗-property. It
makes sense then to study the origin of this lack of expressive power and extend the language
to precisely capture the expressiveness of the automata model.

6.1 Expressibility of CEA and Unary S-CEL
By looking at the characterization of S-CEL in terms of the ∗-property, one can easily
distinguish three shortcomings of S-CEL. First, every event that is relevant for capturing a
complex event must be part of the output. Although this might be a desired property in some
cases, it disallows projecting over a subset of the relevant events. This limitation is explained
by the ∗-property, and suggests that to capture CEA we need an operator that allows to
remove or, in other words, project events that must appear in the stream but are irrelevant
for the output. Although projection is one of the main operators in relational databases, it
is rarely used in the context of CER, possibly because of the difficulties encountered when
trying to define a consistent semantics that combines projection with operators like Kleene
closure. Interestingly, we show below that by using set variables it is straightforward to
introduce a simple projection operator in S-CEL.

The second shortcoming of S-CEL is that it cannot express contiguous sequences. The
sequencing operators (; and +) allow for arbitrary irrelevant events in between. While this is
a typical requirement in CER, a user could want to capture contiguous events, which has been
considered in some CER language before [24] as a selection operator that keeps contiguous
sequences of events in the output (see Section 6.2 for further discussion). Given that this
can be naturally achieved by CEA and has been previously proposed in the literature, it is
reasonable to include some operators that allow to declare contiguous sequence of events.

A final feature that is clearly supported by CEA but not by S-CEL is specifying that
a complex event starts at the beginning of the stream. This feature is not particularly
interesting in CER, but we include it as a new operator with the simple objective of capturing
the computational model. Actually, this operator is intensively used in the context of regular
expression programing where an expression of the form “∧R” marks that R must be evaluated
starting from the beginning of the document. Therefore, it is not at all unusual in query
languages to include an operator that recognizes events from the beginning of the stream.

Given the discussion above, we propose to extend S-CEL with the following operators:

ϕ := ϕ : ϕ | ϕ⊕ | πL(ϕ) | START(ϕ)

where L ⊆ L. Recall that for a valuation µ, supp(µ) is defined as supp(µ) =
⋃
A∈L µ(A).

Given a formula ϕ of one of the forms above, a complex event C, a stream S, a valuation µ,
and positions i, j, we say that C ∈ JϕK(S, i, j, µ) if one of the following conditions holds:

ICDT 2020

8:14 On the Expressiveness of Languages for Complex Event Recognition

ϕ = ρ1 : ρ2 and there exists two non-empty complex events C1 and C2 and valuations
µ1 and µ2 such that C = C1 · C2, µ = µ1 ∪ µ2, C1 ∈ Jρ1K(S, i,max(C1), µ1), C2 ∈
Jρ2K(S,min(C2), j, µ2) and max(C1) = min(C2)− 1.
ϕ = ρ⊕ and either C ∈ JρK(S, i, j, µ) or C ∈ Jρ : ρ⊕K(S, i, j, µ).
ϕ = πL(ρ), C = supp(µ) and there is C ′ ∈ JρK(S, i, j, µ′) for some valuation µ′ such that
µ(A) = µ′(A) if A ∈ L and µ(A) = ∅ otherwise.
ϕ = START(ρ), C ∈ Jϕ′K(S, i, j, µ), and min(C) = i.

To denote the extension of S-CEL with a set of operators O we write S-CEL∪O. For
readability, we use the special notation S-CEL+ to denote S-CEL∪{ : ,⊕, π, START}.

The idea behind : and ⊕ is to simulate ; and +, respectively, but imposing that irrelevant
events cannot occur in between. This allows us to recognize, for example, the occurrence of
an event of type R immediately after an event of type T (ϕ = R : T), or an unbounded series
of consecutive events of type R (ϕ = R⊕). Note, however, that the operator ⊕ does not
impose that intermediate events are contiguous. For example the formula (R;S)⊕ imposes
that the last event S of one iteration occurs right before the first event R of the next iteration,
but in one iteration the R event and the S event do not need to occur contiguously.

I Example 12. Following the schema of our running example, suppose that we want to
detect a period of temperatures below 0◦ and humidities below 40%, followed by a sudden
increase of humidity (above 45%). Naturally, we do not expect to skip irrelevant temperatures
or humidities, as this would defy the purpose of the pattern. Assuming that we are only
interested in retrieving the humidity measurements, this pattern would be written as follows:

πH [((H IN X) OR T)⊕ : (H IN Y) FILTER (X.value < 40 ∧ T.value < 0 ∧ Y.value > 45)].

Having defined the previous operators, we proceed to show that for every set U of unary
predicates, S-CEL+(US) captures the full expressive power of CEA over U . To this end, we
say that a formula ϕ in S-CEL+(US) is equivalent to a CEA A over U (denoted by ϕ ≡ A)
if for every stream S and n ∈ N it is the case that JAKn(S) = JϕKn(S).

I Theorem 13. Let U be a set of unary event predicates. For every CEA A over U , there is a
formula ϕ ∈ S-CEL+(US) such that ϕ ≡ A. Conversely, for every formula ϕ ∈ S-CEL+(US)
there exists a CEA A over U such that ϕ ≡ A.

This result is particularly relevant because, as shown in [18], for every stream S and CEA
A, we can evaluate A by consuming the stream S using constant time to process every new
event, and after consuming the nth event of S the set JAKn(S) is enumerated with constant
delay. Although the constants here are measured under data complexity and might depend
exponentially on the size of the automaton, these are useful efficiency guarantees for CER in
practice, and therefore extending S-CEL to a language that precisely captures the class of
CEA gives more expressive power while maintaining these efficiency guarantees.

6.2 Strict Sequencing versus Strict Selection
For recognizing events that occur contiguously we introduced the strict-sequencing operators
(i.e. : and ⊕) that locally check this condition. These operators are the natural extension
of ; and +, and they resemble the standard operators of concatenation and Kleene star
from regular expressions. However, to the best of our knowledge strict-sequencing has not
been proposed before in the context of CER, possibly because adding this feature to a
language might complicate the semantics, specially when combined with other non-strict

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:15

operators. To avoid this interaction, the strict-contiguity selection (or strict-selection) has
been previously introduced in [24] by means of a unary predicate that basically forces a
complex event C to capture a contiguous set of events. Formally, for any formula ϕ in S-CEL
let STRICT(ϕ) be the syntax for the strict-selection operator previously mentioned. Given a
stream S, a valuation µ, and two position i, j ∈ N, we say that C ∈ JSTRICT(ϕ)K(S, i, j, µ) if
C ∈ JϕK(S, i, j, µ) and C is an interval (i.e. there are no i, k ∈ C and j /∈ C s.t. i < j < k).

A reasonable question is whether the same expressiveness results of Theorem 13 could be
obtained with STRICT. We answer this by giving evidence that our decision of including strict-
sequencing operators instead of strict-selection was correct. We show that strict-sequencing
and strict-selection coincide if we restrict our comparison to unary predicates. Surprisingly, if
we move to binary predicates, strict-selection is strictly less expressive than strict-sequencing.

At a first sight, the strict-sequencing operators and the strict-selection predicates seems
equally expressive since both allows to force contiguity between pair of events. At least, this
intuition holds whenever we restrict to unary predicates.
I Proposition 14. Let U be a set of unary set predicates. For every ϕ in S-CEL∪{ : ,⊕}(U),
there exists a formula ψ in S-CEL∪{STRICT}(U) such that ϕ ≡ ψ, and vice-versa.

The connection between both operators change if we move to predicates of higher arity.
Note, however, that STRICT can always be simulated by the sequencing operators : and ⊕.
I Proposition 15. Let P be a set of set predicates. Given a formula ϕ ∈ S-CEL∪{STRICT}(P)
there exists ψ ∈ S-CEL∪{ : ,⊕}(P) such that ϕ ≡ ψ.

To explain our decision of including the operators : and ⊕ instead of STRICT, we study the
opposite direction. First, it is not hard to see that the operator : can indeed be simulated by
means of the operator STRICT. Actually, for any formula ϕ1 : ϕ2 we can isolate the rightmost
and leftmost event definition of ϕ1 and ϕ2 respectively, change : by ; and surround it by a
STRICT operator. Now, if we include the operator ⊕, the situation becomes more complex.
In particular, for binary predicates, STRICT is not capable of simulating the ⊕-operator.
I Theorem 16. For any set P of set predicates and for any formula ϕ ∈ S-CEL∪{:}(P)
there is a formula ψ ∈ S-CEL∪{STRICT}(P) such that ϕ ≡ ψ. In contrast, there exists a set
P containing a single binary set predicate and a formula ϕ ∈ S-CEL∪{⊕}(P) that is not
equivalent to any formula in S-CEL∪{STRICT}(P).

This last theorem concludes our discussion on the operators for contiguity, and allows us
to argue that including the operators : and ⊕ is better than including the unary operator
STRICT. It is worth noting that the proof of Theorem 16 is a non-trivial result that requires
a version of the pumping lemma for CEA; the proof can be found in the Appendix.

7 Discussion and future work

There are several future research directions regarding the relation between CER languages,
logics, and streaming evaluation. For example, one relevant problem is to understand the
connection between S-CEL and monadic second-order logic (MSO). For unary filters, we
conjecture that S-CEL+ has the same expressive power as MSO over unary filters. Another
natural question is to compare the expressiveness of S-CEL+ and MSO extended with binary
predicates. Furthermore, a more fundamental question is what fragments of S-CEL or
MSO (with binary predicates) can be evaluated with strong guarantees like constant-delay
enumeration. We believe that understanding the relation between S-CEL, formal logics (e.g.
MSO), and constant delay algorithms is fundamental for the design of CER languages and
the implementation of CER systems.

ICDT 2020

8:16 On the Expressiveness of Languages for Complex Event Recognition

References
1 Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient pattern

matching over event streams. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages 147–160, 2008.

2 Alfred V. Aho. Algorithms for finding patterns in strings. In Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity (A), pages 255–300. North Holland, 1990.

3 Alexander Artikis, Alessandro Margara, Martín Ugarte, Stijn Vansummeren, and Matthias
Weidlich. Complex event recognition languages: Tutorial. In International Conference on
Distributed and Event-based Systems, DEBS 2017,, pages 7–10, 2017.

4 Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. An event calculus for event
recognition. IEEE Trans. Knowl. Data Eng., 27(4):895–908, 2015.

5 Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical regular expressions.
Int. J. Found. Comput. Sci., 14(6):1007–1018, 2003.

6 Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache Flink™: Stream and batch processing in a single engine. IEEE Data Eng.
Bull., 38(4):28–38, 2015. URL: http://sites.computer.org/debull/A15dec/p28.pdf.

7 Benjamin Carle and Paliath Narendran. On extended regular expressions. In LATA 2009,
volume 5457 of Lecture Notes in Computer Science, pages 279–289, 2009.

8 Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, John C. Platt,
James F. Terwilliger, and John Wernsing. Trill: A high-performance incremental query
processor for diverse analytics. PVLDB, 8(4):401–412, 2014. URL: http://www.vldb.org/
pvldb/vol8/p401-chandramouli.pdf, doi:10.14778/2735496.2735503.

9 Charles D. Cranor, Yuan Gao, Theodore Johnson, Vladislav Shkapenyuk, and Oliver
Spatscheck. Gigascope: high performance network monitoring with an SQL interface. In
SIGMOD, page 623, 2002.

10 Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav Shkapenyuk.
Gigascope: A stream database for network applications. In SIGMOD, pages 647–651, 2003.

11 Gianpaolo Cugola and Alessandro Margara. Complex event processing with t-rex. The Journal
of Systems and Software, 2012.

12 Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream
to complex event processing. ACM Computing Surveys (CSUR), 2012.

13 Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White. A
general algebra and implementation for monitoring event streams. Technical report, Cornell
University, 2005.

14 Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White.
Towards expressive publish/subscribe systems. In EDBT, 2006.

15 Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun Sharma, and
Walker M. White. Cayuga: A general purpose event monitoring system. In CIDR 2007, pages
412–422, 2007.

16 Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Sase+: An agile language for kleene
closure over event streams. Technical report.

17 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document spanners:
A formal approach to information extraction. J. ACM, 62(2):12:1–12:51, 2015. URL: http:
//doi.acm.org/10.1145/2699442, doi:10.1145/2699442.

18 Alejandro Grez, Cristian Riveros, and Martin Ugarte. A formal framework for complex event
processing. In ICDT, 2019.

19 Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K. Roy-Chowdhury, and Larry S.
Davis. Learning temporal regularity in video sequences. In 2016 Conference on Computer
Vision and Pattern Recognition, pages 733–742, 2016.

20 Martin Hirzel, Guillaume Baudart, Angela Bonifati, Emanuele Della Valle, Sherif Sakr, and
Akrivi Vlachou. Stream processing languages in the big data era. SIGMOD Record, 47(2):29–40,
2018. URL: https://doi.org/10.1145/3299887.3299892, doi:10.1145/3299887.3299892.

http://sites.computer.org/debull/A15dec/p28.pdf
http://www.vldb.org/pvldb/vol8/p401-chandramouli.pdf
http://www.vldb.org/pvldb/vol8/p401-chandramouli.pdf
http://dx.doi.org/10.14778/2735496.2735503
http://doi.acm.org/10.1145/2699442
http://doi.acm.org/10.1145/2699442
http://dx.doi.org/10.1145/2699442
https://doi.org/10.1145/3299887.3299892
http://dx.doi.org/10.1145/3299887.3299892

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:17

21 Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. Lazy evaluation methods for detecting
complex events. In International Conference on Distributed Event-Based Systems, DEBS ’15,
pages 34–45, 2015.

22 Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2013.
23 Walker M. White, Mirek Riedewald, Johannes Gehrke, and Alan J. Demers. What is "next" in

event processing? In PODS, pages 263–272, 2007.
24 Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing over

streams. In SIGMOD, 2006.
25 Haopeng Zhang, Yanlei Diao, and Neil Immerman. On complexity and optimization of

expensive queries in complex event processing. In SIGMOD, 2014.

ICDT 2020

8:18 On the Expressiveness of Languages for Complex Event Recognition

A Proofs of Section 4

A.1 Proof of Theorem 4
To prove the theorem we use the fact that, when dealing with event unary predicates, one can
always rewrite the formulas so that all predicates are applied at the lower level, directly on
the assignments. In E-CEL(U) formulas, this notion is defined on [18] as locally-parametrized
normal form, or LP normal form. The syntax of formulas in LP normal form is restricted to
the following grammar:

ϕ := R AS x | R AS x FILTER P1(x) ∧ . . . ∧ Pk(x) | ϕ OR ϕ | ϕ ; ϕ | ϕ+

Where R is a relation, x is a variable and P1, . . . , Pk are predicates of U . To simplify the
presentation of the proof, when writing a conjunction of predicates on the filters, it is short
for a series of nested filters, were each one is one of the predicates. In [18], they give a
construction that, for every E-CEL(U) formula, defines an equivalent formula in LP normal
form.

For S-CEL(US) formulas, we show now that one can rewrite them to get a similar
structure by pushing down every predicate. This is a rather predictable property, since
every predicate P ∈ US is a universally quantified extension of one in U , thus if a set
A satisfies P , then every A′ ⊆ A also satisfies P . Following this idea we show that, for
every ϕ FILTER P (A) ∈ S-CEL(US), if ϕ is not an atomic formula (i.e. ϕ 6= R and
ϕ 6= R FILTER P1(R) ∧ . . . ∧ Pk(R)), then P (A) can be pushed one level deeper in ϕ. We
consider the possible cases of ϕ:

If ϕ = ϕ1 OP ϕ2, with OP ∈ { OR , ; }, then

ϕ FILTER P (A) ≡ ϕ1 FILTER P (A) OP ϕ2 FILTER P (A).

If ϕ = ϕ1+, then ϕ FILTER P (A) ≡ (ϕ1 FILTER P (A))+.
If ϕ = ϕ1 IN B:

if B 6= A, then ϕ FILTER P (A) ≡ (ϕ1 FILTER P (A)) IN B,
if B = A, then ϕ FILTER P (A) ≡ (ϕ1 FILTER P (A1) ∧ P (A2) ∧ · · · ∧ P (An)) IN A,
where A1, . . . , An are the assigned labels in ϕ1.

The correctness of these equivalences follows straightforward from the definition of the
semantics. Then, by using these equivalences one can push all the predicates down, and the
syntax of the resulting formula is of the form:

ϕ := R | R FILTER P1(R) ∧ . . . ∧ Pk(R) | ϕ OR ϕ | ϕ ; ϕ | ϕ+

where R is a relation and P1, . . . , Pk ∈ US. Notice that we dropped the IN operator. This is
because all filters are applied on the assignments, therefore the labels do not change anything
in the results. We say a S-CEL formula with unary predicates is in LP normal form if it has
this syntax.

Now the construction to go between E-CEL(U) and S-CEL(US) is straightforward. First,
if we have a formula ϕ ∈ E-CEL(U), we can assume w.l.o.g. that it is in LP normal form,
and then replace every R AS x FILTER P (x) with R FILTER P S(R), where P S is the set
extension of P , to get a formula in S-CEL(US). Similarly for the other direction, if we have
a formula ψ ∈ S-CEL(US), we can assume w.l.o.g. it is in LP normal form, and then replace
every R FILTER P S(R) with R AS x FILTER P (x), where x is a new variable.

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:19

Let ϕ ∈ E-CEL(U) in LP normal form, and let ψ ∈ S-CEL(US) the resulting formula
(also in LP normal form) from the construction above. For every stream S, complex event
C and positions i < j we prove that C ∈ JϕK(S, i, j, ν) for some ν iff C ∈ JψK(S, i, j, µ) for
some µ. In particular, this implies that JϕK(S) = JψK(S). We prove by doing induction
over the structure of the formula. In the following, we prove only for one direction, i.e.
C ∈ JϕK(S, i, j, ν) implies C ∈ JψK(S, i, j, µ); the opposite direction holds directly by following
the arguments in reversed order.

The base case is when ϕ = R AS x FILTER P (x) and ψ = R FILTER P S(R). Consider
C ∈ JR AS x FILTER P (x)K(S, i, j, ν) for some ν. Then, by definition we have: C = {ν(x)},
type(S[ν(x)]) = R, i ≤ ν(x) = j and S[ν(x)] ∈ P . Now consider the set valuation µ having
µ(R) = {j} and µ(A) = ∅ for all A 6= R. It is clear then that C = µ(R) = j, type(S[j] = R

and S[µ(R)] ∈ P S, satisfying the conditions for C ∈ JψK(S, i, j, µ). Now for the inductive
step consider the following cases of ϕ.

If ϕ = ϕ1 OR ϕ2, then either C ∈ Jϕ1K(S, i, j, ν) or C ∈ Jϕ2K(S, i, j, ν); w.l.o.g. assume the
former. From the construction, ψ has the form ψ1 OR ψ2 and, by induction hypothesis,
C ∈ Jψ1K(S, i, j, µ) for some µ, thus C ∈ JψK(S, i, j, µ).
If ϕ = ϕ1 ; ϕ2, then by definition there exists k and complex events C1, C2 such that
C = C1 · C2, C1 ∈ Jϕ1K(S, i, k, ν) and C2 ∈ Jϕ2K(S, k + 1, j, ν). From the construction,
ψ has the form ψ1 ; ψ2 and, y induction hypothesis, C1 ∈ Jψ1K(S, i, k, µ1) and C2 ∈
Jψ2K(S, k+1, j, µ2) for some µ1, µ2. Then, we satisfy all the conditions for C ∈ JψK(S, i, j, µ)
if we define µ = µ1 ∪ µ2.
If ϕ = ϕ′+, then by the construction, ψ has the form ψ′+. Recall the semantics of
C ∈ Jϕ′+K: C ∈

⋃∞
l=1 Jρ[l]K(S, i, j, ν), meaning that there exists a valuation ν′ such that

either C ∈ Jϕ′K(S, i, j, ν[ν′/U]) if l = 1 or C ∈ Jϕ′ ; ϕ′[l − 1]K(S, i, j, ν[ν′/U]) otherwise,
where U = vdef+(ϕ′).
We prove that C ∈ Jψ′+K(S, i, j, µ) for some µ by doing a second induction, this time over
the number of iterations l over the definition of +. The base case is when the non-recursive
definition is used, i.e., C ∈ Jϕ′K(S, i, j, ν[ν′/U]), for some ν′. Then, by the first induction
hypothesis C ∈ Jψ′K(S, i, j, µ) for some µ, and therefore C ∈ Jψ′+K(S, i, j, µ).
For the inductive step, consider C ∈ Jϕ′[l]K(S, i, j, ν). By the definition of +, C ∈
Jϕ′ ; ϕ′[l − 1]K(S, i, j, ν[ν′/U]), and by definition of ; there exists k and C1, C2 such that
C = C1 · C2, C1 ∈ Jϕ′K(S, i, k, ν[ν′/U]) and C2 ∈ Jϕ′+K(S, k + 1, j, ν[ν′/U]). From the
first induction hypothesis, C1 ∈ Jψ′K(S, i, k, µ1) for some µ1; from the second induction
hypothesis, C2 ∈ Jψ′+K(S, k + 1, j, µ2) for some µ2 (because it used l − 1 number of
iterations). Then, by defining µ = µ1 ∪ µ2 we get C ∈ Jψ′ ; ψ′+K(S, i, j, µ), therefore
C ∈ Jψ′+K(S, i, j, µ).

Therefore, the two-way construction allows us to give for each ϕ ∈ E-CEL(U) an equivalent
formula ψ ∈ S-CEL(US), and vice versa, proving that both logics are equally expressive.

A.2 Proof of Theorem 5
Here we prove that the formula ϕ = (R+ ; T+) FILTER R 6= T) in S-CEL(PS

=) does not have
an equivalent formula in E-CEL(P=) (for simplification, we talk about predicates between
elements, rather than between element attributes). Intuitively, an equivalent E-CEL(P=)
formula for ϕ would need to compare every element in R with every element in T (i.e. a
quadratic number of comparisons). In the sequel we show that the number of comparisons
in the evaluation of an E-CEL(P=) formula is at most linear in the size of the output, and
therefore, ϕ cannot be defined by E-CEL(P=).

ICDT 2020

8:20 On the Expressiveness of Languages for Complex Event Recognition

To formalize the notion of the comparisons associated to an output, we extend the
semantics of E-CEL in the following way. First, we define a comparing set O as a set of
tuples, where the first element is a predicate and the followings are positions. For example,
a valid element of O is (=, 1, 3), which represents that the events at positions 1 and 3
were compared with equality, i.e. S[1] = S[3]. Strictly speaking, we should also add the
information about the attributes that were being compared, but we leave that out to keep
notation simple. Now, given a formula ψ in E-CEL(P) a complex event C, a comparing set
O, a stream S and positions i, j, we say that (C,O) ∈ JψK(S, i, j, ν) if:

ψ = R AS x, C = {ν(x)}, type(S[ν(x)]) = R, i ≤ ν(x) = j and O = ∅.
ψ = ρ FILTER P (x1, . . . , xn), there exists some comparing set O′ such that (C,O′) ∈
JρK(S, i, j, ν), (S[ν(x1)], . . . , S[ν(xn)]) ∈ P and O = O′ ∪ {(P, ν(x1), . . . , ν(xn))}.
ψ = ρ1 OR ρ2 and (C,O) ∈ Jρ1K(S, i, j, ν) or (C,O) ∈ Jρ2K(S, i, j, ν)).
ψ = ρ1 ; ρ2 and there exist k ∈ N, complex events C1 and C2 and comparing sets O1
and O2 such that C = C1 · C2, O = O1 ∪ O2, (C1, O1) ∈ Jρ1K(S, i, k, ν) and (C2, O2) ∈
Jρ2K(S, k + 1, j, ν).
ψ = ρ+ and (C,O) ∈

⋃∞
k=1 Jρ[k]K(S, i, j, ν), where (C,O) ∈ Jρ[k]K(S, i, j, ν) if there exists

a valuation ν′ such that either (C,O) ∈ JρK(S, i, j, ν[ν′/U]) and k = 1 or (C,O) ∈
Jρ ; ρ[k − 1]K(S, i, j, ν[ν′/U]) otherwise, where U = vdef+(ρ).

Notice that we only extended the previous semantics of E-CEL adding this new notion
of comparing set. Therefore, it is not hard to see that (C,O) ∈ JψK(S, i, j, ν) implies
C ∈ JψK(S, i, j, ν) and, conversely, that C ∈ JψK(S, i, j, ν) implies there is some O such that
(C,O) ∈ JψK(S, i, j, ν).

Now, we show inductively that for every ψ, there exist constants c and d such that if
(C,O) ∈ JψK(S, i, j, ν), then |O| ≤ c|C|+ d, i.e. the size of O is linear in the size of C.

If ψ = R AS x, then c = d = 0.
ψ = ρ FILTER P (x1, . . . , xn), and c′, d′ are the constants for ρ, then c = c′ and d = d′ + 1.
ψ = ρ1 OR ρ2, c1, d1 are the constants for ρ1 and c2, d2 are the constants for ρ2, then
c = max(c1, c2) and d = max(d1, d2).
ψ = ρ1 ; ρ2, c1, d1 are the constants for ρ1 and c2, d2 are the constants for ρ2, then
c = max(c1, c2) and d = d1 + d2.
ψ = ρ+ and c′, d′ are the constants for ρ, then c = c′ + d′ and d = 0.

The proof that the bounds above are correct goes by doing induction over the structure of
the formula, and is straightforward in most of the cases. The case that needs more care is the
+, which we now prove explicitly. Consider that ψ = ρ+, let c′, d′ be the constants for ρ, and
consider some (C,O) ∈ JψK(S, i, j, ν). Then, by definition there exist l and a valuation ν′
such that (C,O) ∈ Jρ[l]K(S, i, j, ν[ν′/U]). We prove the bound by doing a second induction
over the number of iterations l of the definition of +. The base case is when l = 1 and the
non-recursive definition is used, i.e., (C,O) ∈ JρK(S, i, j, ν[ν′/U]). In this case, the bound
holds because |O| ≤ c′|C|+ d′ ≤ (c′ + d′)|C| = c|C| (the first inequality holds from the first
induction hypothesis and the second holds because |C| ≥ 1).

For the inductive step, consider l > 1, meaning that (C,O) ∈ Jρ ; ρ[l − 1]K(S, i, j, ν[ν′/U]).
Then, by definition there are k,C1, C2, O1, O2 such that C = C1 ·C2, O = O1∪O2, (C1, O1) ∈
JρK(S, i, k, ν) and (C2, O2) ∈ Jρ[l − 1]K(S, k + 1, j, ν). From the first induction hypothesis we
get |O1| ≤ c′|C1|+d′ ≤ (c′+d′)|C1| = c|C1|; from the second induction we get |O2| ≤ c|C2|+d.
Joining both we get |O| ≤ |O1|+ |O2| ≤ c|C1|+ c|C2|+ d = c|C|+ d, thus the bound holds.

In particular, the bound of |O| means that for every formula ψ in E-CEL(P=), there is

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:21

at most a linear number of comparisons between events, which is what we will exploit next.
By contradiction, assume that there is a formula ψ in E-CEL(P=) that is equivalent to ϕ,

and let c, d be the constants that bound the size of the comparing set. Then, for an arbitrary
n consider the stream Sn = R(1)R(2) . . . R(n)T (n+ 1)T (n+ 2) . . . T (2n), and consider the
complex event Cn = {1, 2, . . . , 2n}. It is clear that Cn ∈ JψK(Sn). Therefore, there exist a
comparing set On such that (Cn, On) ∈ JψK(Sn). Now, define O=

n {(i, j) | (P=, i, j) ∈ On}
and O 6=n {(i, j) | (P6=, i, j) ∈ On}, i.e. the sets of pairs compared with equality and inequality,
respectively. Because |On| is linear in |Cn|, we know that, if n is sufficiently large, there exist
positions k1 and k2 with 1 ≤ k1 ≤ n < k2 ≤ 2n such that (k1, k2) /∈ O 6n =. Moreover, because
all events have different value, we know that |O=

n | = 0 (counting out the pairs of the form
(k, k)). Now, define a new stream S′n the same as Sn but replacing the values of Sn[k1] and
Sn[k2] with some new value, e.g. 2n+ 1. Then, all the comparisons made while evaluating
(Cn, On) will still hold for S′n, which means that (Cn, On) ∈ JψK(S′n) by following the same
evaluation for Sn. But at the same time k1, k2 ∈ Cn, type(S′n[k1]) = R, type(S′n[k2]) = T

and S′n[k1] = S′n[k2], which means that Cn /∈ JψK(S′n), reaching a contradiction.
We conclude that there cannot exist a formula ψ in E-CEL(P=) equivalent to ϕ.

A.3 Proof of Theorem 6
To prove the theorem we provide a construction that, for any formula ϕ ∈ E-CEL(B), gives
a formula ψ ∈ S-CEL(BS) that is equivalent to ϕ. For notation, we will write ρ′ ⊆ ρ to say
that ρ′ is a subformula of ρ. Moreover, for a formula ψ = ψ′ FILTER P (x̄) ⊆ ϕ and x ∈ x̄,
we denote ϕPx to be the subformula such that ψ′ ⊆ ϕPx ⊆ ϕ, x ∈ vdef(ϕPx) and there is no
other ρ ⊂ ϕPx that satisfies the above. That is, ϕPx is the formula closest to the filter such
that x is defined in it.

Now, to simplify the proof we make some assumptions on ϕ. We assume that ϕ is
safe, as defined in [18], that is, for every subformula of the form ϕ1 ; ϕ2 it holds that
vdef+(ϕ1) ∩ vdef+(ϕ2) = ∅. We can make this assumption because in [18] they show that
every E-CEL formula can be rewritten into a safe one. Without loss of generality, we assume
that ϕ does not have unary predicates, as any predicate P (x) can be easily simulated by a
binary one with the form P (x, x). Now, the construction is the following.

First, consider any subformula of ϕ of the form ϕ′ FILTER P (x, y) such that neither x nor y
are in vdef+(ϕ′). We will move P (x, y) up to a position at which at least one of its variables is
defined. For this, we use the notion of “well-formedness” defined in [18]. There, it is said that
a formula is well-formed if for every subformula of the form ρ FILTER P1(x1, . . . , xk) and every
xi, there is another subformula ρxi

such that xi ∈ vdef+(ρxi
). In fact, they use a more strict

notion called “bound”, which says that x must be bounded to ρx in the sense that it must be
always defined (e.g. cannot appear only at one side of an OR). However, we will not make use
of that property. We use the fact that ϕ is well-formed, which means that there are formulas
ϕx and ϕy such that x ∈ vdef+(ϕx), y ∈ vdef+(ϕy) and ϕ′ ⊆ ϕx ⊆ ϕy ⊆ ϕ (wlog, we assume
that ϕx ⊆ ϕy). Then, we can move up P (x, y) by rewriting ϕx as ϕ>x FILTER P (x, y) OR ϕ⊥x ,
where ϕ>x and ϕ⊥x are ϕx replacing P (x, y) with TRUE and FALSE, respectively. The idea is
that ϕ>x FILTER P (x, y) considers the cases where the condition P (x, y) is needed and ϕ⊥x
adds the cases where it is not. As an intuition of why this is true, one can easily see that
Jϕ>x FILTER P (x, y)K(S, i, j, ν) ∪ Jϕ⊥x K(S, i, j, ν) = JϕxK(S, i, j, ν). Now, let ϕ1 be the result
of doing this to every predicate of ϕ. Then, ϕ1 is such that for every ϕ′ FILTER P (x, y) ⊆ ϕ1
it holds that either x ∈ vdef+(ϕ′) or y ∈ vdef+(ϕ′).

The intuition for the second step is that, for every filter P (x, y), if at any moment of
the evaluation we assigned x and y to two events, then they must satisfy P (x, y). In order

ICDT 2020

8:22 On the Expressiveness of Languages for Complex Event Recognition

to achieve this, we want to rename each assignment with a new variable. The problem is
that, if we do this right away, then it is not clear if we can replace the variables in the
filters. For example, if we have the formula (R AS x OR T AS x) FILTER P (x) and we
rename both assignments with variables x1 and x2, then it is not clear which variable we
need to use in the predicate P . To avoid this issue, we first rewrite ϕ1 into a form called
“disjunctive-normal form”, defined in [18]. A formula ϕ is in disjunctive-normal form (or
DNF) if ϕ = (ϕ1 OR . . . OR ϕn), where for each i ∈ {1, . . . , n}, it is the case that:

Every OR in ϕi occurs in the scope of a +-operator.
For every subformula of ϕi of the form (ϕ′i)+, it is the case that ϕ′i is in DNF.

In [18] it is shown that every formula ϕ in E-CEL can be translated into DNF. Moreover,
one can see that the construction of the equivalent DNF formula shown there does not alter
the property that we obtained from the previous step. Consider ϕ′1 to be the formula in
DNF equivalent to ϕ1. Now that the formula is safe and in DNF, we ensure that for every
filter P (x, y) in ϕ′1 the paths in the parse tree from the filter to the assignment of x and y
never get inside an OR. This does not mean, however, that the assignments are not inside
an OR in the whole formula. For example, ρ = (R AS x FILTER P (x, y) ; S AS y) OR T AS y
is a possible formula at this point, even though y appears in two sides of an OR. Instead,
what we ensure is that for every filter P (x1, x2), there is exactly one reachable assignment
Ri AS xi for each variable xi. In the case of ρ, the filter P (x, y) can reach only the x in
T AS x and the y in S AS y, but not the one in T AS y. Now that for every filter there is
exactly one assignment for each of its variables, we can then rename the variables safely. For
this, identify each assignment R AS x of ϕ′1 with a unique id i, and for every filter P (x, y)
let iPx and iPy be the ids of the assignments reachable from that filter. Then, we rewrite ϕ′1
using a new set of variables {x1, x2, . . .} in the following way:

Replace each assignment R AS y with R AS xi, where i is the id of the assignment,
Replace each filter P (x, y) with P (xiPx , xiPy).

Call ϕ2 the resulting formula. Because ϕ′1 was safe and in DNF, then the renaming does not
change the semantics.

The final step is to turn ϕ2 into a S-CEL formula. After turning ϕ into ϕ2, we claim that
now we can do it safely by pushing each predicate up until it reaches a point where all its
variables are assigned. Formally, considering labels {A1, A2, . . .}, what we do is:

Replace each assignment R AS xi with R IN Ai,
For each subformula with a filter P (xi, xj), remove de filter and instead add the filter
P S(Ai, Aj) at formula ϕPxj

(assuming ϕPxi
⊆ ϕPxj

).

Then, we define ψ as the resulting formula. The intuition of why ψ keeps the same semantics
of ϕ2 is the following. At ϕ2 we know that for every ϕ′ FILTER P (xi, xj) ⊆ ϕ2, one variable
(e.g. xi) is assigned in, and only in ϕ′, while the other is assigned somewhere else in the
formula, and only there. Then, for every evaluation that at some point needs to assign xi to
some events ei, it must get inside of ϕ′ (because xi is only there), thus it must first satisfy
the filter, i.e. P (ei, ej) must hold, where ej is the current assignment of xj . Moreover, xj is
only named once in ϕPxj

, and since xj is defined in ϕPxj
(it cannot be inside a +), it holds

that every assignment of xi (which is only one) and every assignment of xj must satisfy
P (xi, xj). Since all the assignments of xi and xj were labelled with Ai and Aj , respectively,
this is exactly what P S(Ai, Aj) in ψ represents. Thus, we claim that the resulting formula ψ
is equivalent to ϕ.

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:23

A.4 Proof of Theorem 7
To prove the theorem, we show that the formula:

ϕ = R AS x ; ((S AS y ; T AS z) FILTER (x = y + z))+

in E-CEL(P+) is not expressible in S-CEL(PS
+). We begin by giving some definitions we

will need next. We define an evaluation tree T as an ordered unranked tree where each
node t has a valuation µt associated to it. Moreover, let Ct = sup(µt), that is, Ct contains
all the positions that appear in the valuation µt. For each node t, we refer to the children
t1, t2, . . . , tk of t as children(t) = (t1, t2, . . . tk). Notice that we do not bound the number of
children of a node, and that there is an order between the children. We often refer to T by
its root node, e.g. if t is the root of T , then µT = µt and children(T) = children(t). With
the notion of evaluation tree, we extend the semantics of S-CEL in the following way. We
say that T belongs to the evaluation trees of ψ over S starting at position i and ending at j
(denoted by T ∈ JψKtree(S, i, j)) if one of the following conditions holds:

ψ = R, children(T) = (), µT (R) = {j}, type(S[j]) = R and µ(A) = ∅ for every A 6= R.
ψ = ρ IN A, children(T) = (t), t ∈ JρKtree(S, i, j), µT (A) = Ct and µT (B) = µt(B) for all
B 6= A.
ψ = ρ FILTER P (X1, . . . , Xn), T ∈ JρKtree(S, i, j) and (S[µT (X1)], . . . , S[µT (Xn)]) ∈ P .
ψ = ρ1 OR ρ2 and either T ∈ Jρ1K

tree(S, i, j) or T ∈ Jρ2K
tree(S, i, j)

ψ = ρ1 ; ρ2, children(T) = (t1, t2) and there exists k ∈ N such that µT = µt1 ∪ µt2 ,
t1 ∈ Jρ1K

tree(S, i, k) and t2 ∈ Jρ2K
tree(S, k + 1, j).

ψ = ρ+, children(T) = (t1, t2, . . . , tl) and there exist k1, . . . , kl with kl = j such that
µT = µt1 ∪ . . . ∪ µtl , t1 ∈ JρKtree(S, i, k1) and ti ∈ JρKtree(S, ki−1 + 1, ki).

The behaviour of the tree semantics is the same as in the original semantics, with the difference
that, instead of returning a complex event C, it returns the tree with the evaluations that
were used in the construction of C. Thus, it is easy to see that:

If T ∈ JψKtree(S, i, j) then CT ∈ JψK(S, i, j, µT), and
If C ∈ JψK(S, i, j, µ) then there exists some T ∈ JψKtree(S, i, j) with µT = µ.

We use the evaluation tree because it gives us more information about how the complex
event was evaluated than the complex event itself.

The following lemmas exhibit some interesting properties about the evaluation trees,
which can be easily proven:

I Lemma 17. For every formula ψ in S-CEL there exists some N such that every T ∈
JψKtree(S, i, j) is of depth at most N , for any stream S and positions i, j.

I Lemma 18. Consider a formula ψ in S-CEL, a stream S and positions i, j. For every
T ∈ JψKtree(S, i, j) and k ∈ CT there is exactly one leaf t in T such that k ∈ Ct. Moreover,
the only nodes t′ in T with k ∈ Ct′ are the ones in the path between t and T .

Now we are ready to prove that ϕ does not have an equivalent formula in S-CEL(PS
+).

By contradiction, assume that there exists such formula, call it ψ. Let D be the maximum
depth of the evaluation trees of ψ. Now, for an arbitrary N consider the stream:

S = R S T S T

2N 1 2N − 1 3 2N − 3 · · · S T

N − 1 N + 1 · · ·

ICDT 2020

8:24 On the Expressiveness of Languages for Complex Event Recognition

q1 q2
tuples(R) | {R}

Figure 3 A CEA for R with the ∗-semantics.

Intuitively, we chose this stream because the only triples that satisfy X = Y +Z are the ones
where the set X is associated to the only R event and the sets Y and Z are associated, one to
only one event S, and the other to only the event T after that S. Clearly the complex event
C = {1, 2, . . . , N,N + 1} is in JϕK(S, 1, N + 1, ν) for some ν. As ψ must be equivalent to ϕ,
there must be some tree T ∈ JψKtree(S, 1, N + 1) such that CT = C. Let t be the leaf of T
that contains the position 1 (i.e. the only R-tuple), and let t1, t2, . . . , td be the nodes in the
path from t to T (d ≤ D). We know that the sum predicate was applied at most d times in
the path between t and T . Moreover, for every occurrence of the sum predicate Ai = Bi +Ci
at some node t1, . . . , td, it can only be satisfied if |µti(Ai)| = |µti(Bi)| = |µti(Ci)| = 1, and,
in particular, if µti(Ai) = {1}, µti(Bi) = {r1} and µti(Ci) = {r2} for some r1, r2 at distance
1. We do not consider the case where some of the labels are mapped to ∅ because in that
case the predicate is not filtering anything. As stated before, it is easy to see that any other
scenario does not satisfy the predicate.

Define O as the set that contains all positions that were compared with S[1], i.e. O =
{l | ∃i. l ∈ Bi ∪ Ci}. Since there were at most d occurrences of the sum predicate and
|Bi| = |Ci| = 1 for all i, we know that |O| is at most 2d. Then, if we choose an N big enough
(e.g. N = 2d+ 1), we can find a position i that is in C but not in O. Intuitively, this means
that S[i] was not compared with S[1]. Moreover, note that all the events except the first one
have odd values, so we know that S[i] was not compared with any other event. Wlog, assume
that S[i] is of type S. Then, we can define a new stream S′ the same as S but replacing
the value of S[i] with any other value, say 0, and the evaluation tree T would still be in
JψKtree(S′, 1, N + 1), thus CT ∈ JψK(S′, 1, N + 1, µT) and CT = C ∈ JϕK(S′, 1, N + 1, ν) for
some ν. But since the sum of the values S[i] (of type S) and S[i+ 1] (of type T) is not N ,
we know that C cannot be in JϕK(S′, 1, N + 1, ν), reaching a contradiction.

B Proofs of Section 5

B.1 Proof of Theorem 8
Let U be a set of unary predicates and let ϕ be a formula in S-CEL(US). We start by showing
how to construct a CEA Aϕ over U that is equivalent to ϕ. For the construction, we extend
the transitions of CEA with labels instead of • and ◦ marks, that is, now a transition will
have the form (p, P, L, q), where p, q are states, P ∈ U and L ⊆ L. Intuitively, the set of
labels represents the labels assigned to the event read when taking that transition. We use
this as an auxiliary model, and at the end of the construction we return to the original CEA
transitions. We proceed by induction, assuming that for every formula ψ shorter than ϕ
there is a CEA Aψ that is equivalent to ψ:

If ϕ = R, then Aϕ is defined as depicted in figure 3, i.e. Aϕ = ({q1, q2},∆ϕ, {q1}, {q2})
with ∆ϕ = {(q1, tuples(R), {R}, q2)}
If ϕ = ψ IN A, then Aϕ = (Qψ,∆ϕ, Iψ, Fψ) where ∆ϕ is the result of adding label A to all
non-empty transitions of ∆ψ. Formally, ∆ϕ = {(p, P, L, q) ∈ ∆ψ | L = ∅} ∪ {(p, P, L, q) |

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:25

∃L′ 6= ∅ such that (p, P, L′, q) ∈ ∆ψ ∧ L = L′ ∪ {A}}.
If ϕ = ψ FILTER P S(A) for some unary event predicate P and A ∈ L, then Aϕ =
(Qψ,∆ϕ, Iψ, Fψ) where ∆ϕ is defined as {(p, P ′, L, q) ∈ ∆ψ | A /∈ L} ∪ {(p, P ∧ P ′, L, q) |
(p, P ′, L, q) ∈ ∆ψ ∧ A ∈ L}. The intuition behind this is that since P S is the universal
extension of P , all tuples that are labeled by A must satisfy P .
If ϕ = ψ1 OR ψ2, then Aϕ is the automata union between Aψ1 and Aψ2 as one would
expect: Aϕ = (Qψ1 ∪Qψ2 ,∆ψ1 ∪∆ψ2 , Iψ1 ∪ Iψ2 , Fψ1 ∪ Fψ2).
If ϕ = ψ1 ; ψ2, then Aϕ = (Qψ1∪Qψ2 ,∆ϕ, Iψ1 , Fψ2) where ∆ϕ = ∆ψ1∪∆ψ2∪{(p, P, L, q) |
q ∈ Iψ2 ∧ ∃q′ ∈ Fψ1 .(p, P, L, q′) ∈ ∆ψ1}.
If ϕ = ψ+, then Aϕ = (Qψ,∆ϕ, Iψ, Fψ) where ∆ϕ = ∆ψ ∪ {(p, P, L, q) | q ∈ Iψ ∧ ∃q′ ∈
Fψ.(p, P, L, q′) ∈ ∆ψ}.

Finally, to return to the original marking transitions, each transition t = (p, P, L, q) will be
turned into a transition (p, P,m, q) such that m = • iff L 6= ∅ and m = ◦ if L = ∅. Notice
that the size of the resulting automaton Aϕ is linear in the size of ϕ. Moreover, unlike the
construction in [18], where it needed some preprocessing on the formula ϕ (in particular, to
push the predicates down), here we do not need any preprocessing because the construction
for the case FILTER is straightforward.

Now, we prove the second direction, that is, for every CEA (U) A, there exists a formula
ϕ in S-CEL(US) such that JAK∗n(S) = JϕKn(S) for every stream S and n ∈ N. For this, we
give a construction that, for any A = (Q,∆, I, F), defines a formula ϕA.

Consider the set Q = {q1, q2, . . . , qn}. To simplify the construction, assume that I = {q1}
and F = {qn}, and define the FALSE formula as a formula that is never satisfied. One way to
define it is FALSE = (R FILTER ∅), but we will use FALSE to keep the proof simple. Moreover,
we only consider non-zero executions, that is, an accepting run of a CEA must be of length
at least 1. Notice that these limits automata to not being able to run over the empty stream,
but since we only care about large (potentially infinite) streams, this case is not of interest.

The main idea is based on the construction from finite automata over words which
defines, for every pair of states qi, qj , a S-CEL formula ϕij that represents the complex events
defined by the ∗-runs from qi to qj . Furthermore, we define ϕkij the same way but with the
restriction that the ∗-runs only pass through states q1, . . . , qk. Given that, it is clear then
that ϕ|Q|ij = ϕij .

We define ϕkij recursively in the following way. The base case k = 0 is defined as follows.
For each i, j, if there is no transition from qi to qj in A, then ϕ0

ij = FALSE; otherwise we
define it as:

ϕ0
ij = ρP1 OR ρP2 OR . . . OR ρPk

where P1, . . . , Pk are all the predicates of the •-transitions from qi to qj . Moreover, ρP
represents the S-CEL formula that accepts all complex events that consist of a single
event that satisfies P , defined as ρP := (R1 FILTER P) OR · · · OR (Rr FILTER P) for
R = {R1, . . . , Rr}. Note that at each Ri FILTER P we need to remove the predicates of the
form tuples(R), which is done as expected by replacing each one with either TRUE if R = Ri
or FALSE if R 6= Ri. Next, the recursion is defined as:

ϕkij = ϕk−1
ij OR (ϕk−1

ik ; ϕk−1
kj) OR (ϕk−1

ik ; ϕk−1
kk + ; ϕk−1

kj)

Finally, the final formula ϕA is the result of considering ϕ1n. The correctness of the
construction can be proven by doing induction over the number of states.

ICDT 2020

8:26 On the Expressiveness of Languages for Complex Event Recognition

B.2 Proof of Proposition 9
Consider any CEA(U) A = (Q,∆, I, F) that has the ∗-property. Now, define the CEA(U)
A′ = (Q,∆•, I, F) such that ∆• = {(p, P, •, q) | (p, P, •, q) ∈ ∆}. Let S be any stream. We
now prove that JAKn(S) = JA′K∗n(S). First, consider a complex event C ∈ JAKn(S). This
means that there is an accepting run of A:

ρ : q0
P1/m1−−→ q1

P2/m2−−→ · · · Pn/mn−−→ qn

Such that Cρ = C. Let C = {i1, i2, . . . , ik}, and consider the stream S[C〉 as the stream
formed by the events S[i1]S[i2] . . . S[ik]. Then, because A defines a function with ∗-property,
there has to be an accepting run of A over S[C〉.

ρ′ : q′0
P ′1/•−−→ q′1

P ′2/•−−→ · · · P
′
k/•−−→ q′k

Because of the construction, the analogous ∗-run of A′ over S[C〉:

σ′ : (q′0, 0) P ′1/•−−→ (q′1, 1) P ′2/•−−→ · · · P
′
k/•−−→ (q′k, k)

is an accepting ∗-run. Moreover, one can unfold S[C〉 back to the original stream S and the
∗-run:

σ : (q′0, 0) P ′1/•−−→ (q′1, i1) P ′2/•−−→ · · · P
′
k/•−−→ (q′k, ik)

is an accepting ∗-run of A′ over S, therefore Cσ = C ∈ JA′K∗n(S).
The proof for the converse case is practically the same. Assume that C ∈ JA′K∗n(S),

which means that the ∗-run σ of A′ over S exists. Moreover, the ∗-run σ′ of A′ over S[C〉
also exists, thus by the construction of A′, the run ρ′ of A must exist. Because A defines a
function with ∗-property, the accepting run ρ of A over S has to exist. We conclude that
Cρ = C ∈ JAKn(S).

C Proofs of Section 6

C.1 Proof of Theorem 13

C.1.1 Construction of CEA
Let U be a set of unary predicates and let ϕ be a formula in S-CEL+(US). We start by
showing how to construct a CEA Aϕ over U that is equivalent to ϕ. To prove this, we use a
construction similar to the one in Theorem 8. As in Theorem 8, we extend the transitions of
CEA with labels instead of • and ◦ marks, and then return to the original CEA transitions.
We proceed by induction, assuming that for every formula ψ shorter than ϕ there is a CEA
Aψ that is equivalent to ψ:

If ϕ = R, then Aϕ is defined as depicted in figure 4, i.e. Aϕ = ({q1, q2},∆ϕ, {q1}, {q2})
with ∆ϕ = {(q1, TRUE, ∅, q1), (q1, tuples(R), {R}, q2)}
If ϕ = ψ IN A, then Aϕ = (Qψ,∆ϕ, Iψ, Fψ) where ∆ϕ is the result of adding label A to all
non-empty transitions of ∆ψ. Formally, ∆ϕ = {(p, P, L, q) ∈ ∆ψ | L = ∅} ∪ {(p, P, L, q) |
∃L′ 6= ∅ such that (p, P, L′, q) ∈ ∆ψ ∧ L = L′ ∪ {A}}.
If ϕ = πL(ψ) for some L ⊆ L, then Aϕ = (Qψ,∆ϕ, Iψ, Fψ) where ∆ϕ is the result
of projecting the labels of each transition t ∈ ∆ψ with L. Formally, that is ∆ϕ =
{(p, P, L ∩ L′, q) | (p, P, L′, q) ∈ ∆ψ}.

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:27

q1 q2
tuples(R) | {R}

TRUE | ∅

Figure 4 A CEA for the atomic formula R.

If ϕ = ψ FILTER P S(A) for some unary event predicate P and A ∈ L, then Aϕ =
(Qψ,∆ϕ, Iψ, Fψ) where ∆ϕ is defined as {(p, P ′, L, q) ∈ ∆ψ | A /∈ L} ∪ {(p, P ∧ P ′, L, q) |
(p, P ′, L, q) ∈ ∆ψ ∧ A ∈ L}. The intuition behind this is that since P S is the universal
extension of P , all tuples that are labeled by A must satisfy P .
If ϕ = ψ1 ; ψ2, then Aϕ = (Qψ1∪Qψ2 ,∆ϕ, Iψ1 , Fψ2) where ∆ϕ = ∆ψ1∪∆ψ2∪{(p, P, L, q) |
q ∈ Iψ2 ∧ ∃q′ ∈ Fψ1 .(p, P, L, q′) ∈ ∆ψ1}.
If ϕ = ψ1 : ψ2, then we do the following. We add a new dummy state q, which will make the
connection between the first part and the second. In order to obtain the : semantics, we will
restrict q to only arrive and depart non-empty transitions. We defineAϕ = (Qϕ,∆ϕ, Iϕ, Fϕ)
as follows. First, the set of states is Qϕ = Qψ1 ∪ Qψ2 ∪ {q}, where q is a new dummy
state. Then, the transition relation is ∆ϕ = ∆ψ1 ∪∆ψ2 ∪ {(q1, P, L, q) | L 6= ∅ ∧ ∃q′ ∈
Fψ1 . ((q1, P, L, q

′) ∈ ∆ψ1)} ∪ {(q, P, L, q2) | L 6= ∅ ∧ ∃q′ ∈ Iψ2 . ((q′, P, L, q2) ∈ ∆ψ1)}.
Finally, the sets of initial and final states are Iϕ = Iψ1 and Fϕ = Fψ2 . The idea of why
this works is that at some point it has to go from Aψ1 to Aψ2 , and the only way to do it
is through q. Then, because q only receives and departs non-empty transitions, we get the
desired result.
If ϕ = ψ+, then Aϕ = (Qψ,∆ϕ, Iψ, Fψ) where ∆ϕ = ∆ψ ∪ {(p, P, L, q) | q ∈ Iψ ∧ ∃q′ ∈
Fψ.(p, P, L, q′) ∈ ∆ψ}.
If ϕ = ψ⊕, then we can use an idea similar to the one we used for the operator :. We
add a new dummy state q, which will make the connection between one iteration and the
next one. In order to obtain the ⊕ semantics, we will restrict q to only arrive and depart
non-empty transitions. We do this as follows: we define Aϕ = (Qψ ∪ {q},∆ϕ, Iψ, Fψ).
The transition relation is ∆ϕ = ∆ψ ∪ {(q1, P, L, q) | L 6= ∅ ∧ ∃q′ ∈ Fψ. ((q1, P, L, q

′) ∈
∆ψ)} ∪ {(q, P, L, q2) | L 6= ∅ ∧ ∃q′ ∈ Iψ. ((q′, P, L, q2) ∈ ∆ψ)}. The idea of why this works
is the same one for the : case: at some point it has to go from one iteration to another, and
the only way to do it is through q. Then, because q only receives and departs non-empty
transitions, we get the desired result.
If ϕ = START(ψ), then we need to force the first transition to contain at least one label.
Similar to the previous cases, we add a new dummy state q which will work as our initial
state, and we will restrict it to only depart non-empty transitions. Formally, Aϕ = (Qψ ∪
{q},∆ϕ, {q}, Fψ), where ∆ϕ = ∆ψ ∪ {(q, P, L, p) | L 6= ∅ ∧ ∃q′ ∈ Iψ.((q′, P, L, p) ∈ ∆ψ)}.
If ϕ = ψ1 OR ψ2, then Aϕ is the automata union between Aψ1 and Aψ2 as one would
expect: Aϕ = (Qψ1 ∪Qψ2 ,∆ψ1 ∪∆ψ2 , Iψ1 ∪ Iψ2 , Fψ1 ∪ Fψ2).

Finally, to return to the original marking transitions, each transition t = (p, P, L, q) will be
turned into a transition (p, P,m, q) such that m = • iff L 6= ∅ and m = ◦ if L = ∅. Notice
that the size of the resulting automaton Aϕ is linear in the size of ϕ.

ICDT 2020

8:28 On the Expressiveness of Languages for Complex Event Recognition

C.1.2 From CEA to unary S-CEL
Now we proceed to show the opposite direction: given a CEA, define an equivalent unary
S-CEL formula. Let A = (Q,∆, I, F) be a CEA, with Q = {q1, . . . , qn}. Without loss of
generality, assume that there is only one initial state and one final state, i.e., I = {q1} and
F = {qn}. Here we use the same idea of Theorem 8: to define, for every pair of states (qi, qj),
a formula ϕij that represents the complex events of the runs from qi to qj . Furthermore,
we define ϕkij the same way but with the restriction that the runs only pass through states
q1, . . . , qk.

We define ϕkij recursively in the following way. The base case k = 0 is defined as follows.
For each i, j, if there is no transition from qi to qj in A, then ϕ0

ij = FALSE (as defined in
Theorem 8); otherwise we define it as:

ϕ0
ij = (ρP1 OR . . . OR ρPm

) IN L• OR (ρU1 OR . . . OR ρUn
)

where {Pk} are all the predicates of •-transitions (qi, Pk, •, qj) and {Uk} are all the pre-
dicates of ◦-transitions (qi, Uk, ◦, qj). Moreover, ρP represents the S-CEL formula that
accepts all complex events that consist of a single event that satisfies P , defined as
ρP = (R1 FILTER P) OR · · · OR (Rr FILTER P) for R = {R1, . . . , Rr} (like in Theorem 8).

Next, the recursion is defined as:

ϕkij = ϕk−1
ij OR (ϕk−1

ik : ϕk−1
kj) OR (ϕk−1

ik : ϕk−1
kk + : ϕk−1

kj)

Finally, the final formula ϕA is the result of considering ϕ1n, forcing it to begin immediately
at position 0, and then projecting to retrieve only the events with label L• (the ones that
come from • transitions). Formally, we define it as ϕA := π{L•}(START(ϕ1n)).

Finally, it is straightforward to prove the correctness of the construction by induction
over the number of states.

C.2 Proof of Proposition 14
Consider a formula ϕ in S-CEL∪{ : ,⊕}(U). We first prove that there is a formula ψ in
S-CEL∪{ : , STRICT}(U) which is equivalent to ϕ, and then the proof follows directly from
Theorem 16.

Consider any formula ϕ′ in S-CEL∪{ : , STRICT}(U). We prove by induction that there
exists a formula ψ′ in S-CEL∪{ : , STRICT}(U) which is equivalent to ϕ′⊕. For simplicity,
we assume that all the filters are applied at the bottom-most level, which can be achieved by
using the same idea as in Theorem 4. Moreover, we can then drop the IN labellings, since
all the filters are at the assignment level and thus the labels do not alter the query semantics.

Now that all filters in our ϕ′ are at the bottom-most level and all the IN are dropped,
we proceed to prove by induction that there exists a formula ψ′ in S-CEL∪{ : , STRICT}(U)
which is equivalent to ϕ′⊕. We consider the possible cases for ϕ′:

For the base case, if ϕ′ = R, then ψ′ = STRICT(R+) is equivalent to ϕ′⊕. Similarly for
the case ϕ′ = R FILTER P (R).
If ϕ′ = STRICT(ϕ1), then ψ′ = STRICT(ϕ1+) is equivalent to ϕ′⊕.
If ϕ′ = ϕ1 ; ϕ2, then ψ′ = ϕ1 ; (ϕ2 OR ((ϕ2 : ϕ1)+ ; ϕ2)) is equivalent to ϕ′⊕.
If ϕ′ = ϕ1+, then ψ′ = ϕ1+ is equivalent to ϕ′⊕.

We do not consider the : -case since we know that they can be removed by using STRICT
instead.

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:29

The last and more complex operator is the OR, for which we have to consider ϕ′ = ϕ1 OR ϕ2,
with all possible cases for ϕ1 and ϕ2. The simplest scenario is where both ϕ1 and ϕ2 have
either the form R, R FILTER P (R) or STRICT(ψ) for some ψ, at which case we can simply
write ϕ′⊕ as STRICT(ϕ′+).

Now we consider the cases where some of them does not have this form (w.l.o.g. assume
is ϕ2). Consider first the case ϕ2 = ρ1 ; ρ2. Here we use the following equivalence:

(ϕ1 OR (ρ1 ; ρ2))⊕ ≡ ϕ1 ⊕ OR (ρ1 ; ρ2)⊕ OR (1)
(ϕ1 ⊕ : (ρ1 ; ρ2)⊕)⊕ OR (2)
ϕ1 ⊕ : ((ρ1 ; ρ2)⊕ : ϕ1⊕)⊕ OR (3)
((ρ1 ; ρ2)⊕ : ϕ1⊕)⊕ OR (4)
(ρ1 ; ρ2)⊕ : (ϕ1 ⊕ : (ρ1 ; ρ2))⊕ (5)

Here, part (1) has no problem since the ⊕-operator is applied over subformulas of the
original one, thus by induction hypothesis they can be written without ⊕. Moreover, with
some basic transformations in part (2) (replacing (ρ1 ; ρ2)⊕ by ρ1 ; (ρ2 OR ((ρ2 : ρ1)+ ; ρ2)))
one can show that it is equivalent to the formula (σ1 ; σ2)⊕, where σ1 = ϕ1 ⊕ : ρ1 and
σ2 = ρ2 OR ((ρ2 : ρ1)+ ; ρ2). Then, we can replace (σ1 ; σ2) with σ1 ; (σ2 OR ((σ2 : σ1)+ ; σ2)),
and the resulting formula will contain only one ⊕ in the form ϕ1⊕, which by induction
hypothesis can also be removed. Similarly, parts (3), (4) and (5) can be rewritten this way,
therefore for the case of ϕ2 = ρ1 ; ρ2 the induction statement remains true.

Now consider the case ϕ2 = ρ+. Notice that the following equivalence regarding + holds:
ρ+ ≡ ρ OR ρ ; ρ+. Thus, ϕ′ can then be written as (ϕ1 OR ρ) OR (ρ ; ρ+). Then, if we
redefine ϕ1 := (ϕ1 OR ρ) and ϕ2 = (ρ ; ρ+), clearly ϕ′ would have the form ϕ1 OR (ρ1 ; ρ2).
Therefore, we can apply the previous case and the resulting formula will still satisfy the
induction statement, thus it remains true in the case ϕ2 = ρ+.

Then, we can replace every subformula ϕ′⊕ of ϕ with its equivalent formula ψ′ in a bottom-
up fashion to ensure that each ϕ′ is in S-CEL∪{ : , STRICT}(U). Finally, the remaining
formula ψ does not contain ⊕ and thus is in S-CEL∪{ : , STRICT}(U). The converse case
follows directly from Proposition 15.

C.3 Proof of Proposition 15

Consider a formula ϕ in S-CEL∪{STRICT}(P). We first prove that for every formula ϕ′
in S-CEL∪{STRICT}(P) there is a formula ψ′ in S-CEL∪{ : ,⊕}(P) that is equivalent to
STRICT(ϕ′), for which we do induction over the structure of ϕ′. The base case is ϕ′ = R,
which already satisfies the above considering ψ′ = R. For the inductive step, consider the
following cases.

If ϕ′ = ρ IN A, then STRICT(ϕ′) ≡ STRICT(ρ) IN A. By induction hypothesis, there is a
formula σ in S-CEL∪{ : ,⊕}(P) equivalent to STRICT(ρ). Thus, ψ′ = σ IN A is equivalent
to STRICT(ϕ′).
If ϕ′ = ρ1 ; ρ2, then STRICT(ϕ′) ≡ STRICT(ρ1) : STRICT(ρ2). By induction hypothesis,
both STRICT(ρ1) and STRICT(ρ2) have equivalent formulas σ1 and σ2, respectively, in
S-CEL∪{ : ,⊕}(P). Thus, ψ′ = σ1 : σ2 is equivalent to STRICT(ϕ′).
If ϕ′ = ρ FILTER P , then STRICT(ϕ′) ≡ STRICT(ρ) FILTER P . By induction hypothesis,
STRICT(ρ) has an equivalent formula σ in S-CEL∪{ : ,⊕}(P). Thus, ψ′ = σ FILTER P is
equivalent to STRICT(ϕ′).

ICDT 2020

8:30 On the Expressiveness of Languages for Complex Event Recognition

If ϕ′ = ρ1 OR ρ2, then STRICT(ϕ′) ≡ STRICT(ρ1) OR STRICT(ρ2). By induction hypothesis,
both STRICT(ρ1) and STRICT(ρ2) have equivalent formulas σ1 and σ2, respectively, in
S-CEL∪{ : ,⊕}(P). Thus, ψ′ = σ1 OR σ2 is equivalent to STRICT(ϕ′).
If ϕ′ = ρ+, then STRICT(ϕ′) ≡ STRICT(ρ)⊕. By induction hypothesis, STRICT(ρ) has an
equivalent formula σ in S-CEL∪{ : ,⊕}(P). Thus, ψ′ = σ⊕ is equivalent to STRICT(ϕ′).

After this the only thing left is to replace every subformula STRICT(ϕ′) of ϕ with its
S-CEL∪{ : ,⊕}(P) equivalent ψ′, and the resulting formula will be in S-CEL∪{ : ,⊕}(P)
and will be equivalent to ϕ, thus proving the lemma.

C.4 Proof of Theorem 16

C.4.1 S-CEL∪{:} ⊆ S-CEL∪{STRICT}

For the first part we prove that for every formula ϕ in S-CEL∪{ : }(P) there is a formula ψ
in S-CEL∪{STRICT}(P) such that ϕ ≡ ψ. For notation, for any formula ρ and labels A,B
we write ρA→B to refer to the formula ρ after replacing every occurrence of A by B.

Consider a formula ϕ in S-CEL∪{ : }(P). We are going to make use of a rather useful
property of S-CEL{ : }(P), and of S-CEL in general, that is the fact that one can always
push the labelling down to the assignments (or an assignment with filters). This is because
any formula of the form ϕ = ϕ′ IN A can be rewritten as a new formula ψ that labels A one
level lower than ϕ. This is done in the following way:

If ϕ′ = ρ1 OP ρ2 with OP ∈ { ; , : , OR }, then ϕ ≡ (ρ1 IN A) OP (ρ2 IN A).
If ϕ′ = ρ OP with OP ∈ {+,⊕}, then ϕ ≡ (ρ IN A) OP.
If ϕ′ = ρ FILTER P (Ā), then

if A is not in Ā then ϕ ≡ (ρ IN A) FILTER P (Ā), and
if A is in Ā then ϕ ≡ (ρA→A′ IN A) FILTER P (Ā′), where A′ is a new label and Ā′ is
Ā replacing A with A′.

By using these equivalences, we can push down all labellings.
Now we prove that for every formula ϕ′ = ϕ1 : ϕ2 with ϕ1 and ϕ2 in S-CEL∪{STRICT}(P)

there exists a formula ψ′ in S-CEL∪{STRICT}(P) equivalent to ϕ′. Here we assume that ϕ′ is
such that all its labels are applied at the lower level. Then the proof follows by doing induction
over the structure of ϕ′. The base case is ϕ′ = R : T for some R, T . Clearly ϕ′ is equal to
ψ′ = STRICT(R ; T). The same works if ϕ1 and ϕ2 have the form (R IN A1 . . . IN Ak). For
this case, ϕ′ would be equal to ψ′ = STRICT(ϕ1 ; ϕ2). For the inductive step consider the
following cases:

If ϕ1 = ρ1 ; ρ2, then ϕ′ ≡ ρ1 ; (ρ2 : ϕ2) and ρ2 : ϕ2 is smaller than ϕ1 : ϕ2. By
induction hypothesis, (ρ2 : ϕ2) has an equivalent formula σ in S-CEL∪{STRICT}(P).
Thus, ψ′ = ρ1 ; σ is equivalent to ϕ′.
If ϕ1 = ρ FILTER P (Ā), then ϕ′ ≡ (ρĀ→Ā′ : ϕ2) FILTER P (Ā′), where Ā′ = (A′1, . . . , A′k)
is a tuple of new labels with the same arity as Ā = (A1, . . . , Ak). By induction hy-
pothesis, (ρĀ→Ā′ : ϕ2) has an equivalent formula σ in S-CEL∪{STRICT}(P). Thus,
ψ′ = (σ FILTER P (Ā′) is equivalent to ϕ′. Note that, since we renamed the labels Ā with
Ā′ in ρ, then for any filter P ′(B̄) with some Ai ∈ B that is applied in a higher level, we
must also add the filter P (B̄′) where B′ is B replacing Ai with A′i.
If ϕ1 = ρ1 OR ρ2, then ϕ′ ≡ (ρ1 : ϕ2) OR (ρ2 : ϕ2). By induction hypothesis, both (ρ1 : ϕ2)
and (ρ2 : ϕ2) have equivalent formulas σ1 and σ2, respectively, in S-CEL∪{STRICT}(P).

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:31

Thus, ψ′ = σ1 OR σ2 is equivalent to ϕ′.
If ϕ1 = ρ+, then ϕ′ ≡ (ρ : ϕ2) OR (ρ+ ; (ρ : ϕ2)). By induction hypothesis, (ρ : ϕ2) has
an equivalent formula σ in S-CEL∪{STRICT}(P). Thus, ψ′ = σ OR (ρ+ ; σ) is equivalent
to ϕ′.

The cases regarding the structure of ϕ2 instead of ϕ1 are analogous to the previous ones.
Then, every subformula ϕ′ of ϕ is replaced by its equivalent ψ′ in a bottom-up fashion to

ensure that the subformulas of ϕ′ are indeed in S-CEL∪{STRICT}(P). Finally, the resulting
formula ψ is in S-CEL∪{STRICT}(P) and is equivalent to ϕ.

C.4.2 S-CEL∪{⊕} * S-CEL∪{STRICT}
Now, for the second part we prove that there is a set P containing a single binary set
predicate and a formula ϕ ∈ S-CEL∪{⊕}(P) that is not equivalent to any formula in
S-CEL∪{STRICT}(P). In particular, consider P = {P S

=}, where P=(x, y) := (x.a = y.a), and
consider the formula:

ϕ = ((A ; E) FILTER P S
=(A,E))⊕

in S-CEL∪{⊕}(P). We prove that there is no formula ψ in S-CEL∪{STRICT}(P) equivalent
to ϕ. For this we first give a few somehow useful definitions.

Consider a stream S, a complex event C, a valuation µ, two positions i, j ∈ C with i < j

and a constant k ≥ 1. Consider the factorization C1 · C2 · C3 of C given by i, j in which
C1 contains all positions in C lower than i, C2 contains all positions of C between i and j
(including them) and C3 contains all positions of C higher than j. Likewise, consider the
factorization S1 · S2 · S3 and µ1 ∪ µ2 ∪ µ3 of S and µ in the same way.

Now, we define the result of pumping the fragment [i, j] of (S,C, µ) k-times as a tuple
(S′, C ′, µ′), where S′, C ′ and µ′ are a stream, complex event and valuation, defined as follows:

To define S′, we consider two cases. First, when C2 does not induce a contiguous
interval (that is, there is some l such that i < l < j and l /∈ C2), we define S′ as
S1 ·P0 ·S2 ·P1 ·S2 · . . . ·S2 ·Pk ·S3, where S2 is repeated k times and each Pi is an arbitrary
finite stream. Second, when C2 does induce a contiguous interval, we define S′ without
the Pi, i.e., S′ = S1 · S2 · S2 · . . . · S2 · S3.
C ′ is defined as C1 · C1

2 · C2
2 · . . . · Ck2 · C ′3, where each Ci2 is the same complex event

C2 but with its values moved to fit the i-th occurrence of S2 in S′. For example, C2
2

results after adding |S2| to all values of C2 if it induces a contiguous interval, and adding
|P0|+ |S2|+ |P1| else. Likewise, C ′3 is the same as C3 but moved to fit S3.
Like for C ′, µ′ is defined as µ1∪µ1

2∪µ2
2∪ . . .∪µk2 ∪µ′3, where each µi2 is the same valuation

µ2 but with its values moved to fit the i-th occurrence of S2 in S′. Likewise, µ′3 is the
same as µ3 but moved to fit S3.

Notice that if C induces a contiguous interval, then also does C ′. Moreover, notice that no
new events were added to the valuation, i.e. S[µ(A)] = S′[µ′(A)] for every label A.

A formula ρ in S-CEL is said to be pumpable if there exists a constant N ∈ N such that
for every stream S, valuation µ, positions p1, p2 and complex event C ∈ JρK(S, p1, p2, µ) with
|C| > N there exist two positions i, j ∈ C with i < j such that for every k ≥ 1 it holds
that C ′ ∈ JρK(S′, p1, p

′
2, µ
′), where (S′, C ′, µ′) is the results of pumping the fragment [i, j]

of (S,C, µ) k-times and p′2 is the position at which S[p2] ended. In the following lemma we
show the utility of this property.

I Lemma 19. Every formula ϕ in S-CEL∪{STRICT}(P) is pumpable.

ICDT 2020

8:32 On the Expressiveness of Languages for Complex Event Recognition

Proof. Consider a formula ϕ in S-CEL∪{STRICT}(P). We prove the lemma by induction
over the structure of ϕ. First, consider the base case R. By defining N = 1 we know that for
every stream S there is no complex event C ∈ JϕK(S) with |C| > N , so the lemma holds.

Now, for the inductive step consider first the case ϕ = ψ1 FILTER P (X1, . . . , Xn). By
induction hypothesis, we know that the lemma holds for ψ1, thus let N1 be its corresponding
constant. Let N be equal to N1. Consider any stream S, valuation µ, positions p1, p2
and complex event C ∈ JϕK(S, p1, p2, µ) with |C| > N . By definition C ∈ Jψ1K(S, p1, p2, µ)
and (S[µ(X1)], . . . , S[µ(Xn)]) ∈ P . By induction hypothesis, ψ1 is pumpable, thus there
exist positions i, j ∈ C with i < j such that the fragment [i, j] can be pumped. Moreover,
consider that the result of pumping the fragment [i, j] k times is (S′, C ′, µ′), for an arbitrary
k. Then, it holds that C ′ ∈ Jψ1K(S′p1, p

′
2, µ
′). Also, because in the pumping it holds

that S[µ(A)] = S′[µ′(A)] for every A, then (S′[µ′(X1)], . . . , S′[µ′(Xn)]) ∈ P . Therefore,
C ′ ∈ JϕK(S′p1, p

′
2, µ
′), thus ϕ is pumpable.

Consider now the case ϕ = ψ1 OR ψ2. By induction hypothesis, we know that the property
holds for ψ1 and ψ2, thus let N1 and N2 be the corresponding constants, respectively. Then,
we define the constant N as the maximum between N1 and N2. Consider any stream S,
valuation µ, positions p1, p2 and complex event C ∈ JϕK(S, p1, p2, µ) with |C| > N . By
definition or OR, either C ∈ Jψ1K(S, p1, p2, µ) or C ∈ Jψ2K(S, p1, p2, µ), so w.l.o.g. consider
the former case. By induction hypothesis, ψ1 is pumpable, thus there exist positions i, j ∈ C
with i < j such that the fragment [i, j] can be pumped and the result (S′, C ′, µ′) satisfies
C ′ ∈ Jψ1K(S′, p1, p

′
2, µ
′). This means that C ′ ∈ JϕK(S′, p1, p

′
2, µ
′), therefore, ϕ is pumpable.

Now, consider the case ϕ = ψ1 ; ψ2. By induction hypothesis, we know that the property
holds for ψ1 and ψ2, thus let N1 and N2 be the corresponding constants, respectively.
Then, we define the constant N = N1 +N2. Consider any stream S, valuation µ, positions
p1, p2 and complex event C ∈ JϕK(S, p1, p2, µ) with |C| > N . This means that there exist
p′ ∈ N, complex events C1, C2 and valuations µ1, µ2 such that C = C1 · C2, µ = µ1 ∪ µ2,
C1 ∈ Jψ1K(S, p1, p

′, µ1) and C2 ∈ Jψ2K(S, p′ + 1, p2, µ2). Moreover, either |C1| > N1 or
|C2| > N2, so w.l.o.g. assume the former case. By induction hypothesis, ψ1 is pumpable,
thus there exist positions i, j ∈ C1 with i < j such that the fragment [i, j] can be pumped
and the result (S′, C ′1, µ′1) satisfies C ′1 ∈ Jψ1K(S′, p1, p

′ + r, µ′1), assuming that the pumping
added r new events. Define the complex event C ′ = C ′1 · C ′2, where C ′2 is the same as C2
but adding r to each position (so that (S[C2] = S′[C ′2]). Similarly, define the valuation
µ′ = µ′1 ∪ µ′2, where µ′2 is µ2 adding r to each value. Then C ′1 ∈ Jψ1K(S′, p1, p

′ + r, µ′1) and
C ′2 ∈ Jψ2K(S′, p′+ r+ 1, p2 + r, µ′2), thus C ′ ∈ JϕK(S′, p1, p2 + r, µ′), therefore, ϕ is pumpable.

Consider then the case ϕ = ψ1+. By induction hypothesis, we know that the lemma
holds for ψ1, thus let N1 be its corresponding constant. Let the constant N be equal to N1.
Consider any stream S, valuation µ, positions p1, p2 and complex event C ∈ JϕK(S, p1, p2, µ)
with |C| > N . Then, consider i = min(C) and j = max(C), consider any k ≥ 1 and let
(S′, C ′, µ′) be the result of pumping the fragment [i, j] of (S,C, µ) k times. We prove now
that C ′ ∈ JϕK(S′, p1, p

′
2, µ
′) by induction over k. If k = 1 then, as defined in the definition

of pumping, S′ has the form S1 · P0 · S2 · P1 · S3, and C ′ and µ′ are the same as C and µ
but adding r to each position, where r = |P0|. Clearly it holds that C ′ ∈ JϕK(S′, p1, p

′
2, µ
′),

since the modifications did not affect the complex event part of S. Now, consider that k > 1.
Then, S′ has the form S1 ·P0 ·S2 ·P1 ·S2 · . . . ·S2 ·Pk ·S3. Similarly, C ′ and µ′ are defined as
C1 · C1

2 · C2
2 · . . . · Ck2 · C ′3 and µ1 ∪ µ1

2 ∪ µ2
2 ∪ . . . ∪ µk2 ∪ µ′3, respectively, where C1 = C ′3 = ∅,

µ1(A) = µ3(A) = ∅ for any A, and each Ci2 and µi2 are the same complex event C and
valuation µ but with their positions moved to fit the i-th occurrence of S2 in S′. Consider
that r = |S1 · P0 · S2|. By induction hypothesis, we can say that C ′2 ∈ JϕK(S′, r + 1, p′2, µ′2)

A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren 8:33

where C ′2 = C2
2 · . . . ·Ck2 and µ′2 = µ2

2 ∪ . . .∪µk2 (notice that we consider it from position r+ 1
because there is no lower position in the complex event). Also, it is easy to see that this
implies C ′2 ∈ Jϕ+K(S′, r+ 1, p′2, µ′2), which is something we will need next. Moreover, it holds
that C1

2 ∈ JϕK(S′, p1, r, µ
1
2), because it represents the same complex event as the original one

C. Then, because C ′ = C1
2 · C ′2 and µ′ = µ1

2 ∪ µ′2, it follows that C ′ ∈ Jϕ ; ϕ+K(S′, p1, p
′
2, µ
′)

which also implies that C ′ ∈ Jϕ+K(S′, p1, p
′
2, µ
′). Since ϕ+ = ψ1 + + ≡ ψ1+ = ϕ, it holds

that C ′ ∈ JϕK(S′, p1, p
′
2, µ
′).

Now, consider the case ϕ = STRICT(ψ1). By induction hypothesis, we know that the
lemma holds for ψ1, thus let N1 be its corresponding constant. Let the constant N for ϕ
be equal to N1. Consider any stream S, valuation µ, positions p1, p2 and complex event
C ∈ JϕK(S, p1, p2, µ) with |C| > N . Then, by definition C ∈ Jψ1K(S, p1, p2, µ), and by
induction hypothesis there exist positions i, j ∈ C such that the fragment [i, j] can be
pumped and the result (S′, C ′, µ′) satisfies C ′ ∈ Jψ1K(S, p1, p

′
2, µ
′). Notice that C induces a

contiguous interval because of the definition of STRICT, therefore C ′ also induces a contiguous
interval, thus C ′ ∈ JϕK(S, p1, p

′
2, µ
′).

Finally, consider the case ϕ = ψ1 IN A. By induction hypothesis, we know that the
lemma holds for ψ1, thus let N1 be its corresponding constant. Let the constant N be
equal to N1. Consider any stream S, valuation µ, positions p1, p2 and complex event
C ∈ JϕK(S, p1, p2, µ) with |C| > N . Then, by definition µ(A) = C, and there exists η such
that C ∈ Jψ1K(S, p1, p2, η) and µ(B) = η(B) for all B 6= A. By induction hypothesis there
exist positions i, j ∈ C such that the fragment [i, j] can be pumped and the result (S′, C ′, η′)
satisfies C ′ ∈ Jψ1K(S, p1, p

′
2, η
′). Note that the results (S′, C ′, µ′) and (S,C ′, η′) of pumping

[i, j] in (S,C, µ) and (S,C, η), respectively, are the same, with the only difference that µ′
satisfies µ′(A) = C ′. Then it follows that C ′ ∈ JϕK(S, p1, p

′
2, µ
′). J

Now, we show that there is no formula ψ in S-CEL∪{STRICT}(P) equivalent to ϕ =
((A ; E) FILTER P S

=(A,E))⊕ by proving that such formula is not pumpable. By contradiction,
assume that ψ exists, and let N be its constant. Consider then the stream:

S = A L E A L E

1 1 1 2 2 2 · · · A L E

N N N
· · ·

Where the first and second lines are the type and a attribute of each event, respectively,
and consider the complex event C = {1, 3, 4, 6, . . . , 3N − 2, 3N} and valuation µ with
µ(A) = {1, 4, 7, . . . , 3N − 2} and µ(E) = {3, 6, 9, . . . , 3N}. Now, let i, j ∈ C be any two
positions of the complex event, which define the partitions C1 · C2 · C3 and µ1 ∪ µ2 ∪ µ3,
and name t1 = S[i] and t2 = S[j]. We will use k = 2, i.e., repeat section S[i, j] two times,
and use the 1-tuple stream U(0) as the arbitrary streams P0 and P1 to get the resulting
stream S′ and the corresponding complex event C ′ and valuation µ′. We will analyse the
following possible cases: type(t1) = type(t2); type(t1) = A and type(t2) = E; type(t1) = E

and type(t2) = A. In the first case the resulting C ′ is a complex event with two consecutive
tuples of the same type, which contradicts the original formula ϕ. In the second case C2
is not a contiguous interval so the complex event C ′ would fail to ensure that the A tuple
following t2 is placed right after it (because of the tuple U(0) inbetween), thus contradicting
the ⊕ property of ϕ. In the third case it is clear that the last A in the first repetition of [i, j]
and the first E in the second repetition (i.e., S[j] and S[j + 2]) do not satisfy the FILTER
condition because S[j].a > S[j + 2].a. Finally, the formula ψ cannot exist.

ICDT 2020

	Introduction
	Preliminaries
	Set-based Complex Event Logic
	Set Variables Versus Event Variables
	On the Expressiveness of Unary Formulas
	Capturing the Expressive Power of Complex Event Automata
	Expressibility of CEA and Unary `39`42`"613A``45`47`"603AS-CEL
	Strict Sequencing versus Strict Selection

	Discussion and future work
	Proofs of Section 4
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Proofs of Section 5
	Proof of Theorem 8
	Proof of Proposition 9

	Proofs of Section 6
	Proof of Theorem 13
	Construction of CEA
	From CEA to unary `39`42`"613A``45`47`"603AS-CEL

	Proof of Proposition 14
	Proof of Proposition 15
	Proof of Theorem 16
	Lg
	Lg

