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Abstract

The problems of composing and inverting schema mappings specified by source-to-target tuple-generating
dependencies (st-tgds) have attracted a lot of attention, as they are of fundamental importance for the
development of Bernstein’s metadata management framework. In the case of the composition operator,
a natural semantics has been proposed and the language of second-order tuple generating dependencies
(SO-tgds) has been identified as the right language to express it. In the case of the inverse operator,
several semantics have been proposed, most notably the maximum recovery, the only inverse notion that
guarantees that every mapping specified by st-tgds is invertible. Unfortunately, less attention has been paid
to combining both operators, which is the motivation of this paper. More precisely, we start our investigation
by showing that SO-tgds are not good for inversion, as there exist mappings specified by SO-tgds that are
not invertible under any of the notions of inversion proposed in the literature. To overcome this limitation,
we borrow the notion of CQ-composition, which is a relaxation obtained by parameterizing the composition
of mappings by the class of conjunctive queries (CQ), and we propose a restriction over the class of SO-tgds
that gives rise to the language of plain SO-tgds. Then we show that plain SO-tgds are the right language
to express the CQ-composition of mappings given by st-tgds, in the same sense that SO-tgds are the right
language to express the composition of st-tgds, and we prove that every mapping specified by a plain SO-
tgd admits a maximum recovery, thus showing that plain SO-tgds have a good behavior w.r.t. inversion.
Moreover, we show that the language of plain SO-tgds shares some fundamental structural properties with
the language of st-tgds, but being much more expressive, and we provide a polynomial-time algorithm to
compute maximum recoveries for mappings specified by plain SO-tgds (which can also be used to compute
maximum recoveries for mappings given by st-tgds). All these results suggest that the language of plain
SO-tgds is a good alternative to be implemented in data exchange and data integration applications.

1. Introduction

A schema mapping is a specification that describes how data from a source schema is to be mapped to
a target schema. These specifications have been essential for several data-interoperability tasks such as
data exchange [12] and data integration [20]. However, the need for manipulating these artifacts has been
recently pointed out in the literature [6, 23, 24, 7]. Thus, schema mappings have become an object of study
as first class citizens in a framework where they are expressed in a declarative form and high level algebraic
operators are used to manipulate them [6].

Consequently, the study of algebraic operators between schema mappings has become crucial for meta-
data management. Following Bernstein’s framework [6], most of the work in metadata management has
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focused on the definition of the semantics of algebraic operators that are used to manipulate schema map-
pings. Among the most important schema mapping operators, we find the composition and inverse operators.
Both have been studied thoroughly, resulting on a clear understanding on the definability of these operators,
and the existence of mappings satisfying the definition of these operators, for a wide variety of classes of
schema mappings [14, 10, 15, 5, 3]. The basis of this work has invariantly been mappings that are defined by
sets of source-to-target tuple-generating dependencies (st-tgds), the most commonly used mapping language
for data exchange and integration [12, 20]. Nevertheless, less attention has been paid to schema mapping
languages that are good for both operators, composition and inversion. In this paper, we explore the re-
lationship between good mapping languages that extend st-tgds and have good properties regarding both
composition and inversion.

In [14], Fagin et al. show that the language of SO-tgds, an extension of st-tgds with second-order exis-
tential quantification, is closed under composition and prove several results that show that it is the right
language to compose mappings. In particular, they show that SO-tgds are the smallest language capable
of expressing the composition of st-tgds, since for every SO-tgd λ one can find a sequence of st-tgds such
that their composition is specified precisely by λ. Despite the good properties of SO-tgds with respect to
composition, none of the notions of inverse proposed for schema mappings [10, 15, 5, 3] have been considered
together with the composition of schema mappings, that is, for the case of SO-tgds. In this paper, we show
that, unfortunately, SO-tgds are not appropriate for our study; there exist mappings specified by SO-tgds
that have no CQ-maximum recoveries, which is the weakest notion of inverse defined in the literature [4],
implying that there exist mappings specified by SO-tgds that are not suitable for inversion under any of
the notions of inverse proposed until now [3]. Thus, although the language of SO-tgds is the right language
for composition, its behavior is not the ideal regarding inversion. Moreover, since every SO-tgd is known
to represent a composition of a finite number of st-tgds, we conclude that, in general, the composition of
st-tgds cannot be inverted under any of the notions of inverse proposed in the literature.

To overcome the limitations of SO-tgds with respect to inversion, we borrow the notion of composition
w.r.t. conjunctive queries (CQ-composition), introduced by Madhavan and Halevy [22] and show that the
CQ-composition of any number of st-tgds is guaranteed to have a maximum recovery. To do this, we propose
to study the language of plain SO-tgds, a slightly restricted version of SO-tgds. In particular, we show that
this language can specify the CQ-composition of st-tgds and, moreover, that every mapping given by plain
SO-tgds is invertible when the notion of inverse considered is the notion of maximum recovery [5].

The good behavior of plain SO-tgds for combining composition and inversion raises questions regarding
the possibility that this mapping language behaves just as good when performing other data interoperability
tasks. In order to further study this language, we follow the approach of ten Cate and Kolaitis [26, 27],
and analyze the structural properties of plain SO-tgds, comparing them with the properties of other com-
mon mapping languages such as st-tgds and SO-tgds. We show that, in terms of ten Cate and Kolaitis
taxonomy [26], the behavior of plain SO-tgds can be considered closer to st-tgds than to SO-tgds, in the
sense that plain SO-tgds share with st-tgds all the properties of mapping languages that were noted in [27]
as crucial for data exchange and data integration; plain SO-tgds allow for rewriting of conjunctive queries,
they always admit universal solutions, and are closed under target homomorphisms. We also show that plain
SO-tgds are strictly more expressive than other well-behaved mapping languages such as st-tgds and the
language of nested tgds defined in [19]. It is interesting to note that plain SO-tgds are, to the best of our
knowledge, the most expressive mapping language that enjoys all three aforementioned properties. This
gives a negative answer to the question raised in [26] of whether all mappings that allow for conjunctive
query rewriting, admit universal solutions, and are closed under target homomorphisms can be specified
with nested tgds. Therefore, this allows us to restate this question by putting the language of plain SO-tgds
as the main candidate for a positive answer.

Towards the end of the paper we show our most interesting algorithmic result regarding inversion; we
provide the first polynomial-time algorithm to compute maximum recoveries of mapping specified by plain
SO-tgds. Specifically, given a mapping M specified by a set of plain SO-tgds, our algorithm returns a
maximum recovery of M specified in a language that extends the class of plain SO-tgds. This result is
interesting in its own right since our algorithm is the first polynomial-time algorithm for inverting schema
mappings and, in particular, for inverting mappings given by st-tgds in polynomial time. It should be
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noticed that it is open whether the language needed to specify the maximum recovery of a plain SO-tgds
is also invertible or closed under composition. However, the study of plain SO-tgds opens new possibilities
for studying closure properties of the composition and inversion of st-tgds, which we believe are interesting
problems for future research.

The rest of the paper is organized as follows. In Section 2, we give the basic notation used in the paper,
while in Section 3 we show the negative result regarding SO-tgds, composition and inversion. In Section 4, we
present the mapping language of plain SO-tgds as a solution to the problem of combining composition with
inversion, and show its good structural properties. In Section 5, we provide a polynomial-time algorithm
to compute maximum recoveries for mappings given by plain SO-tgds. Finally, we give some concluding
remarks in Section 6.

Before continuing with the paper, we describe the new material in this article, compared with our previous
conference paper [4], and discuss some related work.

1.1. New material in this paper

Preliminary versions of some of the results in this paper appeared in [4]. Nevertheless, this paper contains
substantial new material. The negative result regarding the inversion of SO-tgds (presented in Section 3) is
new and was informally mentioned in [4]. All the results on the structural properties of plain SO-tgds and,
in particular, the relationship with the work by ten Cate and Kolaitis [27], were not included in [4] and are
presented in this paper for the first time. These results are included in Section 4. Besides, in this paper we
include new examples and also detailed proofs which are not included in [4].

1.2. Related work

In the recent years, there has been a lot of work about the composition and inversion of schema mappings [23,
14, 10, 15, 5, 4, 3, 17, 1, 16, 2]. As most of the investigations in data exchange, data integration and schema
mapping management, we make the assumption that source instances contain only constant values, while
target instances contain constant and null values, the latter to represent missing (incomplete) information
(see Section 2 for a formalization of our setting).

While almost no research has been made regarding the inversion of SO-tgds in this scenario, there
have been at least two investigations that relax the assumption mentioned above in order to study schema
mapping operators. In [16], the authors study a setting in which both source and target instances contain
null values, and make the case that inverses should be studied in this symmetric setting. Similarly, in [2]
the authors study the problem of exchanging incomplete information in a more general setting not only
including nulls in the source data, but also considering general representation systems to exchange data.
In [2], the authors prove that under this new expressive semantics for mappings in which instances are
allowed to specify incomplete information in a general way, mappings specified by SO-tgds always have
inverses under the notion of maximum recovery. Nonetheless, neither [16] nor [2] provide algorithms for
computing inverses of mappings specified by SO-tgds, thus leaving open the issue of computing inverses of
mappings that result from composing st-tgds. In this paper, we follow an alternative approach. Instead
of making mappings more expressive (by adding incomplete information in source and target instances),
we study the weaker language of plain SO-tgds under the typical semantics in which source instances only
contain constant values. We show that mappings given by plain SO-tgds always admit inverses under the
notion of maximum recovery, and also provide an efficient algorithm to compute maximum recoveries of
mappings specified in this language. This approach can be considered complementary to the approaches
proposed in [16, 2], as we expect that our results on the classical scenario of data exchange can also be useful
in the future research on mappings for databases with incomplete information.

Regarding algorithms for efficiently inverting mappings given by st-tgds, Fagin et al. presented in [16] a
polynomial-time algorithm to compute inverses for such mappings in the scenario where incomplete infor-
mation is considered in both source and target instances. The algorithm proposed in [16] follows a similar
approach to ours, using second-order quantification to efficiently express inverses.

The previous work on inversion of schema mappings have mainly focused on inverting mappings specified
by st-tgds. The first of these works was by Fagin [10], where the author proposes a notion that was

3



rather restrictive [15] as most mappings specified by st-tgds do not admit an inverse under this notion.
Subsequent works [15, 2, 4] have searched for more relaxed notions of inversion. This approach has been
successful for mappings specified by st-tgds, and the literature now provides notions of inversion under
which every mapping specified by st-tgds is invertible [2, 4, 3]. One of the motivations of our work is the
need of integrating inversion and composition, i.e. the need of inverting the output of the composition of
two mappings specified by st-tgds. Given that SO-tgds are not invertible under any of the main notions
proposed so far in the literature (see Theorem 6 and Corollary 7), one possible path is to search for an even
weaker notion for inverting SO-tgds. To the best of our knowledge there is no investigation in the literature
following this last approach. In this paper, we have decided to follow a different approach as instead of
weakening the notion of inversion, we have weakened the notion of composition by considering the CQ-
composition. Since we prove that CQ-composition can always be represented in a less expressive mapping
language, the language of plain SO-tgds, our approach to investigate the interplay between composition and
inversion amounts to investigate of the inversion of plain SO-tgds, which is one of the main topics considered
in this paper.

2. Preliminaries

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a fixed arity ni ≥ 1. Let D
be a countably infinite domain. An instance I of R assigns to each relation symbol Ri of R a finite ni-ary
relation RI

i ⊆ Dni . The domain dom(I) of instance I is the set of all elements that occur in any of the
relations RI

i . Inst(R) is defined to be the set of all instances of R. If a tuple ā belongs to RI
i , we say that

Ri(ā) is a fact in I. We sometimes describe an instance as a set of facts.
As is customary in the data exchange literature, we consider instances with two types of values: constants

and nulls [12, 10, 15]. More precisely, let C and N be infinite and disjoint sets of constants and nulls,
respectively, and assume that D = C ∪ N. If we refer to a schema S as a source schema, then Inst(S) is
defined to be the set of all instances of S that are constructed by using only elements from C, and if we
refer to a schema T as a target schema, then instances of T are constructed by using elements from both
C and N. Source instances are instances of a source schema, and target instances are instances of a target
schema.

2.1. Schema mappings and universal solutions

We use a general representation of mappings; given two schemas R1 and R2, a mapping M from R1 to R2

is a set of pairs (I, J), where I is an instance of R1, and J is an instance of R2. Our results are mainly
focused on a special class of mappings that we call source-to-target mappings (st-mappings). A mapping
M from R1 to R2 is an st-mapping, if R1 is a source schema (that is, instances of R1 are constructed
using only elements from C) and R2 is a target schema (that is, instances of R2 are constructed by using
elements from C and N). Unless otherwise noted, we always assume that mappings are st-mappings. Thus,
we often abuse the notation and speak of R1 as the source schema of M and R2 as the target schema of M.
Likewise, when M is understood from context, we refer to instances of R1 as source instances, and instances
of R2 as target instances. The class of target-to-source mappings, or ts-mappings, is defined analogously.

Given a mapping M, we say that J is a solution for I under M, if (I, J) is in M. We denote by SolM(I)
the set of all solutions for I under M. A special class of solutions, denoted as universal solutions, has
been pointed out as one of the preferred classes of solutions to materialize in the data exchange scenario.
To define them, we need the notion of homomorphisms. Given instances J1 and J2 of the same schema,
a homomorphism h from J1 to J2 is a function that is the identity over constants (h(a) = a for every
a ∈ C), maps null values to null or constant values, and for every fact R(a1, . . . , an) in J1, it holds that
R(h(a1), . . . , h(ak)) is a fact in J2. If there exists homomorphisms from J1 to J2 and from J2 to J1, then we
say that J1 and J2 are homomorphically equivalent. Then, an instance J is said to be a universal solution for
an instance I under a mapping M if J ∈ SolM(I) and for every J ′ ∈ SolM(I), there exists a homomorphism
from J to J ′ [12].
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2.2. Queries and certain answers

A k-ary query Q over a schema R, with k ≥ 0, is a function that maps every instance I ∈ Inst(R) into a k-
relation Q(I) ⊆ dom(I)k. Notice that if k = 0 (Q is a Boolean query), then the answer to Q is either the set
with one 0-ary tuple (denoted by true), or the empty set (denoted by false). Thus, if Q is a Boolean query,
then Q(I) is either true or false. As is customary, we assume that queries are closed under isomorphisms,
and we use CQ to denote the class of conjunctive queries (that is, queries formed using conjunctions of
relational atoms) and UCQ to denote the class of unions of conjunctive queries. If we extend these classes
by allowing equalities, then we use superscript =.

As usual, the semantics of queries in the presence of schema mappings is defined in terms of the notion
of certain answer. Assume that M is a mapping from a schema R1 to a schema R2. Then given an instance
I of R1 and a query Q over R2, the certain answers of Q for I under M, denoted by certainM(Q, I), is the
set of tuples that belong to the evaluation of Q over every possible solution for I under M, that is,

certainM(Q, I) =
⋂

J∈SolM(I)

Q(J)

2.3. Dependencies and definability of mappings

A relational atom over R is a formula of the form R(x̄) with R ∈ R and x̄ a tuple of (not necessarily distinct)
variables. Given disjoint schemas R1 and R2, a source-to-target tgd (st-tgd) from R1 to R2 is a sentence of
the form:

∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)),

where (a) ϕ(x̄, ȳ) is a conjunction of relational atoms over R1, and (b) ψ(x̄, z̄) is a conjunction of relational
atoms over R2. The left-hand side of the implication in a st-tgd is called the premise, and the right-hand side
the conclusion. We usually omit the outermost universal quantifier in st-tgds and thus, for a dependency as
the above, we just write ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄).

A second-order tuple-generating dependency (SO-tgd) from R1 to R2 is a formula of the form:

∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)), (1)

where (a) each member of f̄ is a function symbol; (b) each formula ϕi (1 ≤ i ≤ n) is a conjunction of
relational atoms of the form S(y1, . . . , yk) and equality atoms of the form t = t′, where S is a k-ary relation
symbol of R1 and y1, . . ., yk are (not necessarily distinct) variables in x̄i, and t, t′ are terms built from x̄i

and f̄ ; (c) each formula ψi (1 ≤ i ≤ n) is a conjunction of relational atomic formulas over R2 mentioning
terms built from x̄i and f̄ ; and (d) each variable in x̄i (1 ≤ i ≤ n) appears in some relational atom of ϕi. As
was noted in [14, 25], there is a subtlety in the semantics of SO-tgds, namely, the semantics of existentially
quantified function symbols. In particular, in deciding whether (I, J) satisfies an SO-tgd λ, what should
the domain and range of the functions instantiating the existentially quantified function symbols be? The
obvious choice is to let the domain and range be dom(I)∪ dom(J), but it is shown in [14, 25] that this does
not work properly. Instead, the solution in [14, 25] is as follows. Let λ be an SO-tgd from a source schema
R1 to a target schema R2. Then given an instance I of R1 and an instance J of R2, instance (I, J) is
converted into a structure (D; I, J), which is just like (I, J) except that it has universe D. The domain and
range of the functions in λ is then taken to be D. The intuition is that the universe contains the domain
of (I, J) along with an infinite set of extra values. Then (I, J) is said to satisfy λ, denoted by (I, J) |= λ,
if (D; I, J) |= λ under the standard notion of satisfaction in second-order logic (see, for example, [9]). It
should be noticed that it is shown in [14] that in the case of SO-tgds, instead of taking the universe D, one
can take a “sufficiently large” finite universe.

Let R1 and R2 be schemas with no relation symbols in common and Σ a set of sentences over R1 and
R2. Then we say that a mapping M from R1 to R2 is specified by Σ, denoted by M = (R1,R2,Σ), if
for every instance I of R1 and instance J of R2, it holds that (I, J) ∈ M if and only if (I, J) satisfies the
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dependencies in Σ. Notice that SO-tgds are closed under conjunction (that is, if σ1 and σ2 are SO-tgds, then
σ1 ∧ σ2 is logically equivalent to an SO-tgd). Thus, when specifying mappings, we talk about a mapping
specified by an SO-tgd (instead of a set of SO-tgds).

We conclude this section by pointing out that every finite set Σ of st-tgds can be transformed into an
equivalent SO-tgd by Skolemizing the existentially quantified variables in the conclusions of the dependencies
in Σ. For example, a set Σ consisting of the following st-tgds:

A(x, y) → ∃z(R(x, z) ∧ T (z, y))

B(x, y) → R(x, y)

is logically equivalent to the following SO-tgd:

∃f

(

∀x∀y
(

A(x, y) → R(x, f(x, y)
)

∧ ∀x∀y
(

A(x, y) → T (f(x, y), y)
)

∧ ∀x∀y
(

B(x, y) → R(x, y)
)

)

. (2)

3. Composition, Inversion, and how the Composition of st-tgds is not Always Invertible

Two of the most important schema mapping operators that have been considered in the literature are the
composition and inversion. In this section, we first recall the definitions of these operators, and show a
negative result regarding the combination of both operators for mappings given by st-tgds.

3.1. Composition

The composition of mappings M1 and M2 is a mapping that intuitively has the same effect as the application
of M1 and M2 one after the other. The formalization of mappings as just pairs of database instances allows
for a clean definition of the semantics of the composition of mappings, based on the composition of binary
relations [23, 14]. Formally, given schemas R1, R2, and R3, and mappings M1 from R1 to R2 and M2

from R2 to R3, the composition of M1 and M2, denoted by M1 ◦M2, is defined as:

M1 ◦M2 = {(I,K) ∈ Inst(R1) × Inst(R3) | there exists J ∈ Inst(R2)

such that (I, J) ∈ M1 and (J,K) ∈ M2}.

Notice that this definition of composition ensures that for mappings M1 and M2, the composition M1 ◦M2

is unique.
Once the notion of composition is clearly defined, the natural problem of how to specify the composition

arises. This problem was throughly studied by Fagin et al. in [14]. In that paper, the authors first show a
negative result regarding the composition of mappings specified by st-tgds, namely that there exists mappings
M1 and M2 both specified by st-tgds such that the composition M1 ◦M2 cannot be specified in first-order
logic [14]. On the positive side, Fagin et al. show in [14] that the language of SO-tgds is a well-behaved
language regarding composition. In particular, they show that SO-tgds are closed under composition:

Theorem 1 ([14]). Let M12 and M23 be mappings specified by SO-tgds. Then the composition M12 ◦M23

can also be specified by an SO-tgd.

It is important to notice that Theorem 1 implies that the composition of a finite number of mappings specified
by st-tgds can be defined by an SO-tgd, as every finite set of st-tgds can be expressed as an SO-tgd.

Theorem 2 ([14]). The composition of a finite number of mappings, each specified by a finite set of st-tgds,
can be specified by an SO-tgd.

In [14], Fagin et al. show several other desirable properties of SO-tgds, being one of the most important that
SO-tgds are the minimal language capable of expressing the composition of st-tgds. In particular, they show
that every mapping specified by an SO-tgd is equivalent to the composition of a finite number of mappings,
each specified by a finite set of st-tgds. This result was later improved by Arenas et al. in [1], where the
authors prove that every mapping specified by an SO-tgd is equivalent to the composition of two mappings
specified by st-tgds.
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3.2. Inversion

In contrast with the case of the composition of schema mappings, whose semantics can be defined in a
clean way in terms of the composition of binary relations, the inverse operator for schema mappings has
turned out to be far more difficult to define. In fact, there is not yet consensus on a semantics for this
operator, so we review in this section some of the main alternatives that have been studied in the literature:
Fagin-inverse [10], quasi-inverse [15], maximum recovery [5], and C-maximum recovery [4]. Recall that we
are mainly interested in computing inverses of st-mappings, that is, of mappings from a schema S to a
schema T in which instances of S are assumed to contain only constant values while instances of T contain
constant and nulls. Notice that the inverse of an st-mapping is a ts-mapping. (To see some recent notions
of inverse that relax this assumption, we refer the reader to [16] and [2].)

Fagin [10] gave a first formal semantics for the inversion of schema mappings. Intuitively, Fagin’s defi-
nition was based on the idea that any mapping composed with its inverse should be equal to the identity.
Since we already have a clear notion of what composition is, it is only needed to define a meaningful notion
of identity in the context of schema mappings. Fagin does so by introducing the following notion. Let S be
a schema and consider the mapping IdS = {(I, J) | I, J ∈ Inst(S) and I ⊆ J}. In [10], Fagin made the case
that IdS is a natural identity mapping in the context of st-tgds (which was the main language considered
in [10]). Thus, given a mapping M from S to T, a mapping M′ from T to S is a Fagin-inverse of M if
M◦M′ = IdS [10].

It is observed in [15] that the notion of Fagin-inverse is very restricted as it is rare that a mapping
possesses a Fagin-inverse. For this reason, Fagin et al. [15] introduced the notion of a quasi-inverse of a
schema mapping. We do not introduce the formalization of this notion here and refer the reader to [15] for
details. We only mention that the notion of quasi-inverse is a strict generalization of notion of Fagin-inverse,
as if M′ is a Fagin-inverse of a mapping M, then M′ is also a quasi-inverse of M [15]; and, on the other
side, there are mappings specified by st-tgds that have quasi-inverses but do not have Fagin-inverses [15].
It was also shown in [15] that there exists simple mappings specified by st-tgds for which quasi-inverses do
not exist.

In view of the aforementioned results, Arenas et al. introduced the notion of maximum recovery in [5].
Consider the mapping IdS given by IdS = {(I, I) | I ∈ Inst(S)}. Notice the difference between IdS and IdS;
mapping IdS is the classical identity of binary relations. When trying to invert a mapping M from S to T,
the ideal would be to find a mapping M′ from T to S such that M◦M′ = IdS. If such a mapping exists,
we know that if we use M to exchange data, the application of M′ gives as result exactly the initial source
instance. Unfortunately, in most cases this ideal is impossible to reach. The intuition behind the notion of
maximum recovery is that we want to find a mapping M′ such that M◦M′ is as close as possible to IdS.
The following definition formalizes this idea.

Definition 3 ([5]). Let M be a mapping from S to T. A mapping M′ is a recovery of M if IdS ⊆ M◦M′.
Moreover, mapping M′ is a maximum recovery of M, if M′ is a recovery of M and for every other recovery
M′′ of M, it holds that M◦M′ ⊆ M◦M′′.

One of the main results in [5] is that every st-mapping specified by a finite set of st-tgds has a maximum
recovery. The authors also prove the following result that states the relationship between Fagin-inverses,
quasi-inverses and maximum recoveries. We first need to introduce some terminology. We say that a
mapping M from S to T is total if for every I ∈ Inst(S), it holds that SolM(I) 6= ∅. Moreover, M is said to
be closed-down on the left [10, 27] if for every (I, J) ∈ M and K ⊆ I, we have that (K, J) ∈ M. It should
be noticed that every mapping specified by an SO-tgd is total and closed-down on the left (and, thus, every
mapping specified by a finite set of st-tgds is also total and closed-down on the left).

Proposition 4 ([5]). Let M be a total mapping that is closed-down on the left.

1. If M has a Fagin-inverse, then M has a maximum recovery and every maximum recovery M′ of M
is also a Fagin-inverse of M.

2. If M has a quasi-inverse, then M has a maximum recovery and every maximum recovery M′ of M
is also a quasi-inverse of M.
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Finally, we also consider in this section the notion of C-maximum recovery, which is a relaxation of the
notion of maximum recovery w.r.t. a class of queries C.

Definition 5 ([4]). Let M be a mapping from a schema S to a schema T, and C a class of queries. A
mapping M′ is a C-recovery of M if for every query Q ∈ C over S and every instance I ∈ Inst(S):

certainM◦M′(Q, I) ⊆ Q(I).

Moreover, mapping M′ is a C-maximum recovery of M, if M′ is a C-recovery of M and for every other
C-recovery M′′ of M, it holds that:

certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I),

for every query Q ∈ C over S and every instance I ∈ Inst(S).

It is not difficult to show that if M′ is a maximum recovery of M, then M′ is a C-maximum recovery of M
for every possible class of queries C [4]. In [4], the authors show several properties of C-maximum recoveries
when CQ is considered as the class of queries C. In particular, it is proved in [4] that there exist mappings
M and M′ specified by st-tgds such that M′ is a CQ-maximum recovery of M but M′ is not a maximum
recovery of M, thus, showing that the notion of CQ-maximum recovery strictly generalizes the notion of
maximum recovery.

3.3. The composition of st-tgds is not always invertible

Recall that every st-mapping specified by a finite set of st-tgds admits a maximum recovery [5]. Our next
result shows that, unfortunately, SO-tgds are not appropriate for inversion, as there exist mappings specified
by SO-tgds that do not admit maximum recoveries. More precisely, we show something stronger, namely
that there exists a mapping specified by an SO-tgd that does not even admit a CQ-maximum recovery.

Theorem 6. There exists a mapping M specified by an SO-tgd that has no CQ-maximum recovery.

Proof. Let S be a source schema {A(·), B(·), C1(·), C2(·)}, T be target schema {R(·, ·), S(·)}, and M =
(S,T,Σ) a mapping specified by the following SO-tgd λ:

∃f∃g
[

∀x
(

B(x) ∧ C1(x) ∧ x = f(x) → S(x)
)

∧

∀x
(

B(x) ∧ C1(x) → R(x, f(x))
)

∧

∀x
(

B(x) ∧ C2(x) → R(x, x)
)

∧

∀x
(

A(x) → R(x, g(x))
) ]

.

We show next that M does not have a CQ-maximum recovery. In order to obtain a contradiction, assume
that M′ is a CQ-maximum recovery of M.

We construct two mappings M1 and M2 from T to S to derive a contradiction. Let M1 be the mapping
from T to S given by the dependencies:

∃y
(

R(x, y) ∧ x 6= y
)

→ B(x) ∧ C1(x),

R(x, x) ∧ S(x) → B(x) ∧ C1(x),

and M2 the mapping from T to S given by the dependency:

R(x, x) → B(x) ∧ C2(x).

We next show that M1 and M2 are CQ-recoveries of M. We begin by showing this property for M1. Let
I be an arbitrary instance of S, and f⋆ : D → D a function such that for every element a ∈ dom(I), it holds
that f⋆(a) 6= a. Consider now the instance J of T constructed as follows:

J = {R(a, f⋆(a)) | B(a) ∈ I and C1(a) ∈ I} ∪

{R(a, a) | B(a) ∈ I and C2(a) ∈ I} ∪

{R(a, a) | A(a) ∈ I}.
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It is not difficult to see that (I, J) |= λ by using f⋆ as the interpretation for f and the identity function
to interpret g. Thus we have that J ∈ SolM(I). Moreover, by the definition of J and M1 it holds that
I ∈ SolM1

(J), thus we have that I ∈ SolM◦M1
(I). This last fact implies that certainM◦M1

(Q, I) ⊆ Q(I)
for every query Q, and, in particular, for every query Q in CQ. Thus we obtain that M1 is a CQ-recovery
of M.

For the case of M2, let I be an arbitrary instance of S and f⋆ a function as defined above. Consider
now the instance J of T such that:

J = {R(a, a) | B(a) ∈ I and C2(a) ∈ I} ∪

{R(a, f⋆(a)) | B(a) ∈ I and C1(a) ∈ I} ∪

{R(a, f⋆(a)) | A(a) ∈ I}.

We have that (I, J) |= λ (this time interpreting both f an g as f⋆), and following a similar argument as in the
previous paragraph we can use J to show that I ∈ SolM◦M2

(I). Thus we obtain that certainM◦M2
(Q, I) ⊆

Q(I) for every query Q, and, in particular, for every query Q in CQ, implying that M2 is a CQ-recovery
of M.

Now given that M′ is a CQ-maximum recovery of M, and since M1 and M2 are CQ-recoveries of M,
we have that for every instance I of S and conjunctive query Q, it holds that:

certainM◦M1
(Q, I) ⊆ certainM◦M′(Q, I) ⊆ Q(I) (3)

certainM◦M2
(Q, I) ⊆ certainM◦M′(Q, I) ⊆ Q(I) (4)

We show next that (3) and (4) lead to a contradiction.
Consider the instance I1 = {B(a), C1(a)}. We next argue that by the definition of M and M1, we

have that for every K ∈ SolM◦M1
(I1) it holds that I1 ⊆ K. Assume that (I1, J) |= λ. Thus, since

dom(I1) = {a} we have only two possibilities: either f is interpreted as a function f⋆ such that f⋆(a) 6= a,
or f is interpreted as a function f⋆ such that f⋆(a) = a. In the first case we have that R(a, f⋆(a)) ∈ J , and
in the second case we have that R(a, a), S(a) ∈ J and thus, in both cases we have that every solution for
J under M1 contains the facts B(a) and C1(a). Moreover, it is not difficult to see that I1 ∈ SolM◦M1

(I1).
All the previous discussion implies that for the query Q1 given by formula B(x) ∧ C1(x), it holds that
certainM◦M1

(Q1, I1) = Q1(I1) = {a}. Thus, from (3) we obtain that certainM◦M′(Q1, I1) = {a}. Therefore,
for every instance K ∈ SolM◦M′(I1) it holds that B(a) and C1(a) are facts in K.

Consider now the instance I2 = {B(a), C2(a)}. Similarly as in the previous paragraph, we can show that
for the query Q2 given by B(x)∧C2(x), it holds that certainM◦M2

(Q2, I2) = Q2(I2) = {a}. Thus, from (4)
we obtain that certainM◦M′(Q2, I2) = {a}. Therefore, for every instance K ∈ SolM◦M′(I2) it holds that
B(a) and C2(a) are facts in K.

Finally, consider instance I3 = {A(a)}. Notice that an instance J is a solution of I3 under M if
and only if J contains a fact of the form R(a, b) with b an arbitrary element. From this it is easy to
conclude that J ∈ SolM(I1) ∪ SolM(I2), and thus SolM(I3) ⊆ SolM(I1) ∪ SolM(I2). Moreover, SolM(I3) ⊆
SolM(I1) ∪ SolM(I2) implies that SolM◦M′(I3) ⊆ SolM◦M′(I1) ∪ SolM◦M′(I2). We have shown that every
instance in SolM◦M′(I1) contains the facts B(a), C1(a) and that every instance in SolM◦M′(I2) contains the
facts B(a), C2(a), thus implying that every instance in SolM◦M′(I3) contains the fact B(a). Consider the
query Q given by B(x). By the previous discussion, we have that a ∈ certainM◦M′(Q, I3) but Q(I3) = ∅,
and thus we have that certainM◦M′(Q, I3) 6⊆ Q(I3). This contradicts the fact that M′ is a CQ-maximum
recovery of M, completing the proof. �

Recall that if a mapping M has a maximum recovery, then M also has a CQ-maximum recovery. Thus,
by the previous result, we obtain that, as opposed to the case of st-tgds, a mapping specified by an SO-tgd is
not guaranteed to have a maximum recovery. Also notice that a mapping specified by an SO-tgd is total and
closed-down on the left, thus, we have by Proposition 4 that a mapping specified by an SO-tgd is guaranteed
to have neither a Fagin-inverse nor a quasi-inverse. Therefore, by considering the fact that every SO-tgd
defines the composition of two mappings specified by st-tgds [14, 1], we obtain a fundamental negative result
for the composition operator.
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Corollary 7. There exist mappings M1 and M2, each specified by a finite set of st-tgds, such that the
composition M1 ◦M2 has neither CQ-maximum recovery, nor maximum recovery, nor quasi-inverse, nor
Fagin-inverse.

4. Plain SO-tgds to the Rescue: CQ-Composition, Inversion and Good Structural Properties

The negative result in Section 3.3 suggests that to obtain a language that is closed under composition and
has good properties regarding inversion, we have no choice but to relax the semantics of composition. In
this section, we take this path by considering the notion of composition w.r.t. conjunctive queries, or just
CQ-composition, introduced by Madhavan and Halevy in [22], and which predates the set-theoretic notion
of composition presented in Section 3.1.

The notion of CQ-composition can be defined in terms of the concept of conjunctive-query equivalence
of mappings that was implicitly introduced in [22], and generalized in [13] when studying optimization of
schema mappings. Two mappings M and M′ from a schema S to a schema T are said to be equivalent
w.r.t. conjunctive queries, denoted by M ≡CQ M′, if for every conjunctive query Q over T and every
instance I of S, it holds that certainM(Q, I) = certainM′(Q, I). Then a mapping M3 is said to be a
CQ-composition of M1 and M2 if M3 ≡CQ M1 ◦M2.

Interestingly, in this section we show that the notion of CQ-composition is captured by a natural fragment
of the language of SO-tgds, which also shares some fundamental structural properties with the language of
st-tgds and has good properties regarding inversion. More specifically, we define in Section 4.1 the language
of plain SO-tgds, and then we show in Section 4.2 that they are the right language for representing the CQ-
composition of mappings given by st-tgds. Moreover, we prove in Section 4.2 that every mapping given by
plain SO-tgds admits a maximum recovery, thus showing that this language is also appropriate for inversion.
Finally, we present in Section 4.3 some of the structural properties of st-tgds that have been identified as of
fundamental importance for data exchange [27], and we prove that these properties are also satisfied by the
class of mappings defined by plain SO-tgds.

4.1. Plain SO-tgds

In order to define plain SO-tgds, we use the notion of plain term. Given a tuple f̄ of function symbols and
a tuple x̄ of variables, a plain term built from f̄ and x̄, is either a variable x in x̄, or a term of the form
f(u1, . . . , uk) where f is a function symbol in f̄ and each ui is a variable in x̄ (1 ≤ i ≤ k).

Definition 8. Given schemas R1 and R2 with no relation symbols in common, a plain second-order tuple-
generating dependency (plain SO-tgd) from R1 to R2 is a formula of the form:

∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)),

where:

1. each member of f̄ is a function symbol,

2. each formula ϕi (1 ≤ i ≤ n) is a conjunction of relational atoms of the form S(y1, . . . , yk), where S is
a k-ary relation symbol of R1 and y1, . . ., yk are (not necessarily distinct) variables in x̄i,

3. each formula ψi (1 ≤ i ≤ n) is a conjunction of relational atomic formulas over R2 mentioning plain
terms built from x̄i and f̄ , and

4. each variable in x̄i (1 ≤ i ≤ n) appears in some relational atom of ϕi.

That is, the language of plain SO-tgds is obtained from the language of SO-tgds by forbidding equality of
terms and nesting of functions. For example, formula (2) is a plain SO-tgd, while the formula used in the
proof of Theorem 6 is not a plain SO-tgd as it includes an equality of terms.

As was noted in Section 2.3, given an SO-tgd σ from a schema R1 to a schema R2 and a pair (I, J) of
instances of R1 and R2, respectively, the satisfaction of σ by (I, J) is defined by considering the standard
notion of satisfaction in second-order logic and a structure (D; I, J), which is just like (I, J) except that it

10



has universe D. That is, (I, J) is said to satisfy σ if (D; I, J) |= σ under the standard notion of satisfaction
in second-order logic. The semantics of plain SO-tgds is inherited from the semantics of SO-tgds. But
as opposed to the case of SO-tgds, it can be shown that for every plain SO-tgd λ from a schema R1

to a schema R2 and a pair (I, J) of instances of R1 and R2, respectively, (D; I, J) |= λ if and only if
(dom(I) ∪ dom(J); I, J) |= λ. Thus, in order to check whether a plain SO tgd λ is satisfied by a pair (I, J)
of instances, one can assume that dom(I) ∪ dom(J) is the domain and range of the functions instantiating
the existentially quantified function symbols in λ.

Finally, it should be noticed that, as for the case of SO-tgds, plain SO-tgds are closed under conjunction
and, thus, we talk about a mapping specified by a plain SO-tgd (instead of a set of plain SO-tgds). Moreover,
it is easy to see that every set of st-tgds is equivalent to a plain SO-tgd.

4.2. Plain SO-tgds: A language for CQ-composition which is also invertible

In this section, we show that the language of plain SO-tgds is the right language for representing the
CQ-composition of mappings given by st-tgds, in the same sense that SO-tgds are the right language for
representing the composition of mappings given by st-tgds, as shown in Section 3.1. Besides, we also
show that in sharp contrast with the case of SO-tgds, every mapping specified by a plain SO-tgd admits a
maximum recovery. In Section 5, we provide a polynomial-time algorithm for computing these maximum
recoveries, thus showing that plain SO-tgds also have good properties regarding inversion.

We start by proving a useful lemma showing that although the language of plain SO-tgds is less expressive
than the language of SO-tgds, in terms of CQ-equivalence they have the same expressive power.

Lemma 9. For every SO-tgd λ, there exists a plain SO-tgd λ′ such that λ ≡CQ λ′.

Proof. We first recall a result that will considerably simplify the proof. Arenas et al. [1] proved that
every SO-tgd λ is logically equivalent to an SO-tgd λ⋆ that does not have nesting of functions. That is, the
language of SO-tgds is equivalent to the language obtained from plain SO-tgds by adding equality of plain
terms [1]. Thus, we can assume that SO-tgds contain only plain terms.

We also make use of the chase procedure for SO-tgds that we introduce next. Given an SO-tgd λ from
a schema S to a schema T of the form:

∃f̄(∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄k(ϕn → ψn)), (5)

where λ only contains plain terms, the chase of the source instance I with λ, denoted by chaseλ(I), is the
instance J of T constructed as follows [14]. Fix an interpretation for the function symbols of f̄ such that
for every n-ary function symbol f in f̄ and n-ary tuple ā of elements in I, f(ā) is interpreted as a fresh null
value. Notice that with this interpretation, the equality f(ā) = g(b̄) holds if and only if f and g are the
same function symbol and ā = b̄. Thus we can denote a null of the form f(ā) with its own syntactic form
(that is, simply as f(ā)). We need an additional notation. Given a formula α that considers variables in a
tuple x̄ and plain terms built from f̄ and x̄, we denote by α[x̄→ ā] the formula obtained by replacing every
occurrence of a variable in x̄ by the corresponding value in ā. We are now ready to introduce the process
to construct instance J . For every i ∈ {1, . . . , n} and every tuple ā of elements in I such that the arity of ā
is the same as the arity of x̄i, if I satisfies the formula ϕi[x̄i → ā], then add all the atoms in ψi[x̄i → ā] to
instance J . Fagin et al. [14] show that chaseλ(I) is a universal solution for I under the mapping specified
by λ.

We next show how to transform an SO-tgd λ into a plain SO-tgd λ′ such that chaseλ(I) = chaseλ′(I).
Let λ be an SO-tgd of the form (5). We first construct a set of formulas Σ′ by repeating the following for
every i such that 1 ≤ i ≤ n. Start with ϕ′

i as ϕi and ψ′
i as ψi.

1. Replace every equality of the form f(x1, . . . , xk) = f(y1, . . . , yk) in ϕ′
i by the conjunction of equalities

x1 = y1 ∧ · · · ∧ xk = yk.

2. If there is an equality of the form x = x′ in ϕ′
i with x and x′ variables, then eliminate the equality

and replace in ϕ′
i and in ψ′

i every occurrence of x′ by x.

3. Repeat the previous step until ϕ′
i has no equality of the form x = x′ with x and x′ variables.
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If after the process, ϕ′
i does not contain any equality between plain terms (the only equalities that may

remain must mention different function symbols), then add formula ∀x̄′i(ϕ
′
i → ψ′

i) to Σ′, where x̄′i is the
tuple of remaining variables in ϕ′

i. Finally, we define λ′ as the formula ∃f̄ (
∧

Σ′), where (
∧

Σ′) denotes the
conjunction of all the formulas in Σ′. Notice that the formula λ′ is a plain SO-tgd.

It is not difficult to see that for every instance I, it holds that chaseλ(I) = chaseλ′(I). Just notice that
if I satisfies the formula ϕi[x̄i → ā], then (i) ϕi does not contain equalities of the form f(ū) = g(v̄) with f

and g distinct function symbols, (ii) if f(x1, . . . , xk) = f(y1, . . . , yk) is an equality in ϕi, then the equalities
x1 = y1, . . ., xk = yk should hold for the assignment x̄i → ā and (iii) if x = x′ is an equality in ϕi, then the
values a and a′ that correspond to x and x′ in the assignment x̄i → ā should be equal. This implies that if
∀x̄′i(ϕ

′
i → ψ′

i) is in Σ′, and x̄′i → ā′ is the assignment obtained from the assignment x̄i → ā by considering
only the variables in x̄′i, then I satisfies ϕ′

i[x̄
′
i → ā′]. Similarly, it can be shown that if ∀x̄′i(ϕ

′
i → ψ′

i) is in Σ′

and I satisfies ϕ′
i[x̄

′
i → ā′], then I satisfies ϕi[x̄i → ā]. The property follows from the observation that if I

satisfies ϕi[x̄i → ā], then ψi[x̄i → ā] is equal to ψ′
i[x̄

′
i → ā′].

To conclude the proof we use a result proved by Fagin et al. [13]. In [13], it is proved that if two mappings
have the same universal solutions (up to homomorphisms) for every source instance, then the mappings are
CQ equivalent. Thus, given that for every source instance I, it holds that chaseλ(I) is a universal solution
for I under the mapping specified by λ, and chaseλ′(I) is a universal solution for I under the mapping
specified by λ′, we obtain that λ and λ′ are CQ-equivalent since chaseλ(I) = chaseλ′(I). This concludes the
proof of the lemma. �

As a corollary of Lemma 9 and the fact that SO-tgds are closed under composition (see Theorem 1), we
obtain that the language of plain SO-tgds is closed under CQ-composition.

Theorem 10. Let M1 and M2 be mappings specified by plain SO-tgds. Then a CQ-composition of M1

and M2 can also be specified by a plain SO-tgd.

In Theorem 5.4 in [14], it is shown that there exist schema mappings M1 and M2, each specified by a finite
set of st-tgds, such that the composition of M1 and M2 cannot be specified by any finite or infinite set of
SO-tgds without equalities. Hence, the language of plain SO-tgds is not closed under the usual notion of
composition, and we have to consider the notion of CQ-composition instead. In particular, as a corollary of
Theorem 10, we obtain that the language of plain SO-tgds is appropriate to represent the CQ-composition
of mappings given by st-tgds.

Corollary 11. A CQ-composition of a finite number of mappings, each defined by a finite set of st-tgds,
can be defined by a plain SO-tgd.

Finally, the following property is a consequence of the fact that every plain SO-tgd is also an SO-tgd. More
precisely, if a mapping M is specified by a plain SO-tgd, then from the results proved in [1] for SO-tgds, we
have that M is logically equivalent to the composition of two mappings M1 and M2 specified by st-tgds.
Thus, given that logical equivalence implies CQ-equivalence, we conclude that M is a CQ-composition of
M1 and M2.

Corollary 12. Let M be a mapping specified by a plain SO-tgd. Then there exist mappings M1 and M2,
each specified by a finite set of st-tgds, such that M is a CQ-composition of M1 and M2.

Theorem 10 together with Corollaries 11 and 12 show that plain SO-tgds are the right language for repre-
senting the CQ-composition of mappings given by st-tgds. We conclude this section by pointing out that
by using some of the tools developed in [5] (see, for example, Theorem 3.12 in [5]), it is possible to prove
that plain SO-tgds are also a good language for inversion.

Theorem 13. Every mapping specified by a plain SO-tgd admits a maximum recovery.

We omit here the proof of Theorem 13 based on the results from [5], as this theorem is also a corollary of
Theorem 19 proved in Section 5, which shows that there exists a polynomial-time algorithm for computing
the maximum recovery of a plain SO-tgd.
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We end this section with a remark on computing the CQ-composition of mappings specified by st-tgds.
Notice that the notion of CQ-composition is just a relaxation of the composition as defined in [14]. Thus,
the same algorithm presented in [14] can be used to compute the CQ-composition of mappings specified
by st-tgds. Nevertheless, the algorithm in [14] provides as output a not necessarily plain SO-tgd. One
can combine the results in [14] and the construction in Lemma 9 to provide an algorithm for computing
the CQ-composition that has a plain SO-tgd as output. Unfortunately, as we next discuss, the complexity
of such algorithm would be high. The composition algorithm in [14] provides as output an SO-tgd which
is of size exponential w.r.t. the size of the input mappings. Moreover, the construction in Lemma 9 is
based on a result presented in [1] stating that every SO-tgd is logically equivalent to an SO-tgd without
nesting of function symbols. In [1] the authors provide a procedure to show this result which, given an
SO-tgd as input, computes a logically equivalent SO-tgd without nesting of function symbols which is of size
exponential w.r.t. the size of the input. Thus, both procedures together plus the construction in Lemma 9,
give rise to a doubly exponential time algorithm for computing a CQ-composition expressed as a plain
SO-tgd. It is open whether one can device a single exponential time algorithm for this problem that has a
plain SO-tgd as output.

4.3. Structural properties of plain SO-tgds

In this section, we study some structural properties of plain SO-tgds as a language for defining schema
mappings. Borrowing the framework developed by ten Cate and Kolaitis [26, 27], we make a case that plain
SO-tgds can be considered as a good alternative for a mapping language which is to be used in practical
applications, since, despite being more expressive than st-tgds, they satisfy most of the good properties
that st-tgds enjoy. We also show how plain SO-tgds refine the picture introduced in [26, 27], allowing us to
answer an open question from the previous work.

Amongst all structural properties of mapping languages that have been studied in the literature, ten Cate
and Kolaitis argue in [27] that three of the most fundamental ones for data exchange and data integration
are allowing for universal solutions, allowing for rewriting of conjunctive queries, and closure under target
homomorphisms. More precisely, given a mapping M from a schema S to a schema T, M is said to admit
universal solutions if for every instance I of S, there exists a universal solution for I under M, and M is
said to allow for conjunctive query rewriting if for every union of conjunctive queries Q over T, there exists
a union of conjunctive queries Q′ over S such that Q′(I) = certainM(Q, I) [27]. Moreover, M is said to be
closed under target homomorphisms if whenever (I, J) ∈ M and there exists a homomorphism from J to an
instance J ′ of T, then (I, J ′) ∈ M [27].

It has been shown that if a mapping is specified by a finite set of st-tgds, then it admits universal
solutions, it allows for conjunctive query rewriting and it is closed under target homomorphisms [26]. On
the other hand, if a mapping is specified by an SO-tgd, then it satisfies the first two conditions but it is
not closed under target homomorphisms [14, 26]. Interestingly, we show in the following theorem that plain
SO-tgds form a second-order language satisfying the three fundamental properties defined above.

Theorem 14. The language of plain SO-tgds satisfy the following properties:

(1) Every mapping specified by a plain SO-tgd is closed under target homomorphisms, admits universal
solutions, and allows for conjunctive query rewriting.

(2) There exists a plain SO-tgd that is not expressible in first-order logic.

Proof. (1) Let M be a mapping defined by a plain SO-tgd λ from a schema S to a schema T. From the
fact that every mapping specified by an SO-tgd admits universal solutions and allows for conjunctive query
rewriting, we conclude that these two properties hold for M. Thus, it only remains to show that M is
closed under target homomorphisms.

Assume that λ is of the form ∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)). Moreover, assume that I is an
instance of S and J, J ′ are instances of T such that (I, J) |= λ and there exists a homomorphism h from J to
J ′. Next we prove that (I, J ′) |= λ. As for the case of the proof of Lemma 9, given a formula α mentioning
variables from x̄ and plain terms built from x̄ and f̄ , and a tuple of elements ā, we use α[x̄ → ā] to denote
the formula obtained from α by replacing every variable in x̄ according to the assignment x̄→ ā.
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Given that (I, J) |= λ, we have that there exists an interpretation f̄ (I,J) over (I, J) for the function
symbols in f̄ such that for every i ∈ {1, . . . , n}, if I satisfies the formula ϕi[x̄i → ā] with interpretation
f̄ (I,J), then J satisfies formula ψi[x̄i → ā] with interpretation f̄ (I,J). Consider now the interpretation f̄ (I,J′)

of f̄ over (I, J ′) defined as follows. For every function symbol f in f̄ and tuple of elements b̄ from (I, J), let
f (I,J′)(b̄) = h(f (I,J)(b̄)), if f (I,J)(b̄) belongs to the domain of J , or otherwise f (I,J′)(b̄) = ⊥, where ⊥ is any
arbitrary element from (I, J ′). Next we show that (I, J ′) satisfies λ with interpretation f̄ (I,J′).

Assume that I satisfies ϕi[x̄i → ā] with interpretation f̄ (I,J′), for i ∈ {1, . . . , n}. Given that λ is a
plain SO-tgd, we have that ϕi does not mention any function symbol and, hence, I satisfies ϕi[x̄i → ā]
with interpretation f̄ (I,J). Then we know that J |= ψi[x̄i → ā] with interpretation f̄ (I,J). Let R(ā′) be an
arbitrary conjunct in ψi[x̄i → ā] with function symbols interpreted according to f̄ (I,J). Then we know that
J |= R(ā′). Thus, given that h is a homomorphism from J to J ′, we have that J ′ |= R(h(ā′)).

Furthermore, since J |= ψi[x̄i → ā], it follows that the interpretation f̄ (I,J′) is defined so that each
conjunct of form R(x̄i) in ψi corresponds to R(h(ā′)) in ψi[x̄i → ā], when function symbols are interpreted
according to f̄ (I,J′). Hence, J ′ |= ψi[x̄i → ā] with interpretation f̄ (I,J′), which was to be shown.

(2) Consider a plain SO-tgd λ from R1 = {E(·, ·)} to R2 = {T (·, ·)} defined as:

∃f

(

∀x∀y E(x, y) → T (f(x), f(y))

)

.

Next we show that λ is not expressible by a first-order logic sentence over the vocabulary R1 ∪R2. For the
sake of contradiction, assume that λ is expressible in first-order logic, and let Φ be a first-order sentence over
R1 ∪R2 that is logically equivalent to λ. Let u and v be two variables not mentioned in Φ and consider the
sentence Φ′ obtained from Φ by replacing every relational atom T (x, y) by formula (x = u ∧ y = v) ∨ (x =
v ∧ y = u). Now let Ψ be the first-order sentence over R1 defined as:

∃u∃v (u 6= v ∧ Φ′).

It is not difficult to see that I |= Ψ if and only if for the instance J of R2 such that T J = {(1, 2), (2, 1)},
it holds that (I, J) |= Φ. Thus, given that Φ is logically equivalent to λ, we obtain that I |= Ψ if and only
if there exists an interpretation f⋆ for the function symbol f such that for every element c in I, it holds
that f⋆(c) is either 1 or 2, and for every tuple (a, b) ∈ EI , it holds that f⋆(a) 6= f⋆(b). Therefore, we have
that I |= Ψ if and only if the graph represented by I is 2-colorable. This leads to a contradiction since
2-colorability is not expressible in first-order logic [21]. �

Notice that by using a similar argument as the one used in the above proof, we can obtain a contradiction
by using 3-colorability instead of 2-colorability. Thus, by a result by Dawar [8], we obtain that λ cannot
even be defined in the finite-variable infinitary logic Lω

∞ω, which is strictly more expressive than first-order
logic (see [21] for a definition of Lω

∞ω).
It is important to notice that ten Cate and Kolaitis [26, 27] were interested in characterizing schema-

mapping languages in terms of the structural properties that they satisfy. In particular, they were interested
in a language capable of specifying all the mappings that are closed under target homomorphisms, admit
universal solutions, and allow for conjunctive query rewriting. The language of nested st-tgds is a fragment
of first-order logic introduced by Fuxman et al. in [19]. This language is strictly more expressive than st-tgds,
and still satisfies the three structural properties just mentioned, so it is considered in [26, 27] as a plausible
candidate to exactly characterize the class of mappings that are closed under target homomorphisms, admit
universal solutions, and allow for conjunctive query rewriting. In fact, ten Cate and Kolaitis posed the
following question in [26, 27]:

Question 15 ([26, 27]). Is it the case that a schema mapping is definable by a set of nested st-tgds if and
only if it is closed under target homomorphisms, admits universal solutions, and allows for conjunctive query
rewriting?

For our purposes, it is not important to formally define the language of nested st-tgds (we refer the reader
to [19, 26] for details), it is just important to mention that the language of nested st-tgds is strictly less
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expressive than the language of plain SO-tgds. In particular, by the results in [19, 26] it is easy to conclude
that every set of nested st-tgds can be specified using plain SO-tgds and, moreover, Theorem 14 (2) shows
that there are plain SO-tgds that are not equivalent to any finite set of nested st-tgds (as the latter are a
fragment of first-order logic). Thus, Theorem 14 gives a negative answer to Question 15 as every mapping
specified by a plain SO-tgd is closed under target homomorphisms, admits universal solutions, and allows for
conjunctive query rewriting. It is worth mentioning that it is an open problem whether the language of plain
SO-tgds exactly characterizes the class of mappings that satisfy the aforementioned structural properties.
In fact, the following questions are still open.

Questions 16.

• Is it the case that a schema mapping is definable by a set of nested st-tgds if and only if it is definable
in first-order logic, is closed under target homomorphisms, admits universal solutions, and allows for
conjunctive query rewriting?

• Is it the case that a schema mapping is definable by a plain SO-tgd if and only if it is closed under
target homomorphisms, admits universal solutions, and allows for conjunctive query rewriting?

We conclude this section by going a step forward in our understanding of plain SO-tgds. More precisely,
we show in the first place that these dependencies correspond exactly to the fragment of SO-tgds defining
mappings that are closed under target homomorphisms.

Proposition 17. If M is a mapping defined by an SO-tgd λ and M is closed under target homomorphisms,
then λ is logically equivalent to a plain SO-tgd.

Proof. Assume that λ is an SO-tgd from a schema S to a schema T. From the proof of Lemma 9, we know
that there exists a plain SO-tgd λ′ such that chaseλ(I) = chaseλ′(I) for every instance I of S. Given that
M is closed under target homomorphisms and for every instance I of S, chaseλ(I) is a universal solution
for I under M, we have that for every instance I of S and every instance J of T: (I, J) |= λ if and only if
there is a homomorphism from chaseλ(I) to J . In the same way, we can conclude that for every instance
I of S and every instance J of T: (I, J) |= λ′ if and only if there is a homomorphism from chaseλ′(I) to
J (notice that the mapping specified by λ′ is closed under target homomorphisms as λ′ is a plain SO-tgd).
Thus, given that chaseλ(I) = chaseλ′(I) for every instance I of S, we conclude that for every instance I of
S and every instance J of T: (I, J) |= λ if and only if (I, J) |= λ′. Therefore, we have that λ and λ′ are
logically equivalent, which was to be shown. �

In the second place, we point out that the language of plain SO-tgds satisfies a property that is arguably
the most fundamental property satisfied by the class of mappings given by st-tgds, and which also help us
to show that an important problem associated to this class of dependencies is decidable. More precisely,
given a mapping M from a schema S to a schema T, we say that the spaces of solutions under M are
characterized by universal solutions if for every instance I of S and every universal solution J for I under
M, it holds that K is a solution for I under M if and only if there exists a homomorphism from J to K.1

This property is satisfied by every mapping specified by a finite set of st-tgds. Since plain SO-tgds, just
as st-tgds, are closed under target homomorphisms and admit universal solutions, every mapping defined
by a plain SO-tgd also satisfies this fundamental property. Surprisingly, this fact can be used to obtain an
algorithm for deciding whether a plain SO-tgd is equivalent to a finite set of st-tgds, which is an important
problem in the area of schema mapping optimization [13].

Proposition 18. There is an algorithm that, given a plain SO-tgd λ and a finite set Σ of st-tgds, decides
whether λ is logically equivalent to Σ.

1Notice that the definition of universal solution only guarantees that if K is a solution for I under M, then there is a
homomorphism from J to K.
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Proof. Assume that λ is a plain SO-tgd from a schema S to a schema T, and that Σ is a finite set of st-tgds
from S to T. Then let M1 = (S,T, λ) and M2 = (S,T,Σ). Given that M1, M2 admit universal solutions
and are closed under target homomorphisms, we have from the results in [13] that λ is logically equivalent
to Σ if and only if M1 ≡CQ M2. Thus, all that needs to be shown is the existence of an algorithm to
decide whether M1 is CQ-equivalent to M2. But this result has been recently established by Fagin and
Kolaitis [11] for the more general case where M1 is specified by an SO-tgd and M2 is specified by a finite
set of st-tgds. This concludes the proof of the proposition. �

It is important to notice that the previous result is in sharp contrast with the situation for the language
of SO-tgds. In fact, an inspection of the proof of Theorem 1 in [18] reveals that the problem of verifying,
given an SO-tgd λ and a finite set Σ of st-tgds, whether λ is logically equivalent to Σ is undecidable.

5. Inverting Plain SO-tgds in Polynomial Time

We show in this section that every st-mapping specified by a plain SO-tgd has a maximum recovery. More
specifically, we present in this section a polynomial time algorithm that, given a plain SO-tgd, returns a
maximum recovery that is expressed in a language that extends plain SO-tgds with some extra features.
Notice that every mapping specified by st-tgds can also be specified by a plain SO-tgd. Thus, our algorithm
can be used to compute maximum recoveries of st-tgds in polynomial time. Unfortunately, the gain in
time complexity comes with the price of a stronger and less manageable mapping language used to express
maximum recoveries.

We start by giving some of the intuition behind the algorithm. Consider the following plain SO-tgd:

∃f∃g

(

∀x∀y∀z
(

R(x, y, z) → T (x, f(y), f(y), g(x, z))
)

)

. (6)

When exchanging data with an SO-tgd like (6), the standard assumption is that every application of a
function symbol generates a fresh value [14]. For example, consider a source instance {R(1, 2, 3)}. When we
exchange data with (6), we obtain a canonical target instance {T (1, a, a, b)}, where a = f(2), b = g(1, 3), and
a 6= b. The intuition behind our algorithm is to produce a reverse mapping that focuses on this canonical
target instance to recover as much source data as possible. Thus, in order to invert a dependency like (6), we
consider three unary functions f1, g1 and g2. The idea is that f1 represents the inverse of function f , while
(g1, g2) represents the inverse of g. Notice that since g has two arguments, we need to use two functions
to represent its inverse. Thus, considering the above example, the intended meaning of the functions is
f1(a) = 2, g1(b) = 1, and g2(b) = 3. With this in mind, we can represent an inverse of the plain SO-tgd (6)
with a sentence of the form:

∃f1∃g1∃g2

(

∀u∀v∀w
(

T (u, v, v, w) ∧ C(u) → R(u, f1(v), g2(w)) ∧ u = g1(w)
)

)

, (7)

where C(·) denotes a built-in unary predicate such that C(a) holds if and only if a is a constant, that is,
a ∈ C. Notice that, if we use dependency (7) to exchange data back from instance {T (1, a, a, b)}, we obtain
an instance {R(1, f1(a), g2(b))}. The equality u = g1(w) has been added in order to ensure the correct
interpretation of g1 as the inverse function of g. In the example, the equality ensures that g1(b) is 1. Notice
also that dependency (7) uses predicate C(·) since we know from (6) that u must be a constant value coming
from the original instance. Predicate C(·) is usually required in order to express inverses of mappings when
nulls are only allowed in the target [10, 15, 5].

In order to obtain a correct algorithm we need another technicality. We have mentioned that when
exchanging data with SO-tgds, we assume that every application of a function produces a fresh value. In
the above example, we have that value a is the result of applying f to 2, thus, we know that value a cannot
be obtained with any other function. In particular, a cannot be obtained as an application of function g.
Thus, when exchanging data back we should ensure that at most one inverse function is applied to every
possible target value. Similarly, we know that every constant value in the target instance that came from
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the source instance cannot be obtained as the result of applying any function. In the above example, value
1 in the target came directly from the source and is not obtained by applying f or g. Thus, we also need to
ensure that no inverse function is applied to a value that came from the source instance. We ensure all this
by using an additional unary function f⋆. In the above example, whenever we apply function f1 to some
value v, we require that f1(v) = f⋆(v) and that g1(v) 6= f⋆(v). Similarly, whenever we apply function g1 to
some value w, we require that g1(w) = f⋆(w) and that f1(w) 6= f⋆(w). Thus, for example, if we apply f1
to value a, we require that f1(a) = f⋆(a) and that g1(a) 6= f⋆(a). Notice that this forbids the application
of g1 to a, since, if that were the case, we would require that g1(a) = f⋆(a), which contradicts the previous
requirement g1(a) 6= f⋆(a). Moreover, for every value u that is copied from target to source, we require that
f1(u) 6= f⋆(u) and g1(u) 6= f⋆(u), ensuring that neither f1 nor g1 is applied to u. Our algorithm adds these
equalities and inequalities as conjuncts in the conclusions of dependencies. Considering the example, our
algorithm adds

Φ(u, v, w) ≡ f1(v) = f⋆(v) ∧ g1(v) 6= f⋆(v) ∧

g1(w) = f⋆(w) ∧ f1(w) 6= f⋆(w) ∧

f1(u) 6= f⋆(u) ∧ g1(u) 6= f⋆(u)

to the right-hand side of the implication of dependency (7), and also adds the existential quantification over
function f⋆. The final SO sentence that specifies a maximum recovery of the plain SO-tgd (6) is:

∃f⋆∃f1∃g1∃g2

[

∀u∀v∀w

(

T (u, v, v, w) ∧ C(u) → R(u, f1(v), g2(w)) ∧ u = g1(w) ∧ Φ(u, v, w)

) ]

Before presenting our algorithm, we make some observations. Although we have assumed in the above
explanation that every application of a function generates a fresh value, we remark that this assumption
has only been used as a guide in the design of our algorithm. In fact, it is shown in Theorem 19 that the
algorithm presented in this section produces maximum recoveries for the general case, where no assumption
about the function symbols is made.

In the following sections, we formalize our algorithm to compute maximum recoveries of plain SO-tgds.

5.1. Auxiliary procedures

We start by fixing some notation. Given a plain SO-tgd λ, we denote by Fλ the set of function symbols that
occur in λ. We also consider a set of function symbols F ′

λ constructed as follows. For every n-ary function
symbol f in Fλ, the set F ′

λ contains n unary function symbols f1, . . . , fn. Additionally, F ′
λ contains a unary

function symbol f⋆. For example, for plain SO-tgd (6), Fλ = {f, g} and F ′
λ = {f1, g1, g2, f⋆}.

We now describe procedures CreateTuple, EnsureInv, and Safe. These procedures are the building
blocks of the algorithm that computes a maximum recovery of a plain SO-tgd. Procedure CreateTuple(t̄)
receives as input a tuple t̄ = (t1, . . . , tn) of plain terms. Then it builds an n-tuple of variables ū = (u1, . . . , un)
such that, if ti = tj then ui and uj are the same variable, and they are distinct variables otherwise. For
example, consider the right-hand side of the implication of dependency (6). In the argument of relation T we
have the tuple of terms t̄ = (x, f(y), f(y), g(x, z)). In this case, we have that procedure CreateTuple(t̄)
returns a tuple of the form (u, v, v, w). Notice that we have used this tuple as the argument of T in the
left-hand side of the implication of dependency (7). Tuple ū created with CreateTuple is used as an
input in the following two procedures.

We now formalize procedure EnsureInv that outputs a formula that guarantees the correct use of the
inverse function symbols.

Procedure: EnsureInv(λ, ū, s̄)
Input: A plain SO-tgd λ, an n-tuple ū = (u1, . . . , un) of (not necessarily distinct) variables, and an n-tuple
s̄ = (s1, . . . , sn) of plain terms built from Fλ and a tuple of variables ȳ.
Output: A formula Qe consisting of conjunctions of equalities between terms built from F ′

λ, ū, and ȳ.
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1. Construct formula Qe as follows. For every i ∈ {1, . . . , n} do the following:

– If si is a variable y of ȳ, then add equality ui = y as a conjunct in Qe.

– If si is a term of the form f(y1, . . . , yk), then add the conjunction of equalities

f1(ui) = y1 ∧ · · · ∧ fk(ui) = yk

to Qe, where f1, . . . , fk are the k unary functions in F ′
λ associated with f .

2. Return Qe. �

As an example, let λ be the dependency (6), s̄ = (x, f(y), f(y), g(x, z)) the tuple of terms in the right-hand
side of the implication of λ, and ū = (u, v, v, w). When running the procedure EnsureInv(λ, ū, s̄), we have
that u4 = w and s4 = g(x, z). Thus, in the loop of Step 1, the conjunction g1(w) = x ∧ g2(w) = z is added
to formula Qe. The final output of the procedure is in this case:

u = x ∧ f1(v) = y ∧ g1(w) = x ∧ g2(w) = z. (8)

Finally, we describe procedure Safe, which is used to guarantee that a value in the target cannot be
generated by two distinct functions.

Procedure: Safe(λ, ū, s̄)
Input: A plain SO-tgd λ, an n-tuple ū = (u1, . . . , un) of (not necessarily distinct) variables, and an n-tuple
s̄ = (s1, . . . , sn) of plain terms built from Fλ and a tuple of variables ȳ.
Output: A formula Qs consisting of equalities and inequalities between terms built from F ′

λ and ū.

1. Construct formula Qs as follows. For every i ∈ {1, . . . , n} do the following:

– If si is a term of the form f(y1, . . . , yk), then add the following conjuncts to Qs:

– The equality f⋆(ui) = f1(ui).

– The inequality f⋆(ui) 6= g1(ui), for every function symbol g in Fλ different from f .

– If si is a variable, then for every function symbol f in Fλ, add the inequality f⋆(ui) 6= f1(ui) as
a conjunct to Qs.

2

2. Return Qs. �

Considering λ as the dependency (6), s̄ the tuple of terms (x, f(y), f(y), g(x, z)) and ū = (u, v, v, w), the
algorithm Safe(λ, ū, s̄) returns:

f1(u) 6= f⋆(u) ∧ g1(u) 6= f⋆(u) ∧ g1(w) = f⋆(w) ∧ f1(w) 6= f⋆(w) ∧ f1(v) = f⋆(v) ∧ g1(v) 6= f⋆(v). (9)

It is important to notice that all the procedures presented in this section work in polynomial time with
respect to the size of their inputs. Next we describe in detail our polynomial-time algorithm to compute a
maximum recovery of a mapping specified by a plain SO-tgd.

5.2. Building the maximum recovery

The algorithm for inverting plain SO-tgds resembles the algorithm proposed in [5] to compute a maximum
recovery of a mapping given by a set of full st-tgds. Recall that a full st-tgd is an st-tgd that does not
include any existential quantifier in its conclusion. As an example, the following is a full st-tgd:

∀x∀y
(

P (x, y) → S(x) ∧ S(y)
)

For mappings specified by this type of dependencies, an algorithm was given in [5] to compute maximum
recoveries in polynomial time. Informally, this algorithm works in two steps (see [5] for details). In the first

2This technical step is new with respect to the algorithm given in [4], but notice that the output language remains the same.
The inequalities added in this step are needed in the proof of correctness of the algorithm given in Theorem 19.
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step, the algorithm rewrites each dependency into a new set of full st-tgds where each rule contains a single
atom in the head. This is a standard procedure in order to present a full st-tgd as a GAV mapping [12, 20].
For the full dependency above, the new set of rules is the following:

∀x∀y (P (x, y) → S(x))

∀x∀y (P (x, y) → S(y))

Notice that the new set of dependencies is logically equivalent to the previous set of full dependencies. In
the second step, the algorithm considers every atom R(x̄) that is in the conclusion of a dependency and
adds to the final output a dependency of the form ∀x̄(R(x̄) → α(x̄)) where α(x̄) is a rewriting of R(x̄) over
the source [5, 27] (see Section 4.3 for a formalization of this notion). For our previous example, a rewriting
of S(x) over the source is ∃y1P (x, y1) ∨ ∃y2P (y2, x). Thus, a maximum recovery for our example is:

∀x
(

S(x) → ∃y1P (x, y1) ∨ ∃y2P (y2, x)
)

The algorithm to compute maximum recoveries for plain SO-tgds works in a similar way. In the first part
of the algorithm, we normalize the set of rules exactly like in the algorithm for full dependencies. Notice
that for plain SO-tgds the function terms allow us to separate the conclusion of each dependency without
altering the semantics of the mapping. Then in the second part, we define for each atom in the conclusion
of a dependency a new rule that intuitively contains as disjuncts all the possible ways this atom could have
been generated. The conclusion of this new rule is similar to a rewriting of the atom over the source, but it
further considers the technicalities presented at the beginning of this section.

Before formally presenting our algorithm for computing maximum recoveries of plain SO-tgds, we need to
introduce some additional notation. Let t̄ and s̄ be n-tuples of plain terms. Then we say that t̄ is subsumed
by s̄ (or s̄ subsumes t̄) if, whenever the i-th component of t̄ contains a variable, the i-th component of s̄
also contains a variable. Notice that if s̄ subsumes t̄, then whenever the i-th component of s̄ contains a
non-atomic term, the i-th component of t̄ also contains a non-atomic term. For example, the tuple of terms
(x, f(y), f(y), g(x, z)) is subsumed by (u, v, h(u), h(v)).

The following algorithm computes a maximum recovery of a mapping specified by a plain SO-tgd in
polynomial time.

Algorithm: PolySOInverse(M)

Input: An st-mapping M = (S,T, λ) with λ a plain SO-tgd of the form ∃f̄(σ1 ∧ · · · ∧ σn).
Output: A ts-mapping M′ = (T,S, λ′) that specifies a maximum recovery of M such that λ′ is a sentence
in SO.

1. Let Σ = {σ1, . . . , σn}, and Σ′ be empty.

2. Normalize Σ as follows. For every i ∈ {1, . . . , n} do:

– If σi is of the form ∀x̄(ϕ(x̄) → R1(t̄1)∧. . .∧Rℓ(t̄ℓ)), then replace σi by ℓ dependencies ∀x̄1(ϕ1(x̄1) →
R1(t̄1)), . . . , ∀x̄ℓ(ϕℓ(x̄ℓ) → Rℓ(t̄ℓ)) such that for every 1 ≤ i ≤ ℓ:

– x̄i is exactly the tuple of variables shared by x̄ and t̄i
– ϕi(x̄i) is the formula obtained from ϕ(x̄) by existentially quantifying the variables of x̄ not

mentioned in x̄i.

3. For every σ of the form ∀x̄(ϕ(x̄) → R(t̄)) in the normalized set Σ, where t̄ = (t1, . . . , tm) is a tuple of
plain terms, do the following:

(a) Let ū = CreateTuple(t̄).
(b) Let premσ(ū) be a formula defined as the conjunction of the atom R(ū) and the formulas C(ui)

for every i such that ti is a variable.
(c) Create a set of formulas Γσ as follows. For every dependency ∀ȳ(ψ(ȳ) → R(s̄)) in Σ such that s̄

subsumes t̄, do the following:

– Let Qe = EnsureInv(λ, ū, s̄).

– Let Qs = Safe(λ, ū, s̄).
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– Add to Γσ the formula ∃ȳ
(

ψ(ȳ) ∧ Qe ∧ Qs

)

(d) Add to Σ′ the dependency:
∀ū

(

premσ(ū) → γσ(ū)
)

where γσ(ū) is the disjunction of the formulas in Γσ.

4. Let λ′ = ∃f̄ ′ (
∧

Σ′), where f̄ ′ is a tuple containing the function symbols in F ′
λ. Return M′ = (T,S, λ′).

�

As an example of the execution of the algorithm, let λ be the plain SO-tgd (6), and assume that
M = (S,T, λ) is the input of algorithm PolySOInverse. In Step 3 of algorithm PolySOInverse(M) we
have to consider a single dependency σ = R(x, y, z) → T (x, f(y), f(y), g(x, z)). Let t̄ be the tuple of terms
(x, f(y), f(y), g(x, z)). Recall that CreateTuple(t̄) is a tuple of the form (u, v, v, w) and, thus,

premσ(ū) = T (u, v, v, w) ∧C(u)

is built in Step 3.b. Notice that C(u) has been added since the first component of t̄ is the variable x. Then
in Step 3.c, we need to consider just dependency σ. Notice that t̄ subsumes itself and, hence, formula

∃x∃y∃z (R(x, y, z) ∧Qe ∧Qs)

is added to the set Γσ, whereQe is the formula (8) andQs is the formula (9). Notice that F ′
λ = {f⋆, f1, g1, g2},

and thus, the following formula λ′ is created in the last step of the algorithm:

∃f⋆∃f1∃g1∃g2

[

∀u∀v∀w

(

T (u, v, v, w) ∧ C(u) → ∃x∃y∃z
(

R(x, y, z) ∧ u = x ∧ f1(v) = y ∧

g1(w) = x ∧ g2(w) = z ∧ Qs

)

) ]

.(10)

Notice that the existentially quantified variables can be eliminated from dependency (10). Thus, replacing
formula Qs and eliminating the existential quantification in the right-hand side of the implication, we obtain
that dependency (10) is equivalent to:

∃f⋆∃f1∃g1∃g2

[

∀u∀v∀w

(

T (u, v, v, w) ∧ C(u) → R(u, f1(v), g2(w)) ∧ u = g1(w) ∧

f1(v) = f⋆(v) ∧ g1(v) 6= f⋆(v) ∧

g1(w) = f⋆(w) ∧ f1(w) 6= f⋆(w) ∧

f1(u) 6= f⋆(u) ∧ g1(u) 6= f⋆(u)

) ]

.

which specifies a maximum recovery of M.
It is important to point out that the output of PolySOInverse is a second order sentence that extends

plain SO-tgds by using predicate C(·) in the premise of the dependencies, and disjunctions, equalities and
inequalities over plain terms, in the conclusions of the dependencies. Thus, the gain in time complexity when
computing maximum recoveries of plain SO-tgds comes with the price of a stronger and less manageable
mapping language.

We now prove the correctness of PolySOInverse.

Theorem 19. Let M be an st-mapping specified by a plain SO-tgd λ. Then PolySOInverse(M) computes
a mapping M′ specified by an SO sentence such that M′ is a maximum recovery of M. Moreover, algorithm
PolySOInverse works in polynomial time.

Proof. Let λ be a plain SO-tgd of the form ∃f̄(σ1 ∧ · · · ∧ σk), and M = (S,T, λ). Let Σ be the set
{σ1, . . . , σk}. Notice that after Step 2 of the algorithm, we have that every σ in the (normalized) set Σ, is
a formula of the form ∀x̄(ϕ(x̄) → R(t̄(x̄))) where:

20



• ϕ(x̄) is a CQ formula over S with x̄ as tuple of free variables,

• R is an n-ary relation symbol in T,

• t̄(x̄) is an n-tuple of plain terms constructed by using functions from f̄ and variables from x̄, and

• x̄ is exactly the tuple of (distinct) variables that ϕ(x̄) and t̄(x̄) share.

Notice that in the above notation we have made explicit the variables mentioned in the tuple of terms
t̄(x̄). Additionally, we assume that all the formulas in Σ have pair-wise disjoint sets of variables. It is
straightforward to see that the formula ∃f̄

∧

Σ obtained after the normalization step is logically equivalent
to the original plain SO-tgd provided as input for the algorithm.

Before continuing with the proof, recall that Fλ is the set of function symbols in f̄ . Also recall that F ′
λ

is the set of function symbols constructed as follows. For every n-ary function symbol f in f̄ , the set F ′
λ

contains n unary function symbols f1, . . . , fn. Additionally, F ′
λ contains a new unary function symbol f⋆.

In the rest of the proof we assume that f̄ ′ is a tuple of function symbols containing exactly the function
symbols mentioned in F ′

λ.
The rest of the proof is divided in three parts. We first introduce some auxiliary notation regarding

the procedures CreateTuple, EnsureInv and Safe, to simplify the exposition of the proof. Second, we
prove, using our new notation, that the mapping M′ obtained as the output of PolySOInverse(M) is a
recovery of M. Finally, we prove that M′ is actually a maximum recovery of M.

(I) Auxiliary notation

We introduce some notation regarding the procedures CreateTuple, EnsureInv and Safe. First,
given a tuple of terms t̄(x̄) = (t1(x̄), . . . , tn(x̄)) we use ūt̄(x̄) to denote the output of CreateTuple(t̄(x)).
That is, ūt̄(x̄) is an n-tuple of variables (u1, . . . , un) such that, for i 6= j, if the i-th component of t̄(x̄) is
equal to the j-th component of t̄(x̄), then ui and uj are the same variable, and they are different variables
otherwise. Consider for example the tuple of terms t̄(x1, x2) = (x1, f(x1), f(x1), x1, x2). In this case we have
that t1(x1, x2) = t4(x1, x2) = x1, t2(x1, x2) = t3(x1, x2) = f(x1), and t5(x1, x2) = x2, and then ūt̄(x1,x2) is
a tuple of the form (u1, u2, u2, u1, u3). Second, given an n-tuple ū = (u1, . . . , un) of not necessarily distinct
variables, and an n-tuple s̄(ȳ) = (s1(ȳ), . . . , sn(ȳ)) of plain terms, we denote by ν(ū, s̄(ȳ)) the formula
obtained as output of procedure EnsureInv(λ, ū, s̄(ȳ)). Thus, we have that for every i with 1 ≤ i ≤ n it
holds that:

• If si(ȳ) is a variable ym of ȳ, then ν(ū, s̄(ȳ)) contains the equality ui = ym as a conjunction.

• If si(ȳ) is a non-atomic term f(ym1
, . . . , ymk

), with f a k-ary function symbol of f̄ and every ymj
a

variable in ȳ, then ν(ū, s̄(ȳ)) contains the conjunction of equalities f1(ui) = ym1
∧ · · · ∧ fk(ui) = ymk

,
where f1, . . . , fk are the k unary functions in f̄ ′ associated with f .

For example, let ū = (u1, u2, u1) and s̄(y1, y2, y3) = (y1, f(y3, y1, y2), g(y2)). Notice that s1(y1, y2, y3) = y1,
s2(y1, y2, y3) = f(y3, y1, y2) and s3(y1, y2, y3) = g(y2). In this case we have that ν(ū, s̄(y1, y2, y3)) is the
formula

u1 = y1 ∧ f1(u2) = y3 ∧ f2(u2) = y1 ∧ f3(u2) = y2 ∧ g1(u1) = y2.

Third, we denote by ω(ū, s̄(ȳ)) the formula obtained as the output of Safe(λ, ū, s̄(ȳ)). That is, we have that
for every i with 1 ≤ i ≤ n, if si(ȳ) is a term of the form f(ym1

, . . . , ymk
) with f a k-ary function symbol of

f̄ and every ymj
a variable in ȳ, then ω(ū, s̄(ȳ)) contains as conjuncts:

• the equality f⋆(ui) = f1(ui) and,

• the inequality f⋆(ui) 6= g1(ui), for every function symbol g in f̄ different from f ,

and if si(ȳ) is a variable, then ω(ū, s̄(ȳ)) contains as conjuncts the inequalities f⋆(ui) 6= f1(ui) for every f
in f̄ . We have introduced this notation only to make explicit the variables used in the tuple of terms t̄(x̄)
and s̄(ȳ) in the inputs of CreateTuple, EnsureInv, and Safe.
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Finally, given a dependency σ in Σ of the form ϕ(x̄) → R(t̄(x̄)), in this proof we denote by CR(t̄(x̄)) the
set Γσ constructed in Step 3.c. That is, for every dependency of the form ψ(ȳ) → R(s̄(ȳ)) in Σ such that
s̄(ȳ) subsumes t̄(x̄), then CR(t̄(x)) includes the formula

∃ȳ
(

ψ(ȳ) ∧ ν(ūt̄(x̄), s̄(ȳ)) ∧ ω(ūt̄(x̄), s̄(ȳ))
)

.

Notice that in the above formula we are using our new notation for the outputs of procedures CreateTuple(t̄(x)),
EnsureInv(λ, ū, s̄(ȳ)), and Safe(λ, ū, s̄(ȳ)).

With our new notation we have that the set Σ′ constructed in PolySOInverse contains, for every
σ ∈ Σ of the form ∀x̄(ϕ(x̄) → R(t̄(x̄))), a dependency σ′ such that

• the premise of σ′ is composed of the atom R(ūt̄(x̄)) and formulas C(ui) for every i such that ti(x̄) is a
variable x of x̄, and

• the conclusion of σ′ is the disjunction of all the formulas in CR(t̄(x̄)).

We are now ready to continue with the proof. For simplicity, in what follows we omit the universal
quantification in the formulas in Σ and Σ′. That is, if σ is a formula in Σ of the form ∀x̄(ϕ(x̄) → R(t̄(x̄))),
we just write ϕ(x̄) → R(t̄(x̄)) to denote σ. Let M be the st-mapping specified by the formula λ = ∃f̄

∧

Σ,
and M′ the ts-mapping specified by the formula λ′ = ∃f̄ ′

∧

Σ′ constructed in the last step of algorithm
PolySOInverse. We need to show that M′ is a maximum recovery of M.

(II) M′ is a recovery of M

We now show that M′ is a recovery of M, that is, we show that (I, I) ∈ M ◦ M′ for every source
instance I. Let I be a source instance, and J the result of chasing I with λ. Recall that J is constructed
as follows. For every σ in Σ of the form ϕ(x̄) → R(t̄(x̄)) and for every tuple ā of constant values such that
I |= ϕ(ā), we include in J the tuple R(t̄(ā)). Notice that in this procedure, every ground term is viewed as a
distinct value (for example, f(a) and g(a) are considered to be distinct values), and every ground non-atomic
term is considered to be a null value. We claim that (J, I) ∈ M′ which proves that (I, I) ∈ M ◦M′. In
order to show that (J, I) |= λ′, we need to prove that there exists an interpretation for the functions of f̄ ′

such that (J, I) |=
∧

Σ′. For every k-ary function f in f̄ consider the interpretation of fi with 1 ≤ i ≤ k as
follows:

• for every k-tuple (a1, . . . , ak), we have that fi(f(a1, . . . , ak)) = ai,

• fi is an arbitrary fresh value in every other case.

That is fi is interpreted as the projection of f over component i. Additionally, we interpret function f⋆

as follows. For every k-ary function f in f̄ we let f⋆(f(a1, . . . , ak)) = a1, and f⋆ is an arbitrary fresh
value in every other case. Notice that this interpretation is well defined since every ground term produced
when chasing I, is viewed as a distinct value. We show now that with this interpretation, it holds that
(J, I) |=

∧

Σ′.
Let σ′ be a formula in Σ′. We need to show that (J, I) satisfies σ′. Assume that σ′ was created from a

formula in Σ of the form ϕ(x̄) → R(t̄(x̄)). Assume that R is an n-ary relation symbol. Then σ′ is of the
form R(ūt̄(x̄)) ∧ C(ū′) → α(ūt̄(x̄)) with ūt̄(x̄) an n-tuple of (not necessarily distinct) variables, ū′ ⊆ ūt̄(x̄),
and α(ūt̄(x̄)) the disjunction of the formulas in CR(t̄(x̄)). Now, suppose that there exists an n-tuple b̄ of
ground terms such that J |= R(b̄)∧C(b̄′) (with b̄′ the corresponding assignment to ū′ that derives from the
assignment of b̄ to ūt̄(x̄)). We must show that I |= α(b̄). Since J is the result of chasing I with λ, we know
that there exists a formula ψ(ȳ) → R(s̄(ȳ)) that is used to generate R(b̄) in J . Then there exists a tuple ā
of constants such that I |= ψ(ā) and s̄(ā) = b̄. Now, given that C(b̄′) holds and s̄(ā) = b̄, we conclude that
s̄(ȳ) subsumes t̄(x̄). Consequently, the formula

β(ūt̄(x̄)) = ∃ȳ
(

ψ(ȳ) ∧ ν(ūt̄(x̄), s̄(ȳ)) ∧ ω(ūt̄(x̄), s̄(ȳ))
)
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belongs to CR(t̄(x̄)), and then, it is a disjunct in α(ūt̄(x̄)). We claim that I |= β(b̄) = β(s̄(ā)) and then
I |= α(b̄). Notice that I |= ψ(ā) and by the interpretation of the functions of f̄ ′ it is straightforward to see
that ν(s̄(ā), s̄(ā)) and ω(s̄(ā), s̄(ā)) holds. Then we have that I |= β(b̄) with the chosen interpretation for
the functions in f̄ ′ by using tuple ā as the witness for the tuple ȳ of existentially quantified variables, and
then I |= α(b̄). We have shown that, with the chosen interpretation for the functions in f̄ ′, it holds that
(J, I) satisfies every formula in Σ′, and then (J, I) satisfies

∧

Σ′, which was to be shown.

(III) M′ is a maximum recovery of M

We have shown that M′ is a recovery of M. To complete the proof that M′ is a maximum recovery of
M, it is enough to show that, if (I1, I2) ∈ M◦M′ then SolM(I2) ⊆ SolM(I1) (see Proposition 3.8 in [5]). To
simplify the exposition we introduce some notation. A ground plain term is a term of the form f(a1, . . . , ak)
where a1, . . . , ak are values from some domain. Let p̄ be a tuple of ground plain terms constructed by using
function symbols from a tuple ḡ, and let ḡ0 be an interpretation for the function symbols in ḡ. We write
p̄[ḡ 7→ ḡ0] to denote the tuple obtained by replacing every ground plain term using a function symbol in ḡ

by its corresponding interpretation in ḡ0. Similarly, if γ is a conjunction of atoms mentioning ground plain
terms, we write γ[ḡ 7→ ḡ0] to denote the conjunction obtained by replacing every ground plain term by its
corresponding interpretation in ḡ0. Abusing of the notation, for a first order formula α that mentions plain
terms constructed from function symbols in ḡ we write I |= α[ḡ 7→ ḡ0] to denote that I satisfies α with the
interpretation ḡ0 for the function symbols in ḡ.

To continue with the proof, let I1 and I2 be source instances such that (I1, I2) ∈ M ◦M′. In order to
prove that SolM(I2) ⊆ SolM(I1) assume that (I2, J

⋆) ∈ M. We need to show that (I1, J
⋆) ∈ M. Since

(I1, I2) ∈ M ◦M′, there exists a target instance J such that (I1, J) ∈ M and (J, I2) ∈ M′. Thus, we have
that (I1, J) |= ∃f̄

∧

Σ, and (J, I2) |= ∃f̄ ′
∧

Σ′. Then we know that there exists an interpretation f̄ (I1,J) for
the functions in f̄ , and an interpretation f̄ ′(J,I2) for the functions in f̄ ′, such that (I1, J) |= (

∧

Σ)[f̄ 7→ f̄ (I1,J)]
and (J, I2) |= (

∧

Σ′)[f̄ ′ 7→ f̄ ′(J,I2)]. Moreover, since (I2, J
⋆) ∈ M we know that there exists an interpretation

f̄ (I2,J⋆) for the functions in f̄ , such that (I2, J
⋆) |= (

∧

Σ)[f̄ 7→ f̄ (I2,J⋆)]. We need to show that there exists
an interpretation f̄ (I1,J⋆) for f̄ , such that (I1, J

⋆) |= (
∧

Σ)[f̄ 7→ f̄ (I1,J⋆)]. We describe now how to construct
f̄ (I1,J⋆) from f̄ (I1,J), f̄ ′(J,I2) and f̄ (I2,J⋆). Let f be a k-ary function symbol in f̄ , and let ā be a k-tuple of
constant values mentioned in I1. Define f (I1,J⋆)(ā) as follows:

• Assume that there exists a unique function symbol g in f̄ , such that its associated function g1 in f̄ ′

satisfies:
f

(J,I2)
⋆ (f (I1,J)(ā)) = g

(J,I2)
1 (f (I1,J)(ā)). (11)

Then, we let

f (I1,J⋆)(ā) = g(I2,J⋆)

(

g
(J,I2)
1

(

f (I1,J)(ā)
)

, . . . , g
(J,I2)
k

(

f (I1,J)(ā)
)

)

.

• Otherwise, if there is no function symbol in f̄ satisfying equality (11), or there is more than one
function symbol in f̄ satisfying (11), then f (I1,J⋆)(ā) = f (I1,J)(ā).

We show next that, with f̄ (I1,J⋆) as defined above, it holds that (I1, J
⋆) |= (

∧

Σ)[f̄ 7→ f̄ (I1,J⋆)].
Let σ be a formula in Σ of the form ϕ(x̄) → R(t̄(x̄)), with R an n-ary relation symbol, and assume that

I1 |= ϕ(ā) for some tuple ā of constant values. We need to show that J⋆ |= R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)]. Now,
since I1 |= ϕ(ā) and (I1, J) |= (

∧

Σ)[f̄ 7→ f̄ (I1,J)], we know that J |= R(t̄(ā))[f̄ 7→ f̄ (I1,J)]. By construction
of Σ′, there exists a formula σ′ in Σ′ of the form

R(ūt̄(x̄)) ∧ C(ū′) → α(ūt̄(x̄)),

that has been constructed from σ, with α(ūt̄(x̄)) the disjunction of the formulas in CR(t̄(x̄)). Notice that, by

the construction of ūt̄(x̄), we obtain that J satisfies R(ūt̄(x̄)) with the assignment t̄(ā)[f̄ 7→ f̄ (I1,J)] to ūt̄(x̄).

Let ā′ be the corresponding assignment to ū′ that derives from the assignment of t̄(ā)[f̄ 7→ f̄ (I1,J)] to ūt̄(x̄).
By the construction of σ′ and since ā is a tuple of constant values, it is straightforward to see that C(ā′)
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holds. Then we have that J |= R(t̄(ā))[f̄ 7→ f̄ (I1,J)] ∧ C(ā′). Moreover, since (J, I2) |= (
∧

Σ′)[f̄ ′ 7→ f̄ ′(J,I2)],
we obtain that I2 |= α(t̄(ā)[f̄ 7→ f̄ (I1,J)])[f̄ ′ 7→ f̄ ′(J,I2)]. From this last fact we conclude that there exists
a disjunct β(ūt̄(x̄)) of α(ūt̄(x̄)) of the form ∃ȳ

(

ψ(ȳ) ∧ ν(ūt̄(x̄), s̄(ȳ)) ∧ ω(ūt̄(x̄), s̄(ȳ))
)

, and a tuple b̄ of
constant values such that

I2 |= ψ(b̄) ∧

(

ν(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄)) ∧ ω(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))

)

[f̄ ′ 7→ f̄ ′(J,I2)].

By the construction of the formula α(ūt̄(x̄)), we know that β(ūt̄(x̄)) belongs to the set CR(t̄(x̄)). Thus,
there exists a formula ψ(ȳ) → R(s̄(ȳ)) in Σ such that s̄(ȳ) subsumes t̄(x̄). Notice that I2 |= ψ(b̄), and
then since (I2, J

⋆) |= (
∧

Σ)[f̄ 7→ f̄ (I2,J⋆)], we know that J⋆ |= R(s̄(b̄))[f̄ 7→ f̄ (I2,J⋆)]. We show next that
R(s̄(b̄))[f̄ 7→ f̄ (I2,J⋆)] is equal to R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)], and then we obtain that J⋆ |= R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)],
which is exactly what we want to prove.

Let ūt̄(x̄) = (u1, . . . , un), t̄(x̄) = (t1(x̄), . . . , tn(x̄)), and s̄(ȳ) = (s1(ȳ), . . . , sn(ȳ)). We show now that, for

every i such that 1 ≤ i ≤ n, it holds that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] = si(b̄)[f̄ 7→ f̄ (I2,J⋆)]. First, assume that si(ȳ) is
a variable ym from ȳ, and bm the (constant) value that corresponds to ym in the assignment of b̄ to ȳ. Notice
that since si(b̄) is the constant value bm, then si(b̄)[f̄ 7→ f̄ (I2,J⋆)] = si(b̄) = bm. Now, since s̄(ȳ) subsumes
t̄(x̄) and si(ȳ) is a variable, it holds that ti(x̄) is either a variable xr of x̄ or a non-atomic term f(xr1

, . . . , xrℓ
),

with f an ℓ-ary function symbol in f̄ and (xr1
, . . . , xrℓ

) an ℓ-tuple of variables from x̄. Assume first that
ti(x̄) is the variable xr and let ar be the value that corresponds to xr in the assignment of ā to x̄. Notice
that formula ν(ūt̄(x̄), s̄(ȳ)) contains the equality ui = ym. Then since ν(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))[f̄ ′ 7→ f̄ ′(J,I2)]
holds, we obtain that ar = bm. Notice that since ar is a constant value the interpretation of the function
symbols in f̄ (or in f̄ ′) does not affect it. In particular, we have that ar = ti(ā) = ti(ā)[f̄ 7→ f̄ (I1,J⋆)] and
thus, since ar = bm we obtain that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] = si(b̄)[f̄ 7→ f̄ (I2,J⋆)], which was to be shown. Assume
now that ti(x̄) is a term f(xr1

, . . . , xrℓ
), with f in f̄ and (xr1

, . . . , xrℓ
) a tuple of variables from x̄. Given

that ν(ūt̄(x̄), s̄(ȳ)) contains then equality ui = ym, and since ν(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))[f̄ ′ 7→ f̄ ′(J,I2)] holds, we

have that f (I1,J)(ar1
, . . . , arℓ

) = bm (where (ar1
, . . . , arℓ

) is the assignment to variables (xr1
, . . . , xrℓ

) that
derives from the assignment of ā to variables x̄). Moreover, since si(ȳ) is a variable, we know that formula
ω(ūt̄(x̄), s̄(ȳ)) contains the inequalities f⋆(ui) 6= g1(ui), for every function symbol g in f̄ . Thus, since formula

ω(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))[f̄ ′ 7→ f̄ ′(J,I2)] holds, we obtain that

f
(J,I2)
⋆

(

f (I1,J)(ar1
, . . . , arℓ

)
)

6= g
(J,I2)
1

(

f (I1,J)(ar1
, . . . , arℓ

)
)

, (12)

for every function symbol g in f̄ . Notice that from (12) and the construction of functions f̄ (I1,J∗), we obtain
that f (I1,J)(ar1

, . . . , arℓ
) = f (I1,J∗)(ar1

, . . . , arℓ
). Thus, since f (I1,J∗)(ar1

, . . . , arℓ
) = f (I1,J)(ar1

, . . . , arℓ
) =

bm = si(b̄), we obtain that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] = si(b̄)[f̄ 7→ f̄ (I2,J⋆)], which was to be shown.
Now suppose that s̄i(ȳ) is a non-atomic term g(ym1

, . . . , ymk
), with g a k-ary function symbol in f̄

and (ym1
, . . . , ymk

) a k-tuple of variables from ȳ. Then since s̄(ȳ) subsumes t̄(x̄), it holds that ti(x̄) is
a non-atomic term f(xr1

, . . . , xrℓ
), with f an ℓ-ary function symbol in f̄ and (xr1

, . . . , xrℓ
) an ℓ-tuple

of variables from x̄. Notice that formula ν(ūt̄(x̄), s̄(ȳ)) contains, for every j such that 1 ≤ j ≤ k, the
equality ymj

= gj(ui) as a conjunction, with gj a unary function symbol in f̄ ′. We also know that formula

ν(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))[f̄ ′ 7→ f̄ ′(J,I2)] holds. Then for every j such that 1 ≤ j ≤ k, we have that bmj
=

(

gj(ti(ā)[f̄ 7→ f̄ (I1,J)])
)

[f̄ ′ 7→ f̄ ′(J,I2)]. Thus, since we are assuming that ti(x̄) = f(xr1
, . . . , xrℓ

), we know
that the following equalities hold:

bm1
= g

(J,I2)
1

(

f (I1,J)(ar1
, . . . , arℓ

)
)

,

...

bmk
= g

(J,I2)
k

(

f (I1,J)(ar1
, . . . , arℓ

)
)

. (13)

Now, focus on the formula ω(ūt̄(x̄), s̄(ȳ)). Since s̄i(ȳ) = g(ym1
, . . . , ymk

), we know that ω(ūt̄(x̄), s̄(ȳ)) contains
the equality f⋆(ui) = g1(ui), and the inequalities f⋆(ui) 6= h1(ui), for every h in f̄ different from g. Then
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since we know that formula ω(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))[f̄ ′ 7→ f̄ ′(J,I2)] holds, we obtain that

f
(J,I2)
⋆

(

f (I1,J)(ar1
, . . . , arℓ

)
)

= g
(J,I2)
1

(

f (I1,J)(ar1
, . . . , arℓ

)
)

, (14)

and for every h in f̄ different from g,

f
(J,I2)
⋆

(

f (I1,J)(ar1
, . . . , arℓ

)
)

6= h
(J,I2)
1

(

f (I1,J)(ar1
, . . . , arℓ

)
)

.

Notice then that g is the unique function in f̄ that satisfies (14). Then by the construction of f̄ (I1,J⋆) we
know that

f (I1,J⋆)(ar1
, . . . , arℓ

) = g(I2,J⋆)

(

g
(J,I2)
1

(

f (I1,J)(ar1
, . . . , arℓ

)
)

, . . . , g
(J,I2)
k

(

f (I1,J)(ar1
, . . . , arℓ

)
)

)

.

By replacing the equalities in (13) in this last expression we obtain that

f (I1,J⋆)(ar1
, . . . , arℓ

) = g(I2,J⋆)(bm1
, . . . , bmk

).

Notice si(b̄) = g(bm1
, . . . , bmk

), and ti(ā) = f(ar1
, . . . , arℓ

), thus we have that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] = si(b̄)[f̄ 7→
f̄ (I2,J⋆)], which was to be shown.

We have shown that, for every i such that 1 ≤ i ≤ n, it holds that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] = si(b̄)[f̄ 7→ f̄ (I2,J⋆)].
Thus we have that R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)] is equal to R(s̄(b̄))[f̄ 7→ f̄ (I2,J⋆)]. Then since J⋆ |= R(s̄(b̄))[f̄ 7→
f̄ (I2,J⋆)] we know that J⋆ |= R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)]. What we have proved is that, for every formula
ϕ(x̄) → R(t̄(x̄)) in Σ, if I1 |= ϕ(ā), then J⋆ |= R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)]. Thus we have that (I1, J

⋆) |=
(
∧

Σ)[f̄ 7→ f̄ (I1,J⋆)], and then (I1, J
⋆) |= ∃f̄

∧

Σ. This concludes the proof of the theorem. �

We conclude this section with two important remarks about the algorithm presented above. Recall that
a mapping M from a schema R1 to a schema R2 is total if dom(M) = Inst(R1), and it is closed-down on
the left if whenever (I, J) ∈ M and I ′ ⊆ I, it holds that (I ′, J) ∈ M. Given that plain SO-tgds are total
and closed down on the left, we obtain from Proposition 4 the following corollary.

Corollary 20. Let M be an st-mapping specified by a plain SO-tgd λ. If M has a Fagin-inverse (quasi-
inverse), then algorithm PolySOInv(M) computes in polynomial time a Fagin-inverse (quasi-inverse)
of M.

Moreover, given that every set of st-tgds can be transformed into an equivalent plain SO-tgd in linear
time, our algorithm can be used to compute Fagin-inverses, quasi-inverses, and maximum recoveries for
st-mappings specified by sets of st-tgds. This is the first polynomial-time algorithm capable of doing this.

6. Concluding Remarks

We have studied the language of plain SO-tgds, its structural properties, and its properties regarding com-
position and inversion. We have argued that plain SO-tgds are a good alternative as a mapping language
for data exchange and data integration, since plain SO-tgds retain the most important structural properties
of st-tgds, and enjoy some interesting new properties regarding composition and inversion.

In fact, just as st-tgds, plain SO-tgds admit universal solutions, allow for conjunctive query rewriting, and
are closed under target homomorphisms, which have been identified in [27] as three of the most fundamental
structural properties for data exchange and data integration. Furthermore, we have shown that plain SO-
tgds are a good alternative if one wants to apply composition and inversion operators. Most notably, we have
proved that plain SO-tgds are closed under CQ-composition, the CQ-composition of any number of mappings
given by st-tgds can be defined with a plain SO-tgd, any plain SO-tgd defines the CQ-composition of two
mappings specified by st-tgds, and plain SO-tgds always have a maximum recovery. These results show that
plain SO-tgds are the right language for capturing the CQ-composition of st-tgds and, more importantly,
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they show how an inverse operator can be applied to a sequence of CQ-compositions of mappings given by
either plain SO-tgds, or st-tgds.

With the practical applicability of inversion in mind, we also presented a polynomial-time algorithm for
computing the inverse of plain SO-tgds (and thus, also the inverse of st-tgds) under all of the most important
notions of inversion that have been proposed in the classical data exchange setting. This is the first efficient
algorithm capable of doing this.

Many questions remain open. For example, it would be interesting to see whether plain SO-tgds capture
all mappings that admit universal solutions, allow for conjunctive query rewriting and are closed under target
homomorphisms. In the search for a mapping language that is closed under both inversion and composition
operators, we would like to study whether all the features introduced in our algorithm are really needed to
specify the maximum recovery of mappings given by plain SO-tgds. Furthermore, we want to investigate
the closure properties of maximum recoveries of mappings specified by plain SO-tgds. In particular, study
if the inversion algorithm can be refined, or the inversion semantics be relaxed, in order to ensure that the
inverse of plain SO-tgds can always be expressed as a plain SO-tgd.
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