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Abstract
Complex event processing (CEP) has gained a lot of attention for evaluating complex patterns

over high-throughput data streams. Recently, new algorithms for the evaluation of CEP patterns have
emerged with strong guarantees of efficiency, i.e. constant update-time per tuple and constant-delay
enumeration. Unfortunately, these techniques are restricted for patterns with local filters, limiting
the possibility of using joins for correlating the data of events that are far apart.

In this paper, we embark on the search for efficient evaluation algorithms of CEP patterns with
joins. We start by formalizing the so-called partition-by operator, a standard operator in data
stream management systems to correlate contiguous events on streams. Although this operator
is a restricted version of a join query, we show that partition-by (without iteration) is equally
expressive as hierarchical queries, the biggest class of full conjunctive queries that can be evaluated
with constant update-time and constant-delay enumeration over streams. To evaluate queries with
partition-by we introduce an automata model, called chain complex event automata (chain-CEA),
an extension of complex event automata that can compare data values by using equalities and
disequalities. We show that chain-CEA is closed under determinization and is expressive enough to
capture queries with partition-by. More importantly, we provide an algorithm with constant update
time and constant delay enumeration for evaluating any query definable by chain-CEA, showing
that all CEP queries with partition-by can be evaluated with these strong guarantees of efficiency.
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1 Introduction

Streaming query evaluation is the most crucial problem in complex event processing (CEP).
Given a CEP query Q, the streaming evaluation of Q over a stream consists in continuously
reading events and outputting all complex events (i.e. sets of events) as soon as the last event
that fires Q arrives. This streaming evaluation can be divided in two parts: (1) the process
that continuously reads events and updates the state of the system whenever a new event
arrives and (2) the process that outputs (i.e. enumerates) all complex events that satisfy the
query. Both processes are required to run separately in such a way that the update process
calls the enumeration process whenever a new output is found [17].

Given the high-throughput data streams in areas like Network Intrusion Detection [27],
Industrial Control Systems [19] or Real-Time Analytics [28], the time and space used by
these two processes must be severely restricted. As proposed in [8, 17, 22], an efficient
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10:2 Towards streaming evaluation of queries with correlation in complex event processing

streaming evaluation process should satisfy at least the following two ideals: the update
process must take constant time per new event and the enumeration process must take
constant delay between two consecutive outputs. Intuitively, this is the best that a CEP
system can aim for efficiently processing high-throughput data streams in practice. In [17]
a streaming evaluation algorithm with constant update time per event and constant delay
enumeration was shown for a meaningful core of CEP query languages when only local filters
are allowed. Unfortunately, not all relevant queries in CEP can be evaluated with these
strong guarantees, which fosters the search of query operators that allow efficient evaluation.

One of the key features in CEP is correlation [13]: to associate different events that
might occur arbitrarily far in the input stream. Verifying that two users have the same id, or
verifying an increasing sequence of temperature events, are some examples of how correlation
is used in CEP. The most basic operator for adding correlation in CEP are equalities, namely,
joining two events which have the same data value. Unfortunately, the evaluation of join
queries is a difficult task even in a static setting [2], stressing the difficulties of finding
efficient evaluation algorithms of CEP queries with equality predicates. One special operator
usually included in CEP systems [6, 31, 1] for correlating events is partition-by [6] (also
referred as segmentation-oriented context in [16] or just context in [1]). As the name suggests,
this operator breaks up the events of a stream into partitions where all events of the same
partition have the same data value. Despite being a useful operator in CEP, there is a lack
of research in evaluating partition-by queries with solid efficiency guarantees, and usually
this operator is severely restricted in CEP systems [31].

In this paper, we embark on the search for efficient evaluation of CEP queries with
correlation when equality and disequality predicates are used. We first formalize the partition-
by operator by extending Complex Event Logic (CEL) [17, 18] with a simple and compositional
semantics. To motivate the expressive power of partition-by, we show that CEL with partition-
by (but without iteration) is equally expressive as hierarchical queries [8, 22], the biggest
subclass of conjunctive queries (CQ) that can be evaluated with constant update time and
constant delay enumeration [8].

With a well-defined operator for doing correlation, we study the evaluation of partition-by
through a machine model that we called chain Complex Event Automata (chain-CEA), an
extension of complex event automata with equality and disequality predicates [17]. Although
automata models over data words usually do not have good closure properties [29], we show
that chain-CEA is closed under determinization and is expressive enough to capture all CEL
queries with partition-by. The most important result of the paper is a streaming evaluation
algorithm for the full class of chain-CEA, with constant update time and constant delay
enumeration. In particular, this shows that all queries with partition-by can be evaluated
efficiently in a streaming fashion.

Related work. Streaming query evaluation has been studied in the context of data stream
management systems (DSMS) [6] and complex event processing (CEP) [31, 13, 21]. The
notion of constant update time per tuple/event and constant delay enumeration has not
been considered until recently [25, 20, 8] and, furthermore, in CEP systems these strong
guarantees of efficiency have not been adopted yet [17]. Therefore, the algorithmic approach
in CEP systems for evaluating queries with correlation is incomparable to our approach.

New techniques in dynamic query evaluation [9, 3, 10] have recently attracted a lot of
attention [8, 22, 23]. In [8, 22], the streaming evaluation of CQ is considered but this does
not include queries with order. In [23], inequalities over atoms are considered, but only for
the case of CQ. Our setting also includes disjunction and iteration (but not conjunction),
which makes our work orthogonal to the work in [8, 22, 23].
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Register automata [24] have been extensively studied in the context of automata theory
and XML [29]. Nevertheless, this model has not been studied in the context of CEP and
efficient query evaluation. Recently, in [5] a similar extension of complex event automata
with registers was proposed. However, this work does not study the determinization and
evaluation of this model with constant update time and constant delay enumeration.

2 Preliminaries

In this section, we recall the formal definitions for streams and complex events [17], and give
a simplified version of Complex Event Logic (CEL) [18, 17], originally called SO-CEL in [18].
We will later use CEL as a base language to model the partition-by operator.
Streams and complex events. Let A be a set of attribute names and D be an infinite set
of values. A database schema R is a finite set of relation names, where each relation name
R ∈ R is associated to a tuple of attributes denoted by att(R). If R is a relation name, then
an R-tuple is a function t : att(R)→ D. Given a ∈ att(R), we write t.a to denote the value
t(a), and att(t) to denote dom(t). We say that the type of an R-tuple t is R, and denote this
by type(t) = R. For any relation name R, tuples(R) denotes the set of all possible R-tuples.
Similarly, for any database schema R, tuples(R) =

⋃
R∈R tuples(R). Given a schema R, an

R-stream S is an infinite sequence S = t1t2 . . . where ti ∈ tuples(R). When R is clear from
the context, we refer to S simply as a stream. Given a stream S = t1t2 . . . and a position
i ∈ N, the i-th element of S is denoted by S[i] = ti.

A complex event C is defined as a non-empty and finite set of natural numbers. Intuitively,
given a stream S = t1t2 . . . a complex event C = {i1, . . . , in} determines the set of tuples
{ti1 , . . . , tin} and, thus, C represents the set of relevant events. We denote by min(C) and
max(C) the minimum and maximum element of C, respectively. Given two complex events
C1 and C2, we write C1 · C2 for their concatenation, which is defined as C1 · C2 := C1 ∪ C2
whenever max(C1) < min(C2) and empty otherwise. Given a complex event C we define
S[C] = {S[i] | i ∈ C}, namely, the set of tuples in S positioned at the indices specified by C.
Complex event logic (CEL). Let X be a finite set of monadic second-order (SO) variables.
An SO predicate of arity n is an n-ary relation P over sets of tuples, P ⊆ (2tuples(R))n. We
write arity(P ) = n. Let P be a set of SO predicates. An atom over P is an expression of the
form P (X1, . . . , Xn) where P ∈ P is a predicate of arity n, and X1, . . . , Xn ∈ X (we also
write P (X̄) for P (X1, . . . , Xn)). A CEL formula is defined by the following syntax:

ϕ := R | ϕ IN X | ϕ FILTER P (X̄) | ϕ OR ϕ | ϕ ; ϕ | ϕ+

where R ranges over relation names, X over variables in X and P (X̄) over atoms in P. We
say ϕ is an atomic formula if ϕ = R.

A valuation is a function µ : X→ 2N such that µ(X) is a complex event for every X ∈ X.
We define the support of µ by supp(µ) =

⋃
X∈X µ(X), and the union between µ1 and µ2 as

(µ1 ∪ µ2)(X) = µ1(X) ∪ µ2(X) for every X ∈ X. Given a formula ϕ and a stream S, we
say that a complex event C belongs to the evaluation of ϕ over S under the valuation µ
(denoted by C ∈ JϕK(S, µ)) if one of the following conditions holds:

ϕ = R, C = {i}, type(S[i]) = R and µ(X) = ∅ for every X.
ϕ = ρ IN X, µ(X) = C, and there exists a valuation µ′ such that C ∈ JρK(S, µ′) and
µ(Y ) = µ′(Y ) for all Y 6= X.
ϕ = ρ FILTER P (X1, . . . , Xn), C ∈ JρK(S, µ) and (S[µ(X1)], . . . , S[µ(Xn)]) ∈ P .
ϕ = ρ1 OR ρ2 and ( C ∈ Jρ1K(S, µ) or C ∈ Jρ2K(S, µ) ).
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type T R R R T R T R . . .
id 123 155 165 223 252 352 355 411 . . .

user-id 11 48 48 48 13 13 33 79 . . .
tweet-id 123 343 123 252 123 . . .

post/reply #vote #ihate #ihate #ihate #vote #ihate #ihate #stop . . .
index 1 2 3 4 5 6 7 8 . . .

Figure 1 A stream S of events from Twitter. T are tweets with an id, a user-id and a post
message, and R are responses with an id, a user-id, a tweet-id, and a reply message. The last line is
the index of each event in the stream, respectively.

ϕ = ρ1 ; ρ2 and there exist complex events C1 and C2, and valuations µ1 and µ2 such
that C = C1 · C2, µ = µ1 ∪ µ2, C1 ∈ Jρ1K(S, µ1) and C2 ∈ Jρ2K(S, µ2).
ϕ = ρ+, and C ∈ JρK(S, µ) or C ∈ Jρ ; ρ+K(S, µ).

We say that C belongs to the evaluation of a CEL formula ϕ over S at position n ∈ N,
denoted by C ∈ JϕKn(S), if C ∈ JϕK(S, µ) for some valuation µ, and max(C) = n.

I Example 1. As a running example, suppose that we consider the stream from Twitter.
For the sake of simplification, suppose that the stream is composed just by tweets (T ) and
replies (R). A tweet is composed by three attributes: an id, a user-id and a post message.
Instead, a reply is composed by four attributes: an id, a user-id, a tweet-id of the replied
message, and a reply message. Figure 1 shows an example of a stream with this schema.

As an example of a CEL formula, suppose that a journalist wants to detect all pairs of
events composed by a tweet followed by a response containing ‘#voteforjohn’ and ‘#ihatejohn’,
respectively, representing “hot” debates in Twitter about the election of a candidate called
John. This query can easily be defined with the following CEL-formula:

ϕ1 := (T IN X;R IN Y ) FILTER (X.post = ‘#vote’ AND Y.reply = ‘#ihate’)

Here we make use of three operators: sequencing ( ; ) to say we want to find complex events
consisting of a T -tuple followed by an R-tuple; variable names (IN) to assign variables X
and Y to T and R, respectively; and FILTER to define the conditions that the events must
satisfy. We use conjunction (i.e., AND) as a syntactic sugar, which is short for applying a
FILTER operator for each predicate of the conjunction. Predicates X.post = ‘#vote’ and
Y.reply = ‘#ihate’ are basically restricting the T and R tuples t and r so that t.post
contains ‘#voteforjohn’ and r.reply contains ‘#ihatejohn’. Given a stream S = t1t2 . . . and a
valuation µ, one can easily check that Jϕ1K(S, µ) contains complex events of the form {k1, k2}
with k1 < k2 such that tk1 .post contains ‘#voteforjohn’ and tk2 .reply contains ‘#ihatejohn’.
For example, {1, 2}, {1, 3} and {5, 6} in Figure 1 are some outputs of ϕ1 over S. Note that
the replies are not necessarily replying to the tweet they are paired with, contrary to what
one would like. We address this issue in the next section.

I Example 2. Suppose now that we want to find all sequences of debates that start with a
tweet with ‘#voteforjohn’, are followed by one or more responses with ‘#ihatejohn’, and end
with a response containing ‘#stophating’. This query can easily be defined in CEL using (+):

ϕ2 =
(
T IN X ;

(
R+

)
IN Y ; R IN Z

)
FILTER

(
X.post = ‘#vote’

AND Y.reply = ‘#ihate’ AND Z.reply = ‘#stop’
)

In ϕ2 we use the (+) operator to extract an unbounded sequence of replies, which are then
assigned to Y so that the predicate Y.reply = ‘#ihate’ filters only the sequences where
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all tuples contain ‘#ihatejohn’ (i.e. all tuples t in the complex event represented by Y

must satisfy t.reply = ‘#ihate’). The other predicates are used to ensure that the T -tuple
contains ‘#voteforjohn’ and the last R-tuple contains ‘#stophating’. Finally, one can check
that ϕ2 defines the desired property. For example, if we evaluate ϕ2 over S in Figure 1, then
{1, 2, 4, 8} and {1, 3, 4, 6, 8} will be some outputs in Jϕ2K8(S).

A relevant feature in CEP is to skip arbitrary events when a formula is evaluated [13].
For example, for ϕ1 it would make no sense looking for two contiguous events T and R. For
this reason, the sequencing operator allows to skip an arbitrary number of events between
two relevant events. The iteration operator has a similar semantics, which results in that
for every sequence captured by it, the powerset of events is also captured. To remedy this
problem CEL also includes the so-called selection strategies [17, 18], namely, operators for
filtering the set of output to a meaningful subset. In this paper, our results do not include
the evaluation over selection strategies. We leave this for future work.
CEL fragments and unary predicates. Given a set O of operators (e.g. OR, +), we define
CEL[O] to be the set of CEL formulas constructed from atomic formulas, IN, and operators
in O. For example, ϕ1 is in CEL[; , FILTER] and ϕ2 is in CEL[; , FILTER,+]. Furthermore,
we define CEL+O as the set of all CEL formulas extended with O.

Although CEL does not restrict the set of predicates that can be used by FILTER, not
necessarily all predicates can be evaluated efficiently (or are even computable). For this reason,
in [18] the analysis of CEL was restricted to SO-extensions of first-order unary predicates.
Formally, let U be the set of all unary predicates over tuples, i.e. U = {P ⊆ tuples(R)}.
Given P ∈ U we define the SO-extension P SO ⊆ 2tuples(R) of P such that A ∈ P SO if, and
only if, t ∈ P for all t ∈ A. We denote by USO the set of all SO-extensions of predicates in U.
When writing predicates with SO variables we are referring to the SO extension of the first
order predicate. For example, P := x.post = ‘#vote’ is a predicate in U such that t ∈ P iff t
has the attribute post and t.post contains #voteforjohn. Then P SO := (X.post = ‘#vote’)
is the SO-extension of P that defines all complex events whose tuples satisfy P .

In [17, 18], it was shown that all CEL formulas restricted to predicates in USO can be
evaluated efficiently. For this reason, from now on we assume that for any fragment or
extension of CEL, all FILTER are restricted to predicates in USO.
Streaming evaluation with constant-delay enumeration. As it is standard in the
literature [8, 22], we consider evaluation algorithms on Random Access Machines (RAM)
with addition and uniform cost measure [4]. Furthermore, we assume the existence of a
key-value index (e.g. hash index) that allows insertions and deletions in O(1) time and the
index uses space linear in the number of insertions. In other words, we assume to have
perfect hashing of linear size [11]. Although this is not realistic for practical computers, it
can be simulated with a O(log(n))-factor in the evaluation process with n the number of
insertions in the index. Our complexity analysis is always in data complexity, namely, we
assume that the CEL query ϕ and the schema R of the stream are fixed. Finally, we restrict
the set U to unary predicates with constant time evaluation, namely, for every predicate P
in U and every tuple t, we assume that checking whether t ∈ P takes constant-time.

For efficient evaluation in CEP, we adapt the notion of constant-delay used in [7, 12]
for streaming evaluation. Our evaluation process is a streaming algorithm divided in two
parts: (1) consuming new events and updating the internal memory of the system and (2)
generating complex events from the internal memory of the system. A streaming evaluation
algorithm with constant update time and constant-delay enumeration is an algorithm that
reads a stream S = t1t2 . . . sequentially and evaluates a formula ϕ over S such that (1) the
time spent between reading ti and ti+1 is bounded by O(|ti|), and (2) it maintains a data
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structure D in memory, such that after reading tn, the set JϕKn(S) can be enumerated from
D with constant-delay. The enumeration requires the existence of a routine Enumerate that
enumerates JϕKn(S) = {C1, C2, . . . , Cm} one by one without repetitions. We call delay(Ci)
the time it takes between enumerating Ci and Ci+1, and we say Enumerate runs with
constant-delay if there exists a constant k depending only on ϕ such that delay(Ci) = k · |Ci|
for all i. We remark that (1) is a natural restriction for a streaming algorithm, while (2)
is the minimum requirement if an arbitrarily large set of arbitrarily large outputs must be
produced [30]. Given that our analysis is in data complexity (i.e. ϕ and R are fixed), then
the update time O(|t|) has a hidden factor that depends on |ϕ| and |R|.

3 Partition-by: syntax and semantics

Our main motivation in this paper is to study queries with correlation in CEP. One of the
main operators for joining multiple events is partition-by [1, 31] (also referred as segmentation-
oriented context in [16] or just context in [1]). Intuitively, events in a stream are usually
correlated by an attribute that has the same value, e.g. an id. Then this attribute is
“partitioning” the stream in multiple streams, where all events of the same stream contain the
same value. In this section, we formally define the PART-BY operator in CEL, and motivate
its usefulness by showing that it is expressive enough to define hierarchical queries.

Given two formulas ϕ1 and ϕ2, we denote by ϕ1 ⊆ ϕ2 when ϕ1 is a subformula of ϕ2.
Consider a formula ϕ and variables X1, . . . , Xk of ϕ. We say that X1, . . . , Xk form a variable
cover of ϕ if, for every atomic subformula ρ of ϕ, i.e. ρ ⊆ ϕ and ρ = R for some R, there
is some i ≤ k and formula ψ = ψ′ IN Xi such that ρ ⊆ ψ ⊆ ϕ, namely, all the events
captured by atomic subformulas will be captured by some of the variables X1, . . . , Xk in ϕ.
For example, in Example 2 variables X, Y and Z form a variable cover of ϕ2.

We extend the syntax of CEL with the operator PART-BY as follows. A formula ϕ is in
CEL+PART-BY if it satisfies the syntax of CEL, plus the following rule:

ϕ := ϕ PART-BY [X1.a1, . . . , Xk.ak]

where X1, . . . , Xk ∈ X form a variable cover of ϕ and a1, . . . , ak ∈ A are attributes. The
semantics of the PART-BY operator is defined as follows. Consider a complex event C, a
stream S = t1t2 . . . and a valuation µ. Then, C ∈ Jϕ PART-BY [X1.a1, . . . , Xk.ak]K(S, µ) if
C ∈ JϕK(S, µ) and for all i, j ∈ N, l ∈ µ(Xi) and m ∈ µ(Xj), it holds that S[l].ai = S[m].aj .
Thus, all events must contain the same data value in their attributes. For the case we only want
to partition using a single attribute a that is common among all events (e.g. an id), we add the
syntactic sugar ϕ PART-BY [a], which is defined as ϕ PART-BY [a] := (ϕ IN X) PART-BY [X.a],
where X is a fresh variable that does not appear in ϕ. Clearly, X is a variable cover of ϕ.

I Example 3. In Example 1 we wanted to extract all pairs of tweets and replies that contain
#voteforjohn and #ihatejohn, respectively. Although ϕ1 extract these complex events, it
fails to relate a reply with the tweet is replying to. For this, we can use the partition-by
operator as follows:

ϕ∗1 :=
(
(T IN X;R IN Y ) FILTER (X.post = ‘#vote’

AND Y.reply = #ihate’)
)

PART-BY (X.id, Y.tweet-id)

Clearly, X,Y form a variable cover of ϕ1. Furthermore, PART-BY restricts the output to pairs
t and r with t.id = r.tweet-id. In Figure 1 now only {1, 2}, {1, 4} and {5, 6} are in Jϕ∗1K(S).
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I Example 4. Now, we want to restrict formula ϕ2 in Example 2 in order to correlate tweets
and replies in a meaningful way. Suppose that we want to restrict ϕ2 such that all replies
are replying to T and all #ihatejohn replies are from the same user. Then we can extend ϕ2
with PART-BY to impose these restrictions (we omit the filters for the sake of readability):

ϕ∗2 =
[(
T IN X ;

(
R +

)
PART-BY (user-id) IN Y ; R IN Z

)
FILTER (· · · )

]
PART-BY (X.id, Y.tweet-id, Z.tweet-id)

This formula shows the advantage of using nesting of PART-BY. The internal PART-BY over
attribute user-id restricts all #ihatejohn replies to have the same identifier, namely, they
come from the same user. Then the external PART-BY forces all replies to have the same
tweet-id as the first tweet and, therefore, they are replies of the same tweet. In Figure 1,
{1, 3, 4, 6, 8} is no longer an output but {1, 2, 4, 8} still is.

Partition-by and hierarchical queries. Partition-by models a join operator that usually
appears in CEP systems [6, 1, 31]. Although this operator can be considered rather restrictive,
interestingly, it is related to the class of hierarchical queries [14, 26], the biggest class of
conjunctive queries without projection that can be evaluated in a streaming fashion [8, 22].
To formally define hierarchical queries we first introduce some notation. Given a database
schema R, we assume an arbitrary total order < over the attribute names A. For R ∈ R with
att(R) = {a1, . . . , ak} and a1 < . . . < ak, we write R(x1, . . . , xk) for variables x1, . . . , xk to
denote that xi is assigned to attribute ai. We call R(x1, . . . , xk) an atom. A (full) conjunctive
query Q is an expression R1(x̄1)∧ . . .∧Rk(x̄k) where each Ri(x̄i) is an atom (i.e. we restrict
our discussion to CQ without projection). Given a conjunctive query Q with k atoms and a
stream S = t1t2 . . . we say that a complex event C satisfy Q if |C| ≤ k and {ti | i ∈ C} |= Q.
We define JQKn(S) as all complex events C that satisfy Q and max(C) = n.

From now on, we restrict our analysis to hierarchical conjuctive queries. Specifically,
for a variable x define the set atom(x) of all atoms in Q where x is mentioned. Then
Q is hierarchical [14, 26] if for every x and y it holds that either atom(x) ⊆ atom(y),
atom(x) ⊇ atom(y), or atom(x) ∩ atom(y) = ∅. For example, the query R(x) ∧ S(x, y) is
hierarchical and R(x) ∧ S(x, y) ∧ T (y) is not.

Unfortunately, CEL+PART-BY is not enough to capture the expressiveness of hierarchical
queries. The reason is that partition-by combined with sequencing forces all events with
correlated values to be “adjacent”. On the other hand, hierarchical queries do not impose any
order over tuples. For this reason, we consider the ALL-operator, a standard CEP operator
studied in [18]. Formally, given formulas ϕ1 and ϕ2 we define the formula ϕ1 ALL ϕ2 such
that for a stream S and valuation µ it holds that C ∈ Jϕ1 ALL ϕ2K(S, µ) if there exist
complex events C1, C2, and valuations µ1, µ2 such that C1 ∈ Jρ1K(S, µ1), C2 ∈ Jρ2K(S, µ2),
C = C1 ∪ C2 and µ = µ1 ∪ µ2. In other words, ALL makes the pair union of complex events
coming from evaluating ϕ1 and ϕ2, separately. Interestingly, CEL[ALL, PART-BY] captures
exactly the expressiveness of hierarchical queries.

I Proposition 5. For every hierarchical query Q, there exists a formula ϕ in CEL[ALL, PART-BY]
such that JQKn(S) = JϕKn(S) for every stream S and position n, and vice versa.

The previous proposition shows the motivation of partition-by from the perspective of
hierarchical CQ. Although CEL+PART-BY is not enough to capture the expressibility of
hierarchical CQ, it shows that partition-by is related with a subclass of CQ that can be
evaluated efficiently in a streaming fashion.
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q1 q2 q3
T1 R2, id = tweet-id

R1, id = tweet-id

Figure 2 An example of chain-CEA with unary predicates T1 := type(T ) ∧ post = ‘#vote’,
R1 := type(R) ∧ reply = ‘#ihate’, and R2 := type(R) ∧ reply = ‘#stop’.

4 Chain complex event automata

Similarly to [17], we base our evaluation approach on an automata model to represent
CEL+PART-BY. We present an automata model, called chain Complex Event Automata
(chain-CEA), and show that each formula in CEL+PART-BY can be represented by this model.

In order to express the PART-BY operator, the automata model needs to be able to handle
equality predicates. Given attributes a, b ∈ A define the equality and disequality predicates
as Pa=b = {(t1, t2) | a ∈ att(t1) ∧ b ∈ att(t2) ∧ t1.a = t2.b} and Pa 6=b = tuples(R) \ Pa=b.
A conjunctive binary predicate, or binary predicate for short, is a predicate B that is a
conjunction of equality and disequality predicates, i.e., B =

⋂n
i=1(Pai∼bi

), where ai, bi ∈ A
and ∼i∈ {=, 6=}. For simplicity, we usually drop the predicate notation and denote B simply
as
∧n
i=1(ai ∼ bi). For example, (a = b ∧ c 6= d) represents the predicate B = Pa=b ∩ Pc6=d,

and thus (t1, t2) ∈ B if t1.a = t2.b and, if c ∈ att(t1) and d ∈ att(t2), then t1.c 6= t2.d. To
separate equalities and disequalities from B, we will usually denote B = B= ∧B6= where B=
and B 6= are binary predicates composed only by equalities and disequalities, respectively.
We denote by B the set of all binary predicates.

A chain complex event automaton (chain-CEA) is a tuple A = (Q,∆, I, F ) where Q is
a finite set of states, the transition relation ∆ is a set of tuples (p, P,B, q), where p, q ∈ Q,
P ∈ U and B ∈ B, and I, F ⊆ Q are the initial and final set of states, respectively. A
configuration of A is defined by a state and a position in the stream, i.e. a pair (q, i) ∈ Q×N.
An initial configuration is a pair (q, i) where q ∈ I and i = 0. A run ρ of A over a stream
S = t1t2 . . . is a sequence of configurations: (q0, i0) P1/B1−−→ (q1, i1) P2/B2−−→ . . . Pn/Bn−−→ (qn, in) such
that (q0, i0) is an initial configuration and, for every j ≤ n: ij−1 < ij , (qj−1, Pj , Bj , qj) ∈ ∆,
tij ∈ Pj and (tij−1 , tij ) ∈ Bj , where we consider t0 being the empty tuple with no attributes.
Further, the run ρ above induces the complex event Cρ = {ij | j > 0}. We say that ρ is an
accepting run if qn ∈ F . We define the set of complex events of A over S ending at position
n as JAKn(S) = {Cρ | ρ is an accepting run of A and max{C} = n}.

It is worth noting that, even though only conjunctions and negations of equality predicates
are allowed, in practice every logical combination (i.e. ∧, ∨ and ¬) can be managed by
simulating disjunction using multiple transitions. However, we need this restricted definition
to later simplify the evaluation algorithm in Section 5.

I Example 6. Recall our complex events in Example 2 of a tweet with #voteforjohn, followed
of one or more responses with #ihatejohn, and ending with a response saying #stophating.
Suppose now that instead of correlating all responses with the first tweet, we want to
extract a chain of responses, namely, for each contiguous responses r1 and r2 it holds that
r1.id = r2.tweet-id (i.e. r2 is a reply of r1). In Figure 2 we show a chain-CEA defining
this query. If the automaton is in the initial state q1 and receives a tweet t event containing
#voteforjohn, it moves to q2 and stores t. Then for each response r containing #ihatejohn
whose tweet-id is equivalent to the id of the stored event, it forgets that event and stores r.
Finally, when it receives an R-event containing #stophating which is responding the stored
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event, it reaches a final state.

The previous example shows a meaningful CEP query definable by a chain-CEA. This
type of queries are very useful in practice (see for example query (7) in [13]). The next result
shows that chain-CEA is expressive enough to cover the class of CEL+PART-BY formulas.

I Proposition 7. For any formula ϕ in CEL+PART-BY, there exists a chain-CEA A such
that JϕKn(S) = JAKn(S) for every S and n.

On the other hand, one can show that the chain-CEA from Example 6 cannot be defined by
any CEL+PART-BY formula. This, together with Proposition 7, shows that that CEL+PART-BY
is strictly included in the queries defined by chain-CEA.

Like in [17] for CEA, here the determinization of chain-CEA is a crucial property for
having efficient streaming evaluation and necessary property for removing duplicate runs
that produce the same output. We start by defining our notion of deterministic chain-CEA.
Similarly to [17], a deterministic chain-CEA must be “deterministic” with respect to the
input and output, namely, given a stream S and a complex event C, there exists at most
one run over S that can produces C. Formally, we say that a chain-CEA A = (Q,∆, I, F )
is I/O deterministic (or just deterministic) if |I| = 1 and, for every pair of transitions
(p, P1, B1, q1) 6= (p, P2, B2, q2), it holds that (P1 ∩B1[t]) ∩ (P2 ∩B2[t]) = ∅ for every tuple t,
where Bi[t] is the set of all t′ such that (t, t′) ∈ Bi. In other words, the conditions (P1, B1)
and (P2, B2) must be disjoint. One can easily check that the chain-CEA from Example 6 is
deterministic.

I Theorem 8. Chain-CEA are closed under determinization, namely, for any chain-CEA A
there exists a deterministic chain-CEA A′ such that JAKn(S) = JA′Kn(S) for every S and n.

A natural question that arises from the definition of chain-CEA is whether disequalities
are strictly necessary in an automata model for CEP. For example, one can easily see that
disequalities are not necessary for defining CEL+PART-BY formulas, since the partition-by
operator only requires to check that the same value is used through a contiguous subsequence
of the output. In the next result, we show that disequalities are indeed necessary if we
want to find an automata model that is closed under determinization. More precisely, let
chain-CEA= be the class of chain-CEA where all transitions are restricted to equalities.

I Proposition 9. There exists chain-CEA= A that such that there exists no I/O deterministic
chain-CEA= equivalent to A.

We are ready to state the main result of the paper.

I Theorem 10. For every chain-CEA, there exists a streaming evaluation algorithm with
constant update time and constant delay enumeration.

By combining Proposition 7 and Theorem 10, we get that for any formula in CEL+PART-BY
there exists a streaming evaluation algorithm with constant update time per tuple and
constant delay enumeration. It is important to stress that chain-CEA is more general than
CEL+PART-BY, in particular, the chain-CEA in Figure 2 cannot be defined by a CEL+PART-BY
formula, but it can still be evaluated efficiently. We leave open whether there exists a set of
predicates P (like PART-BY) such that CEL+P characterizes what is definable by chain-CEA.
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5 A streaming evaluation algorithm for chain-CEA

In this section we show how to evaluate a chain-CEA over a stream with constant update
time and constant-delay enumeration. We explain first the main data structures used by the
algorithm to later show how to evaluate a chain-CEA.
The run DAG. In our algorithms, we compactly represent sets of runs by using a directed
acyclic graph (DAG) annotated with configurations. Formaly, let A = (Q,∆, q0, F ) be a
deterministic chain-CEA. A run DAG G of A (or just run DAG) is a tuple G = (V,E,⊥, κ)
consisting of a finite set of vertices V , a set of edges E ⊆ V × V , a special vertex ⊥ ∈ V ,
and a function κ that maps every v ∈ V to a configuration κ(v) ∈ Q×N of A. It is required
that the graph (V,E) is acyclic, κ(⊥) = (q0, 0), and for every v ∈ V there is a directed path
from v to ⊥. Furthermore, it is also required that for every (u, v) ∈ E with κ(u) = (q1, i1)
and κ(v) = (q2, i2), it holds that i1 > i2.

Intuitively, a vertex v labeled by κ(v) = (q, i) is encoding the last configuration of a run
over a stream S. Moreover, by the last two conditions every path starting in v and ending
in ⊥ is representing a run where configurations are listed in decreasing order. We make
this intuition more precise as follows. Let π = vn, . . . , v1,⊥ be a path from v = vn to ⊥
in G and κ(vj) = (qj , ij) for j ≤ n. Then κ(⊥), κ(v1), . . . , κ(vn) represents a run of A and
CE(π) = {i1, . . . , in} the complex event defined by π. We denote by CE(v) the set of all
complex events defined by paths from v to ⊥ in G, and CE(U) =

⋃
v∈U CE(v) for U ⊆ V .

Note that there could be two paths starting from v in G that define the same complex
event in CE(v). We say that a run DAG G is safe if CE(v1)∩CE(v2) = ∅ for every v1, v2 ∈ V .
Indeed, the safety property allows to enumerate all complex events in G without repetitions.

I Lemma 11. Let G = (V,E,⊥, κ) be a safe run DAG such that there is a procedure that,
given any vertex v ∈ V , enumerates its neighborhood {u | (v, u) ∈ E} with constant-delay.
Then there exists a procedure that, given U ⊆ V , it enumerates CE(U) with constant delay.

Therefore, by the previous lemma we can use a safe run DAG to encode the outputs of our
evaluation algorithm for chain-CEA and enumerate these outputs with constant delay.
An index for binary predicates. In our evaluation algorithm we will need a special index
over vertices of a run DAG to efficiently evaluate the binary predicates of a chain-CEA. Given
a new event t and a state p, we want to quickly retrieve all configurations (p, i) that have
reached p and such that (ti, t) ∈ B for some e = (p, P,B, q) ∈ ∆. The run DAG will encode
configurations (p, i), but we will need an index to store ti and quickly “check” (ti, t) ∈ B.

To define this index, we first need to introduce some notation. Let B =
∧n
i=1(ai ∼i bi) be

a binary predicate with ∼i∈ {=, 6=}. Without loss of generality, we assume that all conditions
ai ∼i bi in B are different. Let {(ai, bi)}i be a set of fresh attributes names not used in
the schema R. Given a tuple t, we define the left projection and right projection of t with
respect to B as the tuples ~πB(t) and ~πB(t), respectively, with attributes in {(ai, bi)}i such
that ~πB(t).(ai, bi) = t.ai whenever ai ∈ att(t) and ~πB(t).(ai, bi) = t.bi whenever bi ∈ att(t).
Otherwise, if ai /∈ att(t) or bi /∈ att(t), then ~πB(t).(ai, bi) and ~πB(t).(ai, bi) are not defined,
respectively. The left and right projections extract the relevant information of a tuple t to
define B[t]. To see this, we say that t1 and t2 are totally different, denoted by t1 6≡ t2, if and
only if t1.a 6= t2.a for every a ∈ att(t1) ∩ att(t2), namely, they are different point-wise.

I Lemma 12. Let B = B= ∧ B 6= be a binary predicate. Then (t, t′) ∈ B if, and only if,
~πB=(t) = ~πB=(t′) and ~πB 6=(t) 6≡ ~πB 6=(t′).

With the previous notation, we are ready to define our index of a transition, called the
equality-disequality index or ED-index for short. Let G = (V,E,⊥, κ) be a run DAG and
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Algorithm 1 Evaluation of a det. chain-CEA A = (Q,∆, q0, F ) and a stream S = t1t2 . . .

1: procedure Evaluation(A, S)
2: Init()
3: for i := 1 to ∞ do
4: FireTransitions(i)
5: UpdateIndices(i)
6: Enumerate(∪q∈F U iq)

7: procedure Init( )
8: G← NewMappingGraph(q0)
9: U0

q0
← {⊥}

10: for all e0 = (q0, P, ∅, q) ∈ ∆ do
11: Index0

e0
← {(⊥, t∅, t∅)}

12: procedure FireTransitions(i)
13: for all e = (p, P,B= ∧B 6=, q) ∈ ∆ do
14: (t=, t6=)← (~πB=(ti), ~πB 6=(ti))
15: if ti ∈ P and Indexi−1

e [t=, t6=] 6= ∅ then
16: v ← AddNewVertex(G, q, i)
17: Connect(G, v, Indexi−1

e [t=, t6=])
18: U iq ← U iq ∪ {v}

19: procedure UpdateIndices(i)
20: for all e = (p, P,B= ∧B 6=, q) ∈ ∆ do
21: Indexie ← Indexi−1

e

22: (t=, t6=)← ( ~πB=(ti), ~πB6=(ti))
23: for all v ∈ U ip do
24: Indexie ← Indexie ∪{(v, t=, t6=)}

let e = (p, P,B= ∧ B6=, q) be a transition. We define the ED-index Indexe as a set of
triples (v, t=, t6=) where v ∈ V and t=, t 6= are left projections of B= and B 6=, respectively.
Intuitively, Indexe will keep all configurations that are at state p and are “waiting” to trigger e.
More specifically, given a stream S = t1t2 . . . if (v, t=, t6=) ∈ Indexe then κ(v) = (p, i) and
t= = ~πB=(ti) and t 6= = ~πB 6=(ti). Thanks to Lemma 12, whenever we want to check if
(ti, t) ∈ B= ∧B 6= for a new tuple t, we only need to obtain the tuple (v, t=, t6=) from Indexe
and check whether t= = ~πB=(t) and t6= 6≡ ~πB 6=(t). This motivates the following main query
of an ED-index: given a pair of tuples t′= and t′6=:

Indexe[t′=, t′6=] = {v ∈ V | (v, t=, t6=) ∈ Indexe ∧ t= = t′= ∧ t6= 6≡ t′6=} (1)

That is, Indexe[t′=, t′6=] returns all vertices v representing configurations κ(v) = (p, i) such
that there is a tuple t′ with t′= = ~πB=(t′) and t′6= = ~πB6=(t′) and (ti, t′) ∈ B= ∧B 6=. We will
use the ED-index to store configurations and to quickly return them when e is fired.
The streaming evaluation algorithm. In Algorithm 1 we show how to evaluate a
deterministic chain-CEA over a stream. The main procedure is Evaluation that receives
as input a deterministic chain-CEA A = (Q,∆, q0, F ) and a stream S = t1t2 . . .. This
procedure is composed by four subprocedures: Init for initializing the main data structures,
FireTransitions(i) for firing the transitions in ∆ given a new tuple ti, UpdateIndices(i)
for updating each Indexe given the previous tuple ti, and, finally, Enumerate for enumerating
all complex events ending at position i. For the sake of presentation, instead of having a
yield function that provides each next tuple in the stream, we explicitly index each new
phase by i (i.e. associated to tuple ti) and iterate from 1 to “infinity” (the main for-loop at
line 3). Then, given the next tuple ti, in each i-phase we fire the transitions and update the
indices with ti, and enumerate all complex events at position i. In the sequel, we will first
explain the data structures used by the algorithm to later describe each subprocedure.

Algorithm 1 maintains three structures that are used by all subprocedures: the run DAG
G = (V,E,⊥, κ), the ED-indices Indexe for each e ∈ ∆, and set of vertices Uq ⊆ V for each
q ∈ Q. As it was explained before, G will encode runs of A and Indexe will allow us to
quickly evaluate the binary predicate at e. Moreover, for each q ∈ Q the set Uq will keep the
new vertices v (i.e. configurations) at q. These sets will help for updating the indices and
enumerating all new results. For the sake of presentation, we assume that G, Indexe, and Uq
are defined globally and accessible by all subprocedures.
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In each i-phase, the algorithm will update G to represent all runs of A over S until
position i. To that end, it will use the following methods on run DAGs. The first method,
NewMappingGraph(q0), creates a new event DAG G containing only the vertex ⊥ with
κ(⊥) = (q0, 0) and empty sets of vertices V and edges E. The second method, AddNewVertex,
receives an event DAG G and a configuration (q, i), and creates a fresh vertex v with
κ(v) = (q, i), and adds it to V . Finally, the method returns the vertex v. The last method,
Connect, receives as input a run DAG G, a vertex v on G, and a nonempty set of vertex
U ⊆ V , and connects v with each vertex in U , namely, (v, u) is added to E for every
u ∈ U . Although AddNewVertex and Connect could temporary break the properties of G
(e.g. acyclicity), we will use it one after the other and it will be clear that the properties of
G are always preserved.

For the structures Indexe and Uq, the reader might have noticed that in Algorithm 1 we
use a superscript Indexie and U iq. This i is denoting the “version” of Indexe and Uq at phase i.
We assume that each new i-version is always initialized as empty (i.e. U iq = ∅ and Indexie = ∅).
It is important to note that for U iq we use the index i just to simplify the presentation (i.e.
we could have reuse a set Uq in each phase). However, for Indexie the superscript is crucial
to denote the version of Indexe when, for example, a vertex v is connected with the set
Indexie[t=, t6=] (see line 17). As it will be discussed later (see Section 6), Indexe is a (partially)
persistent data structure [15] and the superscript is denoting the i-version of the structure.

We are ready to describe each subprocedure in Algorithm 1. The algorithm starts with
Init that is in charge of initializing G, Index0

e, and U0
q before phase 1. For this, a new event

DAG G is created and the vertex with the initial configuration ⊥ is assigned to U0
q0

(recall that
U iq = ∅ for i ≥ 0 by assumption). Intuitively, this represents that the initial configuration is
ready to start. For initializing Indexe, we assume without loss of generality that all outgoing
transitions from q0 use trivial predicates, namely, B = ∅ for every e0 = (q0, P,B, q) ∈ ∆.
Then (⊥, t∅, t∅) is the only triple that must contain Index0

e0
with t∅ the empty tuple.

For each new phase i, we call FireTransitions(i) that check for each transition e =
(p, P,B= ∧B 6=, q) whether it can be fired or not given the new tuple ti (line 13). For this, we
extract from ti its right-projections t= and t 6= with respect to B= and B 6=, respectively. Then
we check if ti satisfy P and whether there exists a previous configuration (p, j) such that (tj , ti)
satisfy B= ∧B6=. We do this through Indexe, t=, and t6= by checking if Indexi−1

e [t=, t6=] 6= ∅.
If this is the case, all pairs of configurations (p, j) and (q, i) with (p, j) ∈ Indexi−1

e [t=, t6=]
satisfy e and we must extend G with a new configuration (q, i) that represents all these new
runs. For this, we create a new node v in G for configuration (q, i) and connect v with each
vertex in Indexi−1

e [t=, t6=] (lines 16-17). Finally, the new vertex v is added to the set U iq of
new vertices in state q at phase i.

The next step in phase i is to update Indexi−1
e to its new version Indexie given ti. For

this, we use the set U ip to update each transition e = (p, P,B= ∧B 6=, q). More specifically, in
UpdateIndices(i) we iterate over each transition e = (p, P,B= ∧B6=, q) and make Indexie
equal to its previous version. Then, we extract from ti its left-projections t= and t 6= with
respect to B= and B 6=, respectively, and add (v, t=, t6=) to Indexie for each v ∈ U ip. Recall
that U ip contains all the new vertices added during FireTransitions(i) and, in particular,
κ(v) = (p, i) for each v ∈ U ip. After UpdateIndices(i) is done, the ED-index Indexie contains
all the relevant information for checking B= ∧B 6= in the next phases.

Up to this point, it is straightforward to prove the following invariant after each phase i,
which leads to the correctness proof of Algorithm 1.

I Lemma 13. Consider {U iq}q∈Q and G after the end of the i-phase. Then, for every run
(q0, 0), (q1, i1) . . . , (qn, in) of A over S with in = i, there exist v ∈ U iqn

and a path vn, . . . , v0
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in G with vn = v and v0 = ⊥ such that κ(vj) = (qj , ij) for every j ≤ n. Conversely, for every
v ∈ U iq and every path vn, . . . , v0 in G with vn = v and v0 = ⊥, it holds that κ(v0), . . . , κ(vn)
is a run of A over S. Moreover, if A is deterministic, then G is safe.

The final step at phase i is to enumerate all complex events of accepting runs. For this,
we call the subprocedure Enumerate over the set of vertices ∪q∈FU iq. By Lemma 13, we
know that G correctly encodes all runs of A until the i-th tuple of S and, moreover, G is safe
(i.e each complex event is represented by exactly one path in G). Therefore, we can easily
enumerate all complex events JAKi(S) one-by-one and without repetitions, by enumerating
all paths in G starting at vertices in ∪q∈FU iq and ending at ⊥.

It is only left to show that Algorithm 1 satisfies constant update time and constant-delay
enumeration. To do this, we have to dig deeper into the implementation of Indexe, which is
the goal of the last section.

6 A persistent index structure for equalities and disequalities

Fix a transition e = (p, P,B= ∧B 6=, q). Let (v0, t0, r0), (v1, t1, r1), . . . be a sequence of triples
such that vi is a vertex and ti, ri are tuples for all i ∈ N. Furthermore, define Index0

e = ∅
and Indexie = Indexi−1

e ∪{(vi, ti, ri)}. Call (vi, ti, ri) an insertion and i the version of Indexe.
To have constant update time and constant-delay enumeration, Indexe must satisfy the

following properties, for every pair of tuples t, r and point in time i ∈ N:

1. every new insertion in Indexe takes constant time, and
2. for all j ≤ i, Indexje[t, r] can be can be enumerated with constant-delay.

The last condition implies that Indexe is a persistent data structure [15], namely, it preserves
the previous version (i.e. Indexje) of itself whenever it is modified.

We claim that, if Indexe satisfies the above three properties, then Algorithm 1 runs with
constant update time and constant-delay enumeration. First, given that A is fixed, then it is
clear that every step of Algorithm 1 can be done in constant time, except lines 15, 17, and 24.
Checking whether Indexe[t, r] 6= ∅ (line 15) or doing an insertion in Indexe (line 24) can be
done in constant time by properties (2) and (1), respectively. Furthermore, one can execute
Connect(G, v, Indexie[t, r]) (line 17) in constant time if, instead of coding the graph G with
adjacency lists, we represent the neighborhood of each vertex v by storing t, r, and i in v
and, because of (2), we can later call Indexie[t, r] whenever needed. Finally, from Lemma 11
we know that, if the neighborhood of each vertex from a safe run DAG can be enumerated
with constant delay, then CE(U) can also be enumerated with constant delay. Given that
Indexie[t, r] allows to enumerate the neighborhood of each vertex, then the enumeration with
constant-delay follows.

In the sequel, we show how to implement Indexe in order to satisfy properties (1) and (2).
Case without disequalities. If e does not have disequalities (i.e. B 6= is trivial), then
for every (v, t, r) ∈ Indexe, we can drop r and keep only (v, t). To satisfy (1) and (2) we
use a key-value index DS where keys are tuples t and each value DS[t] is a list of pairs
(u0, i0), . . . , (un, in) where each uk is a vertex and ik is a “timestamp”, namely, the phase
when uk was inserted. Then, for every new insertion (ui, ti) in phase i, we go to DS[ti] and
insert (ui, i) at the end of the list. Finally, for every query of the form Indexje[t] we can go
into DS[t], jump into the pair (uk, ik) with ik = i and enumerate (uk, ik), . . . , (u0, i0) with
constant-delay. Recall that by our RAM model of computation, we can find the list DS[t]
and find the pair (uk, ik) inside DS[t] in constant time. Furthermore, by keeping DS[t] as a
linked list, one can easily enumerate (uk, ik), . . . , (u0, i0) with constant-delay.
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Figure 3 A list of tuples s1 . . . s7 with the additional bookkeeping to support disequalities.

Case with disequalities. If e includes disequalities (i.e. B 6= is non-trivial), then we need
to extend our lists DS[t] to support insertions (vi, ti, si) and queries Indexie[t, r]. For this,
extend DS[t] as a list of triples (u0, s0, i0), . . . , (un, sn, in) where uk and ik are as before, and
sk is the tuple for supporting disequalities. Similar to the case without disequalities, for every
new insertion (vi, ti, si) at phase i we go into the list DS[ti] and insert the triple (vi, si, i) at
the end of the list. Then for every query Indexie[t, r] we can jump into the list DS[t], jump
into the triple (uk, sk, ik) with ik = i and enumerate all ul with l ≤ k such that sl 6≡ r (i.e.
sl and r are totally different). Of course, this last enumeration step cannot be done with
constant delay, unless some extra bookkeeping is added to the data structure. The rest of
this section is then devoted to do this.

For the sake of simplification, from now on assume that each list DS[t] is composed only by
tuples s1, . . . , sn. Then the problem is reduced to, given a tuple r and position i, enumerate
the set {sk | k ≤ i ∧ sk 6≡ r}. Without loss of generality, assume also that all s1, . . . , sn have
the same set of attributes A, i.e. att(sk) = A, and define d = |A|. If not, complete each
tuple sk with the missing attributes and a fresh value for each new attribute. For example,
at the left of Figure 3 we give a list s1, . . . , s7 with attributes A = {a, b} and d = 2 where
each column is a tuple (over integers) and each row is an attribute.

Let ā = a1a2 . . . am be a sequence of non-repeating attributes of A, and define Ā to be the
set of all ā. For each tuple sk and each ā, we define a tuple sk[ā] = sj with j < k. Strictly
speaking, sk[ā] will be a (backward) pointer from sk to sj that allows us to jump to sk[ā] in
constant time. Given that our analysis is in data complexity, |Ā| is of constant size, so we
only store a constant number of pointers in each tuple sk (although exponential in d). In
Figure 3, the pointers [a], [b], [ab], and [ba] of s7 are displayed with arrows.

Now, for each sk in the list DS[t] = s1, . . . , sn, the tuple sk[ā] is defined recursively as
follows. First, for every attribute a ∈ A, sk[a] points to the maximum j < k such that
sk.a 6= sj .a. Next, for each sequence ā = a1a2 . . . am, sk[ā] points to the maximum j < k

such that, for all 1 ≤ l ≤ m, sj .al 6= sk[a1 . . . al−1].al where sk[ε] = sk (ε is the empty
sequence in Ā). In the case that there is no such tuple sj , then sk[ā] is not defined, which
means we reached the beginning of DS[t].

I Example 14. Consider the list s1, . . . , s7 at the left of Figure 3 and consider tuple s7.
Then s7[a] = s5 is the last tuple before s7 with a value different than 5, and s7[ab] = s4 is
the last before s7 with s4.a = 2 6= 5 = s7.a and s4.b = 4 6= 3 = s5.b. Similarly, s7[b] = s4 is
the last node before s7 with s4.b = 4 6= 3 = s7.b, and s7[ab] = s1 is the last before s7 with
s1.b = 4 6= 3 = s7.b and s1.a = 1 6= 2 = s4.a.

With the previous structure over s1, . . . , sn, we show how to enumerate with constant
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delay the set {sk | k ≤ i∧sk 6≡ r} given a tuple r and index i. For this, we define a procedure
findNext(sk, r) that returns the last tuple sj with j < k such that sj 6≡ r (and false if sj
does not exist). Note that, if findNext runs in constant time, then we can enumerate the set
{sk | k ≤ i∧ sk 6≡ r} with constant delay: first, if si 6≡ r then we enumerate si; then for every
last node sk we enumerated, we call findNext(sk, r) to get the next one, until findNext
returns false. For computing findNext(sk, r), let s := sk−1 be the node immediately before
sk in DS[t]. In the first step we check if s[ε] fulfills the condition, namely, if s 6≡ r. If so,
we return s[ε]; otherwise, there must be some attribute a1 such that s[ε].a1 = r.a1. In the
next step we consider s[a1] and check if s[a1].a 6= r.a for each a ∈ att(R) \ {a1}; if so, we
return s[a1]. Notice we do not need to compare r with all tuples between s[a1] and s[ε]
because, by definition, each tuple s′ between both satisfy s′.a1 = s[ε].a1 = r.a1. Furthermore,
we no longer need to check the value of a1 in s[a1] because s[a1].a1 6= s[ε].a1 = r.a1. We
repeat this procedure inductively. If we are in step 1 ≤ m < d and failed in all previous
steps, then for ā = a1 . . . am ∈ Ā, assume s[a1 . . . al−1].al = r.al for every l ≤ m. If
s[ā] 6≡ r, return s[ā]; otherwise consider some attribute am+1 ∈ A \ {a1, . . . , am} such that
s[ā].am+1 = r.am+1. Then we consider s[ā · am+1] in the next step. Again, we do not need
to compare r with all elements between s[ā · am+1] and s[ā]: each tuple s′ between both
satisfies s′.am+1 = s[ā].am+1 = r.am+1. Also we do not need to compare s[ā · am+1] with
r on {a1, . . . , am+1} given that, by induction, s[ā · am+1].am+1 6= s[ā].am+1 = r.am+1 and
s[ā · am+1].al 6= s[a1 . . . al−1].al = r.al. At some point we will find some tuple that fulfills
the conditions; in the worst-case scenario we iterate d times, in which case we are sure by
definition that s[a1 . . . ad] satisfies the condition or is undefined (i.e. it does not exists). All
in all, the procedure takes O(d) steps, which is constant. Moreover, this procedure does not
use the pointers of sk, but the ones of sk−1. This is an important property that we use next
when we want to insert a new node in DS[t].

It is left only to show how to update DS[t] = s1, . . . , sn when we read a new tuple sn+1.
For this, we add sn+1 to the end of the list and define sn+1[ā] for each ā ∈ Ā in the following
way. If the list is empty, then sn+1[ā] is undefined for all ā ∈ Ā. Otherwise, for each
ā = a1 . . . am we define sn+1[ā] incrementally over the length m. Suppose that, sn+1[a1 . . . al]
is already defined for every l < m. Define the tuple r such that r.al = sn+1[a1 . . . al−1].al
for all l < m. Then, define sn+1[a1 . . . am] := findNext(sn+1, r). In other words, we collect
all values c1 = sn+1[ε].a1, c2 = sn+1[a1].a2, . . . , cm = sn+1[a1 . . . am].am and find the last
tuple s such that s.al 6= cl for every l ≤ m. As it was mentioned above, since findNext only
uses the pointers of sn, and not of sn+1 itself, the function is well-defined. Moreover, given
that findNext(sn+1, r) can be found in constant time, then sn+1[a1 . . . am] is computed in
constant time as well.

I Example 15. Suppose that we want to add the node s8 = {a→ 2, b→ 3} to the list on
the left of Figure 3. The result is shown on the right of Figure 3 where s8 is the last dashed
column. We define s8[ā] incrementally using findNext. For a, we call findNext(n8, {a→ 2}),
which tries with the last tuple s7 and, because s7.a 6= 2, we set s8[a] := s7. For b, we call
findNext(s8, {b → 3}), which first tries with s7, but s7.b = 3, so it tries with s7[b] = s4;
since s4.b 6= s7.b, we set s8[b] = s4. For sequence ab, we have s8.a = 2 and s8[a].b = 3, so we
call findNext(s8, {a→ 2, b→ 3}). As s7 conflicts in b, it tries with s7[b] = s4, but this time
it conflicts with a, so it tries with s7[ba] = s1. As s1.a 6= 2 and s1.b 6= 3, we set s8[ab] = s1.
The same procedure is done for ba, resulting in s8[ba] = s1.

By combining the key-value index DS where the keys are tuples and the values are the
extended list with the additional bookkeeping mentioned above, we get properties (1) and
(2) needed for Algorithm 1 to have constant update time and constant-delay enumeration.
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7 Future work

This work arises several research opportunities regarding streaming evaluation of queries
with correlation in CEP. The first problem is to find a unified class of queries that includes
chain-CEA and hierarchical queries. Indeed, there are simple hierarchical queries (e.g.
R(x) ∧ S(y) ∧ T (x)) that are not definable by chain-CEA. Another relevant question is
whether partition-by queries with projection can be evaluated efficiently. Chain-CEA forbid
the use of projection and it is not clear how to extend Algorithm 1 to support it. In particular,
it is not clear how to extend this algorithm to support selection strategies [17], an important
operator in CEP to filter the number of outputs. Finally, this work studies the streaming
evaluation of equality and disequality predicates in CEP, but leaves open the evaluation of
other predicates for correlation, like inequalities.
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A Proofs of Section 3

A.1 Proof of Proposition 5
We prove this by showing containment in both directions. First, consider a hierarchical query
Q. We will define a CEL[ALL, PART-BY] formula ϕQ that is equivalent to Q. In [8] they show
that there is a q-tree for every hierarchical query Q, i.e., a tree TQ = (V,E) with V = var(Q)
the set of variables in Q where, for each atom R(x1, . . . , xl) in Q, the projection of T over
vertices {x1, . . . , xl} forms a directed path in TQ that starts from the root. For example, a
q-tree for query Q′ = R(x, y, z) ∧ S(x, y) ∧ T (x,w) is:

x

y

z

w

Now, fix T to be a q-tree for Q. Let child(x) be the set of variables that x is pointing to
in T and atom-end(x) be the set of atoms of Q for which their path in T end at x. For each
atom R(x̄), let attrR(x) be the attribute of R associated to variable x ∈ x̄.

We assign to every atom R(x̄) a SO-variable XR(x̄). Now, we define recursively for each
variable x a formula ϕx in the following way:

ϕx =
(
(ϕy1 ALL . . . ALL ϕyl

) ALL (R1 IN XR1(x̄1) ALL . . . ALL Rm IN XRm(x̄m))
)

PART-BY (XT1 . attrT1(x), . . . , XTn
. attrTn

(x))

where {y1, . . . , yl} = child(x), {R1(x̄1), . . . , Rm(x̄m)} = atom-end(x) and {T1(z̄1), . . . , Tn(z̄n)} =
atoms(x). If | atoms(x)| = 1, the PART-BY can be omitted, as there is no point in partitioning
on one atom. Finally, we define ϕQ = ϕx where x is the root of T .

For example, consider Q′ and the q-tree for it shown above, consider the schema is
R(r1, r2, r3), S(s1, s2) and T (t1, t2), and consider the SO-variables XR, XS , XT for atoms
R(x, y, z), S(x, y) and T (x,w), respectively. Then,

ϕz = R IN XR,
ϕy = (R IN XR ALL S IN S) PART-BY (XR.r2, XS .s2),
ϕw = T IN XT .

Finally, the resulting formula for Q is:

ϕx =
((

(R IN XR ALL S IN XS) PART-BY (XR.r2, XS .s2)
)

ALL T IN XT

)
PART-BY (XR.r1, XS .s1, XT .t1)

The correctness of the construction follows from showing, for every variable x, the
equivalence of ϕx and the subquery of Q that considers only the atoms of atoms(x) and the
variables in the subtree of T with root x.

Now, for the opposite direction, we consider a formula ϕ of CEL[ALL, PART-BY] and give
an equivalent hierarchical query Qϕ. For every atom R(x̄) and every attribute a of R, let
varR(x̄)(a) be the variable associated to attribute a. The query Qϕ is defined recursively over
the structure of ϕ. In the recursion, we keep a function var-atoms that maps each variable
X to the atoms it covers. The recursion goes as follows:
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If ϕ = R, then Qϕ = R(x̄) for new variables x̄, and var-atomsϕ = ∅.
If ϕ = ϕ1 IN X, then Qϕ = Qϕ1 and var-atoms(X) is the set of all atoms in Qϕ1 .
If ϕ = ϕ1 ALL ϕ2, then Qϕ = Qϕ1 ∧ Qϕ2 and var-atomsϕ(X) = var-atomsϕ1(X) ∪
var-atomsϕ2(X) for all X.
if ϕ = ϕ1 PART-BY [X1.a1, . . . , Xn.an], then for each Xi let Vi be the set of all varR(x̄)(ai)
for each atom R(x̄) ∈ var-atomsϕ1(Xi), and let V =

⋃
i(Vi). Then, Qϕ comes from

replacing all occurrences of the variables of V in Qϕ1 with a new variable x.

The correctness can be proven inductively over each step of the construction.

B Proofs of Section 4

B.1 Proof of Proposition 7
We define for each ϕ in CEL+PART-BY a chain-CEA Aϕ. We build Aϕ constructively over
the structure of ϕ. Most of the construction is based on the construction in [18]. The most
important part of the construction is the one for operator PART-BY, which is the one explained
in more detail. During the construction, we keep a function trans which, for every variable
X returns a set of transitions.

If ϕ = R, then Aϕ = (Qϕ,∆ϕ, Iϕ, Fϕ) has the form:

q1 q2
type(R)

And trans(X) = ∅ for all X. Basically, Aϕ only reads an R-tuple and retrieves its
position.
If ϕ = ψ IN X, then Aϕ = Aψ, transϕ(X) = ∆ and transϕ(Y ) = transψ(Y ) for all
Y 6= X.
If ϕ = ψ FILTER P (X), then we add predicate P to every transition in trans(X), that is,
Qϕ = Qψ, Iϕ = Iψ, Fϕ = Fψ and ∆ϕ = {(p, P ′∧P,B, q) | (p, P ′, B, q) ∈ transψ(X)}∪{e |
e ∈ ∆ψ \ transϕ(X)}. Also, transϕ(Y ) = transψ(Y ) for all Y .
If ϕ = ψ1 OR ψ2, then Aϕ is the usual union construction for automata, i.e., Qϕ =
Qψ1 ∪Qψ2 , ∆ϕ = ∆ψ1 ∪∆ψ2 , Iϕ = Iψ1 ∪ Iψ2 and Fϕ = Fψ1 ∪ Fψ2 . Also, transϕ(X) =
transψ1(X) ∪ transψ2(X) for all X.
If ϕ = ψ1 ; ψ2, then Qϕ = Qψ1 ∪ Qψ2 , Iϕ = Iψ1 , Fϕ = Fψ2 and ∆ϕ = ∆ψ1 ∪ ∆ψ2 ∪
{(p, P,B, q) | q ∈ Iψ2 ∧ ∃q′ ∈ Fψ1 .(p, P,B, q′) ∈ ∆ψ1}.
If ϕ = ψ+, then Qϕ = Qψ, Iϕ = Iψ, Fϕ = Fψ and ∆ϕ = ∆ψ∪{(p, P,B, q) | q ∈ Iψ∧∃q′ ∈
Fψ.(p, P,B, q′) ∈ ∆ψ}.
If ϕ = ψ PART-BY [X1.a1, . . . , Xn, an], we do the following transition-to-state construction.
Define, for every transition e ∈ ∆ψ, a state qe, and define Qϕ = {qe | e ∈ ∆ψ} ∪ {q0},
Iϕ = {q0} and Fϕ = {qe | e = (p, P,B, q) ∈ ∆ψ ∧ q ∈ Fψ}, where q0 is a new initial state.
Given two sets of variables X̄1 = {Xi1 , . . . , Xim} and X̄2 = {Xj1 , . . . , Xjn}, define the
binary predicate B[X̄1X̄2] containing all equalities between attributes of the variables in
X̄1 and X̄2, i.e.,

B[X̄1X̄2] =
∧

k∈[1,m],l∈[1,n]

(aik = bil)

Finally, we define the transition relation as ∆ψ = {(qe1 , P,B ∧B[var(e1) var(e2)], qe2) |
e1, e2 ∈ ∆ψ ∧ e2 = (p, P,B, q)} ∪ {(q0, P,B, qe) | e ∈ ∆ψ ∧ e = (p, P,B, q) ∧ p ∈
Iψ)}. Basically, for every pair of consecutive transitions e1, e2 ∈ Aψ, each transition
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(qe1 , P,B, qe2) in Aϕ simulates the transition e2 of Aψ, while also adding the equalities
given by the PART-BY operator, restricted to the variables of e1 and e2.

The correctness of the construction can be verified by checking that the equivalence
between Aϕ and ϕ is maintained at each step of the construction.

B.2 Proof of Theorem 8
We give a construction that for any chain-CEA A defines a deterministic chain-CEA Adet

equivalent to A. To simplify the presentation, we consider an extended version of chain-CEA
where the binary predicates of transitions are not restricted to conjunctions only, but they
now allow any combination of boolean operations. For example, a transition e = (p, P,B, q)
can now have B := a = b ∨ ¬(c = b ∧ c = d). Note that this does not add any expressibility
to the model, since any of these transitions can be replaced with a set of transitions with
conjunctions only, by rewriting the formula in DNF and adding a transition for each clause
of the disjunction. For example, e above can be replaced with transitions (p, P, (a = b), q)
and (p, P, (c = b ∧ c = d), q).

Consider a chain-CEA A = (Q,∆, I, F ). Let P (B) be the sets of all the unary (binary,
resp.) predicates of the transitions of A, i.e. P = {P | (p, P,B, q) ∈ ∆} and B = {B |
(p, P,B, q) ∈ ∆}. We define Adet = (Qdet, δdet, qdet

0 , F det) component by component. The
set of states is the power set of Q, i.e. Qdet = 2Q. The initial state is qdet

0 = I and the set of
final states is F det = {S | S ∪ F 6= ∅}.

For the transition relation δdet we add some further notation. Define the equivalence
relation =P between tuples such that, for every pair of tuples t1 and t2, t1 =P t2 holds if,
and only if, both satisfy the same predicates, i.e., t1 ∈ P holds iff t2 ∈ P holds, for every
P ∈ P. Moreover, for every tuple t let [t]P represent the equivalence class of t defined by
=P , that is, [t]P = {t′ | t =P t′}. Notice that, even though there are infinitely many tuples,
there is a finite number of equivalence classes which is bounded by all possible combinations
of predicates in P, i.e., 2|P|. Now, for every t, define the predicate:

Pt = (
∧
t∈P

P ) ∧ (
∧
t/∈P

¬P )

and define the new set of predicates P -types = {Pt | t ∈ tuples(R)}. Notice that for every
tuple t there is exactly one predicate in P -types that is satisfied by t, and that predicate is
precisely Pt.

We define a similar idea with the binary predicates. Define the equivalence relation =B
between pairs of tuples such that, for every (t1, t2), (u1, u2) (t1, t2) =B (u1, u2) holds if, and
only if, (t1, t2) ∈ B iff (u1, u2) ∈ B, for every B ∈ B. Let [(t1, t2)]B represent the equivalence
class of (t1, t2): [(t1, t2)]B = {(u1, u2) | (t1, t2) =B (u1, u2)}. Again, even though there are
infinite pairs, the number of equivalence classes is bounded by 2|B|, that is, by all possible
combinations of predicates in B. Now, for every pair (t1, t2), define the predicate:

Bt1t2 = (
∧

(t1,t2)∈B

B) ∧ (
∧

(t1,t2)/∈B

¬B)

and define the new set of predicates B -types = {Bt1t2 | (t1, t2) ∈ tuples(R)2}. For every pair
(t1, t2), Bt1,t2 is the only predicate in B -types that is satisfied by (t1, t2).

Now we are ready to define the transition relation. For every state S1 ∈ Qdet and
predicates P ∈ P -types and B ∈ B -types, we add to ∆det a transition (S1, P,B, S2), where
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S2 is defined as the maximal set that satisfies:

∀q ∈ S2. ∃(p, P ′, B′, q) ∈ ∆. (p ∈ S2 ∧ P ⊆ P ′ ∧B ⊆ B′)

Namely, for every state of S2 there must be a transition e of A coming from a state of S1
such that the conditions P ′ and B′ of e are implied by P and B, respectively.

It is not hard to see that the maximal set is unique. Basically, for every two sets T1 and
T2 that satisfy the this, the union T1 ∪ T2 also satisfies it. This, together with the fact that
all predicates of P -types are disjoint, and that all predicates of B -types are disjoint, shows
that the resulting automaton is deterministic. The correctness of the construction, namely
that JAKn(S) = JAdetKn(S) for every S and n, follows from proving that for every run in one
chain-CEA there is a run in the other chain-CEA that yields the same complex event. This
can be proven directly by doing induction over the length of the runs.

B.3 Proof of Proposition 9
Consider the chain-CEA= A:

q1 q2

q3 q4

q5 q6

type(R) type(S), a
= a

type(S)

type(T )

type(T ), a = a

It is not hard to see that A represents the CEL formula

ϕ = ((R ; S) PART-BY [a] ; T ) OR (R ; (S ; T ) PART-BY [a])

i.e. that JAKn(S) = JϕKn(S) for every stream S and position n.
By contradiction, assume there exists a deterministic chain-CEA= A∗ that is equivalent

to A. Consider, for every i, j the stream Sij = R(i), S(j), namely, the stream with two
events, R with a-value i, and S with a-value j. We argue that, as A∗ cannot use disequalities,
it cannot check that Sij has values i 6= j for every pair of values i, j. Then, there must exist
values i∗, j∗ such that, while reading Si∗j∗ and Si∗i∗ , A∗ ends at the same state, call it p.

Now, consider we concatenate at the end of Si∗i∗ a new event T (k) for an arbitrary k 6= i∗.
Then, because A outputs {1, 2, 3}, there must be a run of A∗ that reaches an accepting state
q. Call ek = (p, P,B, q) the transition it takes to reach q. If we then choose some k∗ such
that k∗ 6= i∗ and k∗ 6= j∗, we know that ek∗ cannot use registers to verify the value of k∗.
Moreover, because k∗ was not seen before, then ek∗ must have B = TRUE and T (k∗) ∈ P .
Finally, since A∗ reached the same state p reading Si∗j∗ , then it can also take ek∗ reading
T (k∗). Therefore when reading R(i∗)S(j∗)T (k∗) it would end in an accepting state and
incorrectly output the result {1, 2, 3}.

C Proofs of Section 5

C.1 Proof of Lemma 11
Consider a safe run DAG G = (V,E,⊥, κ) and that computing κ(v) and checking v 6= ⊥
takes constant time, and, given a vertex v ∈ V , the neighborhood n(v) = {u | (v, u) ∈ E}

ICDT 2020



10:22 Towards streaming evaluation of queries with correlation in complex event processing

Algorithm 2 Enumeration of CE(U)
1: procedure Enum((U))
2: for all v ∈ U do
3: EnumAll(v)

4: procedure EnumAll(v)
5: for all v′ ∈ {u | (v, u) ∈ E} do
6: if v′ = ⊥ then
7: C. enumerate()
8: else
9: C.push(κ(v′))

10: EnumAll(v′)
11: C.pop()

can be enumerated with constant delay. We give a simple enumeration algorithm, shown in
Algorithm 2 that receives as input a set U ⊆ V and enumerates CE(U) with constant delay.

Algorithm 2 uses a stack C to store positions, with the typical methods: push(i) to append
an element i at the end of C, and pop() to remove the last element of C. There is also a
method enumerate which enumerates the current content of C in linear time over the number
of elements in C.

Algorithm 2 is no more than a algorithm that starts from each v ∈ U (procedure Enum and
runs through all paths π of G from v to ⊥ in DFS (procedure EnumAll). When traversing
π, it uses C to store the complex event CE(π), and enumerates its content whenever it reaches
⊥.

It is not hard to see that Algorithm 2 enumerates CE(U) with constant delay. Consider
that Algorithm 2 traverses all paths π1, π2, . . . , πn from a node of U to ⊥, in that order. Each
run πi takes at most |πi| recursive calls of EnumAll to store CE(πi) in C, which takes time
O(|CE(πi)|). Then, enumerating CE(πi) takes time O(|CE(πi)|) and doing the backtracking
takes time O(|CE(π1)|), and then it continues with the next run πi+1. Hence, the overall
time required to enumerate CE(πi) is O(|CE(π1)|). It is important for G to be safe, which
ensures us that there are no paths of infinite length, because G is acyclic, and that each πi
gives a different output and, therefore, there are no repetitions. Moreover, the enumeration
of the neighborhood of a vertex is crucial to ensure that each recursive call of EnumAll
takes constant time.

C.2 Proof of Lemma 12

Consider a binary predicate B = B=∧B 6=, where B= =
∧
i≤n(ai = bi) and B6= =

∧
j≤m(cj 6=

dj). We prove that, for every pair of tuples t, t′ it holds that (t, t′) ∈ B if, and only if,
~πB=(t) = ~πB=(t′) and ~πB 6=(t) 6≡ ~πB 6=(t′). We prove first the only-if direction. Consider

(t, t′) ∈ B. This means that (t, t′) ∈ B= and (t, t′) ∈ B 6=, which means that t.ai = t′.bi and
t.cj 6= t′.dj for all i ≤ n and j ≤ m. Then, by the definition of left/right projections, we get,
for all i, j:

~πB=(t).(ai, bi) = t.ai = t′.bi = ~πB=(t′).(ai, bi)
~πB 6=(t).(cj , dj) = t.cj 6= t′.dj = ~πB 6=(t′).(cj , dj)

Therefore, ~πB=(t) = ~πB=(t′) and ~πB6=(t) 6≡ ~πB 6=(t′).
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We now prove the if direction. Consider that ~πB=(t) = ~πB=(t′) and ~πB 6=(t) 6≡ ~πB6=(t′).
By following the argument above in the opposite direction, we get that (t, t′) ∈ B=. For B 6=
we cannot do it this way directly because some attributes might not be in t or t′. However,
for every j ≤ m such that cj /∈ att(t) or dj /∈ att(t′), it still holds that (t, t′) ∈ Pcj 6=dj , and
consequently (t, t′) ∈ B6=. Therefore, (t, t′) ∈ B and thus the lemma holds.

C.3 Proof of Lemma 13

We prove in both directions. For both we prove by induction over the length n (of the run
and path). We begin by proving the first part. Consider a run ρ = (q0, 0), (q1, i1), . . . , (qn, in)
of A over S with in = i. The base case is when n = 0, in which case the only run is ρ = (q0, 0)
and i = 0. At iteration 0, the subprocedure Init added ⊥ to U0

q0
, and since κ(⊥) = (q0, 0)

then the lemma holds.
For the inductive case, consider as inductive hypothesis that the first part of Lemma 13

holds for n− 1. Since ρ′ = (q0, 0), (q1, i1), . . . , (qn−1, in−1) is a run of A, then by induction
hypothesis there is a path vn−1 . . . , v1⊥ in G with vn−1 ∈ U in−1

qn and κ(vj) = (qj , ij) for all
j ≤ n− 1. Consider that e = (qn−1, P,B, qn) is the last transition of ρ, and consider the left
and right projections of tin−1 and tin : tn−1

= = ~πB=(tin−1), tn−1
6= = ~πB 6=(tin−1), tn= = ~πB=(tin),

tn6= = ~πB6=(tin). Note that, at the in−1-phase, the UpdateIndices subprocedure added the
triple (vn−1, t

n−1
= , tn1

6= ) to Indexin−1
e and, since we never remove elements of Indexin−1

e in the
subsequent phases, (vn−1, t

n−1
= , tn−1

6= ) is in Indexine . Moreover, because (tn−1, tn) ∈ B, then
by Lemma 12 it holds that tn−1

= = tn= and tn−1
6= = tn6=, and by definition vn−1 must be in

Indexe[tn=, tn6=]. Then, at the in-phase, when updating for transition e, the subprocedure
FireTransitions will add to G a new vertex vn with κ(vn) = (qn, in), add it to U inqn

and
connect it with all vertices of Indexe[tn=, tn6=], including vn−1. Therefore, we proved that the
path π := vn, vn−1, . . . , v1⊥ is in G and satisfies Lemma 13.

Now, we prove the second part, again with induction over n. The base case n = 0 is
the same as above. For the inductive step, consider that the second part of Lemma 13
holds for n − 1. Consider a path vn, vn−1, . . . , v1⊥ of G with κ(vj) = (qj , ij) for all j ≤ n

and vn ∈ U inqn
. Consider the projections tn−1

= , tn−1
6= , tn= and tn6= defined above. Since

we added the vertex vn in the in-phase and connected it with vn−1 (with the Connect
method in the FireTransitions), there must be some transition e = (qn−1, P,B, qn) such
that tin ∈ P and vn−1 ∈ Indexine [tn=, tnn−1]. By definition of the index, this means that
tn−1
= = tn= and tn−1

6= 6≡ tn6= and, by Lemma 12, (tin−1 , tin) ∈ B. Now, considering the path
vn−1, . . . , v1⊥, then by induction hypothesis there is a run (q0, 0), (q1, i1), . . . , (qn−1, in−1) of
A. Moreover, because tin ∈ P and (tin−1 , tin) ∈ B, we can extend the run with e, resulting
in ρ = (q0, 0), (q1, i1), . . . , (qn−1, in−1), (qn, in), which satisfies Lemma 13.

Now we prove the last part of Lemma 13, namely that if A is deterministic, then G is
safe, by induction over the phase i. Consider a deterministic chain-CEA A. In the base case,
at the end of phase i = 0 there is only one vertex ⊥, so G is trivially safe. For the inductive
step, consider that G is safe at the end of phase i− 1. Now in the i-phase, we focus on the
FireTransitions subprocedure, which is the one that updates G. Note that every new
vertex v we add has the current position i, so any path starting from v is different to all
the paths from previous iterations. Then, from the induction hypothesis, the only way for
G to become unsafe is if we add two different vertices v1 = (q1, i), v2 = (q2, i) and connect
both with some vertex v′ = (q′, i′), namely if we add (v1, v

′) and (v2, v
′) to E. If this is the

case, then because of the first part of Lemma 13, there are two transitions (q′, P1, B2, q1)
and (q′, P2, B2, q2) that can be taken simultaneously, which contradicts the fact that A is
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deterministic. Therefore, this cannot happen, and G remains safe after the i-phase.
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