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Cost register automata (CRA) and its subclass, copyless CRA, were recently proposed by 
Alur et al. as a new model for computing functions over strings. We study some structural 
properties, expressiveness, and closure properties of copyless CRA. We show that copyless 
CRA are strictly less expressive than weighted automata and are not closed under reverse 
operation. To find a better class we impose restrictions on copyless CRA, which ends 
successfully with a new robust computational model that is closed under reverse and other 
extensions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Weighted automata (WA) are an expressible extension of finite state automata for computing functions over strings. 
They have been extensively studied since Schützenberger [25], and its decidability problems [16,1], extensions [9], logic 
characterization [9,15], and applications [20,8] have been deeply investigated.

Recently, Alur et al. [4,6] introduced the computational model of cost register automata (CRA), an alternative model for 
computing functions over strings. The idea of this model is to enhance deterministic finite automata with registers that can 
be updated by combining registers contents using operations over a fixed semiring. In contrast to automata models with 
counters [14], CRA blindly updates its registers on each transition by using values computed on the previous state. In [4], 
it was shown that CRA are strictly more expressive than WA. Interestingly, it was also shown that a natural subfragment of 
CRA is equally expressive to WA, which gives a new representation for understanding this class of functions.

New representations for WA allows to study natural subclasses of functions that could not be proposed from the clas-
sical perspective. This is the case for the class of copyless CRA that were proposed in [4,2]. The idea of the so-called 
copyless restriction is to use each register at most once in every transition. Intuitively, this automaton model is what we 
call “register-deterministic” in the sense that it cannot copy the content of each register, similar to a deterministic finite 
automaton that cannot make a copy of its current state. The copyless restriction was successfully used in the context of 
streaming tree transducers [3] for capturing MSO-transductions over trees and it was proposed as a natural restriction over 
CRA. Furthermore, copyless CRA are an excellent candidate for having good decidability properties. It was stated in [4] that 
“the existing proofs of the undecidability of equivalence rely on the unrestricted non-deterministic nature of weighted au-
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tomata” and, thus, it is believed that copyless CRA might have good decidability properties. Despite that this is a natural 
and interesting model for computing functions, research on this line has not been pursued further and not much is known 
about copyless CRA.

In this paper we study the structure, expressiveness, and closure properties of copyless CRA. We start by developing a 
toolkit of structural properties for analyzing copyless CRA. Towards this goal, we introduce a normal form on the registers of 
copyless CRA. We show that every copyless CRA can be put in this normal form which considerably simplifies the analysis 
of this model. With this restriction we provide further results that explain the flow and grow of registers content during 
a run. Specifically, we prove that from its normal form one can identify a subset of registers that cannot be reset and are 
constantly growing during a run. These registers are called stable registers, in the sense of having a stable assignment for 
transitions (see Section 3). We show that stable registers lead the behavior of copyless CRA and that they are crucial to 
analyze the growing rate of loops.

Then we turn our attention on studying the expressivity of copyless CRA. As a proof of concept, we use the structural 
properties developed in this paper to compare the expressiveness of copyless CRA with the class of functions defined by WA. 
We show that copyless CRA are strictly less expressive than WA. In the original paper [4] it was shown that a restricted 
fragment of copyless CRA is a fragment of WA, and later in [18] it was shown that the whole class of copyless CRA is 
contained in WA. In this paper we show that the full class of copyless CRA is strictly less expressive than WA by analyzing 
some functions over specific semirings.

In the last sections, we focus on the robustness of copyless CRA in terms of its closure properties. The robustness 
of a computational model is usually measured in terms of how stable is the model when new operations or extensions 
are allowed. Deterministic finite automata are a good example for the previous statement: they are closed under several 
operations like union or intersection and, further, they can be enhanced by non-determinism and regular look-ahead without 
changing the class of recognized languages. These properties are probably one of the reasons behind its fruitful connection 
with MSO logic or finite monoids [7,22]. Unfortunately, this measure of robustness put copyless CRA in an undesirable 
position: our expressiveness result shows that copyless CRA are not closed under reverse and, furthermore, under any 
extensions regarding directions of its reading head. This implies that the behavior of copyless CRA is asymmetric with 
respect to the input, which buried our expectations of a robust class for computing functions.

The lack of good closure properties for copyless CRA fuels our interest in its subclasses. We consider a natural fragment of 
copyless CRA, called bounded alternation copyless CRA (BAC). This class was previously introduced in [18] and characterized 
in terms of the so-called Maximal Partition logic. In contrast to copyless CRA, BAC are robust under several and natural 
extensions previously considered in [4,3]. Specifically, we show that BAC are closed under unambiguous non-determinism, 
regular look-ahead and under reverse. Furthermore, all the structural toolkit introduced for copyless CRA also extend for this 
class. These results emphasize that BAC is a promising computational model in the world of quantitative functions, showing 
that there exists a rich theory of functions below the class of WA.

New material in this article. Preliminary versions of some of the results in this work appeared in [19]. However, this article 
contains substantial new material. We include the full proofs of the main results and characterization presented in [19]. In 
particular, the proofs in Section 3 are of fundamental importance to understand the structure of copyless CRA (e.g. Propo-
sitions 1 to 3) and the proof of Theorem 2 shows how to use all the structural results to show its limits of expressibility. 
Furthermore, we believe that the proof of Theorem 3 is interesting on its own: the determinization of unambiguous non-de-
terministic BAC is a non-standard automata construction. The construction has some resemblance to the well-known Safra’s 
construction [23], in the sense of keeping a tree structure of runs that is updated in a non-trivial way. In terms of new 
results, in Section 4 we show that copyless CRA is strictly less expressive than WA over the semiring of natural numbers. 
Interestingly, the proof over the natural semiring is simpler than over the max-plus semiring and works over the one-letter 
alphabet.

Organization. In Section 2 we introduce copyless CRA and some basic definitions. In Section 3 we introduce the normal 
form and analyze the content of registers during the runs of copyless CRA. In Section 4 we work over the natural semiring 
and we show that copyless CRA are strictly contained in the class of weighted automata. Then we turn our attention to the 
max-plus semiring and we show in Section 5 that the class of copyless CRA is not closed under reverse, which implies that 
copyless CRA are strictly contained in weighted automata also over the max-plus semiring. In Section 6 we define BAC and 
show some closure properties of this class. We conclude in Section 7 with possible directions for future research.

2. Preliminaries

In this section, we recall the definitions of cost register automata and the copyless restriction. We start with some basic 
concepts and the definitions of expressions and substitutions over a semiring that are standard in the area.

Basic concepts. We assume familiarity with basic definitions used in automata theory. We will work over finite alphabets, 
usually denoted � whose elements are called letters. A finite sequence of letters is a string. The set of all finite strings with 
letters in � is denoted �∗ . For any two strings w, u ∈ �∗ the concatenation of them denoted wu is the string obtained by 
extending the sequence w with the sequence u. By the empty string ε we denote the empty sequence of letters that has 
the property wε = εw = w for every w ∈ �∗ .
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Semirings and functions. A semiring is a structure S = (S, ⊕, �, 0, 1) where (S, ⊕, 0) is a commutative monoid, 
(S − {0}, �, 1) is a monoid, multiplication distributes over addition from both sides, and 0 � s = s � 0 = 0 for each s ∈ S . 
If the multiplication is commutative, we say that S is commutative. In this paper, we always assume that S is commu-
tative and we usually denote the set of elements S by the name of the semiring S. For examples of semirings we will 
consider the semiring of natural numbers N(+, ·) = (N, +, ·, 0, 1), the min-plus semiring N∞(min, +) = (N∞, min, +, ∞, 0)

and the max-plus semiring N−∞(max, +) = (N−∞, max, +, −∞, 0) which are standard semirings in the field of weighted 
automata [10].

In this paper, we study the specification of functions from strings to values, namely, from �∗ to S. We say that a function 
f : �∗ → S is definable by a computational system A (e.g. weighted automaton, or CRA) if f (w) = �A�(w) for any w ∈ �∗ , 
where �A� : �∗ → S is the function computed by A. Sometimes we call �A� the semantics of A.

For any string w we denote by wr the reverse string and for each function f we define the function f r by f r(w) = f (wr)

for all w ∈ �∗ . A class F of functions is closed under reverse [4] if for every f ∈ F the function f r is also in F .

Variables, expressions, and substitutions. Fix a semiring S = (S, ⊕, �, 0, 1) and a finite set of variables X disjoint from S . 
We denote by Expr(X ) the set of all expressions generated by the grammar

e ::= s | x | e ⊕ e | e � e,

where s ∈ S and x ∈X . For any expression e ∈ Expr(X ) we denote by Var(e) the set of variables in e. We call an expression 
e ∈ Expr(X ) a ground expression if Var(e) = ∅. For any ground expression we define �e� ∈ S to be the evaluation of e with 
respect to S.

A substitution over X is defined as a mapping σ : X → Expr(X ). We denote the set of all substitutions over X by 
Subs(X ). A ground substitution σ is a substitution where the expression σ(x) is ground for every x ∈ X . Any substitution 
σ can be extended to a mapping σ̂ : Expr(X ) → Expr(X ) such that, for every e ∈ Expr(X ), σ̂ (e) is the expression e[σ ] of 
substituting each x ∈ Var(e) by the expression σ(x). For example, if σ(x) = 2x and σ(y) = 3y, and e = x + y, then σ̂ (e) =
2x +3y. Using the extension σ̂ , we can define the composition σ1 ◦σ2 of substitutions σ1 and σ2 by (σ1 ◦σ2)(x) = σ̂1(σ2(x))
for each x ∈ X . It is readily verified that this operation is associative. For readability we will drop the hat in the notation 
and write substitution in composition form, e.g. we write σ ◦ e instead of σ̂ (e). Moreover, we will often apply a chain of 
substitutions to an expression and then we will also drop the parentheses, writing for example σ1 ◦ σ2 ◦ σ3 ◦ e instead of 
σ̂ (e) for σ = σ1 ◦ (σ2 ◦ σ3).

A valuation is defined as a substitution of the form ν : X → S. We denote the set of all valuations over X by Val(X ). 
Clearly, any valuation ν composed with a substitution σ defines a ground substitution, since Var(ν ◦σ(x)) = ∅ for all x ∈X . 
We say that two expressions e1 and e2 are equal (denoted by e1 ≡ e2) if they are equal up to evaluation equivalence, that 
is, �ν ◦ e1 � = �ν ◦ e2 � for every valuation ν ∈ Val(X ). Sometimes when it is convenient we write = instead of ≡ (e.g. to 
allow writing e = max{1, 2} = 2). We say that two substitutions σ1 and σ2 are equal if σ1(x) = σ2(x) for every x ∈X .

Cost register automata. A cost register automaton (CRA) over a semiring S [4] is a tuple A = (Q , �, X , δ, q0, ν0, μ) where 
Q is a finite set of states, � is a finite alphabet, X is a finite set of variables (we also call them registers), δ : Q × � →
Q × Subs(X ) is the transition function, q0 is the initial state, ν0 : X → S is the initial valuation, and μ : Q → Expr(X ) is 
the final output function. A configuration of A is a tuple (q, ν) where q ∈ Q and ν ∈ Val(X ) represents the current values 
in the variables of A. The automaton A defines the function �A� : �∗ → S as follows. Given a string w = a1 . . .an ∈ �∗

(n ≥ 0), the run of A over w is a sequence of configurations: (q0, ν0) 
a1−→ (q1, ν1) 

a2−→ . . .
an−→ (qn, νn) such that, for every 

1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi) and νi(x) = �νi−1 ◦ σi(x)� for each x ∈ X . The output of A over w , denoted by �A�(w), is 
�νn ◦ μ(qn)�. Note that we assume that every CRA defines a (total) function from words to values, opposed to the definition 
in [5] where CRA can define partial functions. This difference is not significant and all our results can be extended from 
total functions to partial functions.

Alternatively, A computes a function |A| from �∗ to the set of ground expressions over S. A ground configuration of A
is a tuple (q, ς) where q ∈ Q and ς ∈ Subs(X ) is a ground substitution. Given a string w = a1 . . .an ∈ �∗ , the ground run of 
A over w is a sequence of ground configurations: (q0, ς0) 

a1−→ . . .
an−→ (qn, ςn) such that for 1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi), 

ς0 = ν0 and ςi = ςi−1 ◦ σi . We denote the output ground expression of A over a string w by |A|(w) = ςn ◦ μ(qn). Notice 
that, in contrast to ordinary runs, ground runs keep ground expressions as partial values of the run. It is easy to see that 
�A�(w) = �|A|(w)� for every w ∈ �∗ . Hence, for any two automata A and B, the equality |A| = |B| implies �A� = � B �.

We define the transitive closure of the transition function δ∗ : Q × �∗ → Q × Subs(X ), by induction over the string 
length. Formally, δ∗(q, ε) = (q, id) where id(x) = x for all x ∈X ; and δ∗(q1, w ·a) = (q3, σ ◦σ ′), whenever δ∗(q1, w) = (q2, σ)

and δ(q2, a) = (q3, σ ′). For a CRA A we define the set Subs(A) = {σ | δ∗(p, w) = (q, σ) for p, q ∈ Q and w ∈ �∗}.

Copyless restriction and copyless CRA. We say that an expression e ∈ Expr(X ) is copyless if each variable from X occurs at 
most once in e. For example, x � (y ⊕ z) is copyless but (x � y) ⊕ (x � z) is not copyless (because x is mentioned twice). 
Notice that the copyless restriction is a syntactic constraint over expressions. Furthermore, we say that a substitution σ is 
copyless if for every x ∈X the expression σ(x) is copyless and Var(σ (x)) ∩ Var(σ (y)) = ∅ for x, y ∈X and x �= y.

A CRA A is called copyless [4] if for every transition δ(q1, a) = (q2, σ) the substitution σ is copyless; and for every 
state q ∈ Q the output expression μ(q) is copyless. In other words, every time A updates registers or outputs a value, 
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Fig. 1. Examples of copyless cost-register automata.

each register can be used only once. It is straightforward that if A is copyless then all substitutions σ ∈ Subs(A) are also 
copyless. In the following, we give some examples of copyless CRA.

Example 1. Let S be the max-plus semiring N−∞(max, +) and � = {a, b}. Consider the function f1 that for a given string 
w ∈ �∗ computes the longest substring of b’s. This can be easily defined by the CRA A1 in Fig. 1. The CRA A1 stores in 
register y the length of the last suffix of b’s and in register x the length of the longest substring of b’s seen so far. One can 
easily check that A1 is a copyless CRA. Indeed, each substitution is copyless and the final output expression max{x, y} is 
copyless as well.

Example 2. Let S be the max-plus semiring N−∞(max, +) and � = {a, b, #}. Consider the function f2 such that, for 
any w ∈ �∗ of the form w0#w1# . . . #wn with wi ∈ {a, b}∗ , it computes the maximum of the number of a’s and of b’s 
for each substring wi (i.e. max{|wi |a, |wi |b}) and then it sums these values over all substrings wi , that is, f2(w) =∑n

i=0 max{|wi |a, |wi |b}. One can check that the copyless CRA A2 in Fig. 1 computes f2. In fact, the idea is similar to that of 
A1: the registers y and z count the number of a’s and b’s, respectively, in the longest suffix without # and the register x
stores the partial output without considering the last suffix of a’s and b’s. Note that in Fig. 1 we omit some assignments if 
a register is not updated (i.e. it keeps its previous value). For example, for the a-transition we omit the assignments x := x
and z := z for the sake of presentation. One should keep in mind these assignments because of the copyless restriction.

Weighted automata and linear CRA. We will use the class of functions defined by weighted automata only to compare its 
expressibility with copyless CRA (see Section 4 and 5). For the sake of completeness, we give the definition and semantics 
of weighted automata here (see [24,10] for some concrete examples of weighted automata). Fix a finite alphabet � and 
a commutative semiring S. A weighted automaton (WA) over � and S is a tuple A = (Q , �, E, I, F ) where Q is a finite 
set of states, E : Q × � × Q → S is a weighted transition relation, and I, F : Q → S are the initial and the final function, 
respectively [24,10]. Usually, if E(p, a, q) = s, we denote this transition graphically by p 

a/s−−→ q. A run ρ of A over a word 
w = w1 . . . wn is a sequence of transitions: ρ = q0

w1/s1−−−−→ q1
w2/s2−−−−→ · · · wn/sn−−−−→ qn . The weight of a run ρ of A over w is 

defined by |ρ| = I(q0) � (
⊙n

i=1 si) � F (qn). We define RunA(w) as the set of all runs of A over w . Finally, the weight of A
over a word w is defined by �A�(w) =⊕ρ∈RunA(w) |ρ| where the sum is equal to 0 if RunA(w) is empty.

In [4] it was shown that the class of functions defined by WA over some semiring S is equally expressive to the class 
of functions defined by linear CRA over S. Formally, we call a CRA linear if all its substitutions and also its final output 
function are made by linear expressions over S, namely, expressions of the form 

⊕n
i=1 si � xi for some values si ∈ S. For 

example, the CRA A1 in Example 1 is linear and can be defined by a WA, but the CRA A2 in Example 2 is not linear, given 
that the expression x + max{y, z} is not linear (although it is not hard to redefine A2 by an equivalent weighted automaton 
or linear CRA).

Trim assumption. For technical reasons, in this paper we assume that our finite automata and cost register automata are 
always trim, namely, for every state there exists a run that goes through that state (see e.g. [10]). It is worth noticing that 
verifying this property can be reduced to reachability tests in the transition graph [21] and this can be done in NLogSpace. 
Thus, we can assume without lost of generality that all our automata are trimmed.

Copyless expressions as sum of monomials. An expression that does not use ⊕ is called a monomial. By distributivity it 
is easy to show that every copyless expression is equivalent to a sum of monomials (despite that the new expression does 
not have to preserve the copyless property). This representation of copyless expressions as sum of monomials is an easy 
technical result and the reader can safely skip its proof in a first read.

Lemma 1. For any copyless expression e, there exist an expression e′ of the form 
⊕k

i=1

(
ci �⊙x∈Xi

x
)

where k ≥ 0, Xi ⊆ Var(e), 
ci ∈ S, and all sets X1, . . . , Xk are different, such that e ≡ e′ .

Proof. The lemma is shown by induction on the size of e. For the base case, when e is equal to a constant or a variable, 
the lemma trivially holds by taking e′ = e. For the inductive case, suppose that e = e1 ⊗ e2 where ⊗ is either ⊕ or �. By 
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the inductive hypothesis we know that there exist expressions e′
1 and e′

2 equivalent to e1 and e2, respectively, such that for 
j ∈ {1, 2}:

e′
j ≡

k j⊕
i=1

⎛
⎜⎝c j

i �
⊙
x∈X j

i

x

⎞
⎟⎠

where X j
1, . . . , X

j
k j

is a sequence of different sets over X and c j
1, . . . , c

j
k j

is a sequence of values over S for k j ≥ 0. Given 

that e is a copyless expression we know that Var(e1) ∩ Var(e2) = ∅. Then since X j
i ⊆ Var(e j) and Var(e1) ∩ Var(e2) = ∅, we 

get:

X1
i1

∩ X2
i2

= ∅ for every i1 ≤ k1 and i2 ≤ k2. (1)

Now we consider two cases when ⊗ is either ⊕ or �. For ⊕ we have e = e1 ⊕ e2 ≡ e′
1 ⊕ e′

2 = e′ and for �:

e = e1 � e2 ≡ e′
1 � e′

2

=
k1⊕

i=1

(
c1

i �
⊙
x∈X1

i

x
) �

k2⊕
i=1

(
c2

i �
⊙
x∈X2

i

x
)

≡
k1⊕

i1=1

k2⊕
i2=1

(
c1

i1
� c1

i2
�

⊙
x∈X1

i1
∪X2

i2

x
) = e′

Recall that X1
i1

∩ X2
i2

= ∅ by (1). It remains to show that all sets of the form X1
i1

∪ X2
i2

are different. Indeed, all sets X1
i1

are 
pairwise different and the same holds for X2

i2
. This means that all sets X1

i1
∪ X2

i2
are pairwise different as well. �

Removing zeros from copyless CRA. We say that an expression e ∈ Expr(X ) is reduced if e = 0 or 0 does not occur in e. 
It is straightforward to show that for any expression e there exists an equivalent expression e∗ that is reduced. Indeed, 
one can construct an equivalent reduced expression by replacing subexpressions of the form e ⊕ 0 by e and e � 0 by 0, 
respectively. Then by reducing each subexpression recursively, the resulting expression is either 0 or 0 does not occur in it. 
We say that an expression is non-zero if it is different from 0. Further, note that if e is copyless, then its reduced expression 
e∗ is copyless as well. The exact proof can be given by induction on the structure of e.

Similarly, we say that a substitution σ is reduced if σ(x) is reduced for all registers x in the domain of σ . Additionally, 
we write that substitutions are non-zero if σ(x) �= 0 for all x.

For a given f : �∗ → S we say that f is a non-zero function if f (w) �= 0 for all w ∈ �∗ . We say that an automaton 
A is non-zero if all substitutions and expressions (in transitions, initial valuation and final output function) used in it are 
non-zero. The following result shows that, without lost of generality, we can assume that all constants in a copyless CRA 
are different from 0 whenever the function defined by A is a non-zero function. Like for Lemma 1, the proof of Lemma 2
is an easy but technical construction, and the reader can skip its proof in a first read.

Lemma 2. Let A be a copyless CRA such that �A� is a non-zero function. Then there exists a copyless and non-zero CRA A′ such that 
�A� = �A′�.

Proof. The idea of the proof is to keep the information about registers equal to 0 in the states. Let A = (Q , �, X , δ, q0,

ν0, μ) be a copyless CRA. We define a new copyless CRA A′ = (Q ′, �, X , δ, q′
0, ν

′
0, μ

′), where Q ′ = Q × 2X is the new set 
of states; q′

0 = (q0, S0) where S0 = {x ∈ X | ν0(x) = 0}, and ν ′
0(x) = ν0(x) for x ∈ X \ S0. Further, for registers x ∈ S0 we 

define ν ′
0(x) = 1 (or any other constant in S \ {0}).

For the definition of δ′ and μ′ we introduce some notation. Let S ⊆X and e be an expression over X . We define e[S] to 
be the reduced expression d∗ , where d is the result of replacing all registers x ∈ S ∩ Var(e) by 0 in the expression e. We are 
ready to define δ′ and μ′ . For every (q, S) ∈ Q ′ and a ∈ �, we define δ′((q, S), a) = ((q′, S ′), σ ′), where: δ(q, a) = (q′, σ); S ′
is the set of all registers x such that σ(x)[S] = 0; and σ ′ is defined for every x ∈X as follows:

σ ′(x) =
{

σ(x)[S] if x /∈ S ′
1 if x ∈ S ′

Finally, we define the output function μ′((q, S)) = μ(q)[S], for every (q, S) ∈ Q ′ .
It is straightforward to show that �A′� = �A� and that ν ′

0, δ′ and μ′ do not mention 0. Note that there cannot exist 
a reachable state (q, S) ∈ Q ′ such that μ′((q, S)) = 0. Otherwise, �A�(w) = 0 for some w ∈ �∗ , which contradicts the fact 
that �A� is a non-zero function. �
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Fig. 2. Examples of copyless cost-register automata regarding normal form.

Furthermore, we say that a semiring is a non-zero semiring if every ground expression e that does not use 0 cannot 
evaluate to 0. For example in the N−∞(max, +) semiring, where 0 = −∞ if an expression uses only natural numbers then 
with + and max operation one can never get −∞. With this property every non-zero CRA over a non-zero semiring has 
the property that ν(x) �= 0 for each reachable configuration (q, ν) and every register x ∈ X . We will need this property of 
the N−∞(max, +) semiring later in Sections 3 and 5.

3. Structural properties of copyless CRA

In this section we analyze the structure of copyless CRA and develop some machinery that will be useful in Section 5. 
These results will help to understand the internal structure of copyless CRA.

3.1. Normal form

Let A = (Q , �, X , δ, q0, ν0, μ) be a copyless CRA and let � be a predefined linear order over X . We say that a substitu-
tion σ : X → Expr(X ) is in normal form with respect to � if x � y for all x ∈ X and all y ∈ Var(σ (x)). In other words, all 
variables mentioned in σ(x) are greater than or equal to x with respect to �. Furthermore, we write that A is in normal 
form with respect to � if every σ ∈ Subs(A) is in normal form with respect to �. For example, the copyless CRAs in Exam-
ple 1 and 2 are in normal form with respect to the orders x � y and x � y � z, respectively. For the sake of simplification, 
we assume that every set of registers X is given with a linear order �X and instead of writing that A or σ are in normal 
form with respect to �X we write in short that A or σ are in normal form. Further for every nonempty subset S ⊆X , we 
denote by min(S) the least element of S with respect to �X .

Example 3. Consider the set of registers X = {x, y} with the order x � y. The copyless CRA B1 in Fig. 2 is not in normal 
form, because of the b-transitions. On the other hand, the copyless CRA B2 is in normal form. For both automata we omit 
the initial states, initial valuations and final output functions because they are not relevant for the discussion.

In the previous example, the automaton B1 uses the registers x and y to count the number of a’s and b’s. However, 
depending on the current state both registers have either the number of a’s or the number of b’s. It is clear that one would 
like to avoid this type of behavior in a theoretical analysis. Intuitively, one register should always contain the number of 
a’s and the other register the number of b’s. One can clearly transform B1 to an automaton in normal form by exchanging 
the use of x and y in the transitions and encoding this permutation between registers in the states. This is precisely the 
automaton B2 in Fig. 2. We generalize this idea for all copyless CRA in the next proposition.

Proposition 1. For every copyless CRA A there exists a copyless CRA in normal form A′ with the same set of registers such that |A| =
|A′| and thus recognize the same function. The number of states in A′ can be bounded exponentially in the size of the automaton A.

Proof. Let A = (Q , �, X , δ, q0, ν0, μ) be a copyless CRA. We define a copyless CRA A′ in normal form such that A′
computes the same function as A. The idea of A′ is to store a state q ∈ Q and a permutation ρ of the set X such 
that, if (q, ν) is the current configuration of A over an input w , then ((q, ρ), ν ′) is the configuration of A′ over w and 
ν(x) = ν ′(ρ(x)). In other words, the content of ν is still defined by ν ′ but the value ν(x) of x is now in the register ρ(x) for 
every x ∈X . The permutation of registers’ content will allow us to keep the normal form in A′ . Formally, for an expression 
e ∈ Expr(X ) and a permutation ρ over X , we define ρ(e) to be the expression obtained by replacing x in e with ρ(x) for 
every x ∈X . Let A′ = (Q ′, �, X , δ′, q′

0, ν
′
0, μ

′), where:

Q ′ = Q × {ρ | ρ is a permutation of the set X }
is the set of states, q′

0 = (q0, id) where id is the identity permutation, ν ′
0 = ν0, and μ′((q, ρ)) = ρ(μ(q)). For the sake of 

presentation, let us show how the run of A′ will correspond to the run of A before defining the transition function δ′ . Let 
(q, ν) and (q′, ν ′) be the configuration of A and A′ , respectively, after reading w ∈ �∗ . We will show:

q′ = (q,ρ) for some permutation ρ and ν(x) = ν ′(ρ(x)) for every x ∈ X . (2)
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Note that, for the word ε , this correspondence holds since (q0, ν0) and ((q0, id), ν ′
0) are the initial configuration of A and A′ , 

respectively, and ν ′
0(id(x)) = ν ′

0(x) = ν0(x). We show that if (2) always holds, then A and A′ computes the same function. 
Indeed, if the transition function δ′ preserves (2), then:

ν̂ ′(μ′((q,ρ))) = ν̂ ′(ρ(μ(q))) (by definition of μ′)
= ν̂(μ(q)) (by Property (2)).

This proves that the outputs of A and A′ are the same (provided that δ′ preserves (1)). It remains to define δ′ such that A′
is a copyless CRA in normal form and its definition satisfies (2).

We need some additional definitions. For a copyless substitution σ and a permutation ρ both over X we define the 
set Sσ ,ρ = {x ∈ X | Var(ρ(σ (x))) �= ∅}, that is, the set of all variables x where σ(x) is not ground. Further, define the set 
S ′
σ ,ρ = {y | ∃x ∈ X . y = min(Var(ρ(σ (x))))}. For each x ∈ Sσ ,ρ , the set Var(ρ(σ (x))) is non-empty and thus has a least 

element. This motivates the function τ 0
σ ,ρ : Sσ ,ρ → S ′

σ ,ρ that associates to each x ∈ Sσ ,ρ its least element, formally:

τ 0
σ ,ρ(x) = min

(
Var
(
ρ(σ (x))

))
(3)

One can easily check that τ 0
σ ,ρ is a bijective function from Sσ ,ρ to S ′

σ ,ρ . It is surjective by the definition of Sσ ,ρ and S ′
σ ,ρ , 

and injective by the copyless restriction over σ . To see the last claim, recall that any copyless substitution σ satisfies 
Var(σ (x)) ∩ Var(σ (y)) = ∅ and, in particular, Var(ρ(σ (x))) ∩ Var(ρ(σ (y))) = ∅ for any permutation ρ . Finally, given that 
τ 0
σ ,ρ is a bijective function from Sσ ,ρ ⊆X to S ′

σ ,ρ ⊆X , we can extend τ 0
σ ,ρ to a bijection τσ ,ρ :X →X such that τσ ,ρ(x) =

τ 0
σ ,ρ(x) for every x ∈ Sσ ,ρ . Of course, there might be many extensions of τ 0

σ ,ρ to τσ ,ρ but we can choose any extension (the 
decision is not important for the construction).

We have now all the ingredients to define the transition function δ′ . For every p ∈ Q , a ∈ �, and permutation ρ over X , 
if δ(p, a) = (q, σ) then we define δ′((p, ρ), a) = ((q, τσ ,ρ), σ ′) such that

σ ′(x) = ρ(σ (τ−1
σ ,ρ(x)))

for every x ∈ X . The substitution ρ ◦ σ ◦ τ−1
σ ,ρ is a copyless substitution for every copyless σ because ρ and τ−1

σ ,ρ are just 
permuting the variables. Therefore, we can conclude that σ ′ is copyless as well.

Our next step is to show that σ ′ is in normal form, i.e., for every x ∈ X it holds that x � y for every y ∈ Var(σ ′(x)). 
We prove this by case analysis by considering whether x ∈ S ′

σ ,ρ or not. First suppose that x ∈ S ′
σ ,ρ . Since x is in the 

codomain of τ 0
σ ,ρ and τσ ,ρ is an extension of τ 0

σ ,ρ , we have that x = min(Var(ρ(σ (τ−1
σ ,ρ(x))))) by (3). Then if we replace 

ρ(σ (τ−1
σ ,ρ(x))) by σ ′ , we get that x = min(Var(σ ′(x))). In particular, we have that x � y for every y ∈ Var(σ ′(x)). Now 

suppose that x /∈ S ′
σ ,ρ . This means that x is not in the codomain of τ 0

σ ,ρ which implies that τ−1
σ ,ρ(x) /∈ Sσ ,ρ . In other words, 

σ ′(x) = ρ(σ (τ−1
σ ,ρ(x))) is a ground expression and Var(σ ′(x)) = ∅. Since for both cases it holds that x � y for every x ∈ X

and y ∈ Var(σ ′(x)), then we conclude that σ ′ is in normal form.
For the last part of the proof, we show by induction that δ′ satisfies the correspondence (2) between A and A′ . Let 

(p, νn) and ((p, ρ), ν ′
n) be the configuration of A and A′ , respectively, after reading w ∈ �∗ . Assume by induction that 

νn(x) = ν ′
n(ρ(x)) for every x ∈X and let:

(p, νn)
a−→ (q, νn+1) and ((p,ρ), ν ′

n)
a−→ ((q, τσ ,ρ), ν ′

n+1)

be the transitions for A and A′ , respectively, after reading a new letter a ∈ �. Fix the transitions of the last steps δ(p, a) =
(q, a) and δ′((p, ρ), a) = ((q, τσ ,ρ), σ ′), where σ ′ is defined as above. We prove the correspondence (2) between νn+1 and 
ν ′

n+1 as follows:

ν ′
n+1(τσ ,ρ(x)) = ν ′

n(σ
′(τσ ,ρ(x))) (by definition of ν ′

n+1)

= ν ′
n(ρ(σ (τ−1

σ ,ρ(τσ ,ρ(x))))) (by definition of σ ′)
= ν ′

n(ρ(σ (x))) (by composing τσ ,ρ and τ−1
σ ,ρ )

= νn(σ (x)) (by the induction assumption)

= νn+1(x) (by definition of νn+1).

This proves that the transition function δ′ keeps the correspondence (2) between A and A′ . Since it also holds for the initial 
configuration then by induction it holds for all reachable configurations, which proves that the outputs of A and A′ are the 
same.

So far, we have shown that A and A′ define the same function and every substitution on A′-transitions are in normal 
form. To conclude the proof we need to show that if every substitution on A-transitions is in normal form, then every 
σ ∈ Subs(A) is in normal form. We prove this by induction over the length of the word. Assume that it holds for all words 
w of length at most n and let δ∗(q, w) = (q′, σ). Suppose we want to extend w with a ∈ � and let δ(q′, a) = (q′′, σ ′). 
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By definition, we know that δ∗(q, w · a) = (q′′, σ ◦ σ ′). Set y ∈ Var(σ ◦ σ ′(x)). By definition there exists a register z such 
that z ∈ Var(σ ′(x)) and y ∈ Var(σ (z)). Since δ is in normal form and z � y by the induction hypothesis, we conclude that 
x � z � y. In other words, x � y for every y ∈ Var(σ ◦ σ ′(x)) and, thus, σ ◦ σ ′ is in normal form. �
3.2. Stable registers and reset substitutions

Let A be a copyless CRA in normal form. During a run of A the content of its registers flows from higher to lower 
registers with respect to the total order �. This does not necessarily mean that the content of all registers eventually 
contributes to the �-minimum register. For example, if all substitutions in A are of the form σ(x) = x ⊕ k for some k ∈ S, 
then no register contributes to the content of another one. Intuitively, in this example each register is “stable” with respect 
to the content flow of A, since each register never passes its value to lower registers. This idea motivates the notion of 
stable registers, which are essential to understand the behavior and output of copyless CRA. Let σ ∈ Subs(X ) be a copyless 
substitution in normal form. We say that a register x is σ -stable (or stable on σ ) if x ∈ Var(σ (x)). More general, we write 
that a register x is stable in A if x is σ -stable for all substitutions σ ∈ Subs(A). Moreover, we say that a register x is stable 
if it is stable in a CRA A which is clear from the context.

Stable registers play a crucial role in the behavior of copyless CRA. Indeed, we will show that they are the only registers 
whose value always depends on the whole word, namely, we can always “reset” the value of non-stable registers to a 
constant. For instance, the automaton A1 in Example 1 resets the register y to 0 each time the symbol a is read. On the 
other side, the register x is stable and it cannot be reset to a constant. In fact its value only grows or remains the same 
during the run of A1.

We formalize this idea of reseting the content of registers as follows: a substitution σ ∈ Subs(A) is a reset substitution 
if Var(σ (x)) = ∅ for all non σ -stable registers x. We say that a substitution σ ∈ Subs(A) is an A-reset substitution if 
Var(σ (x)) = ∅ for all non-stable registers x in A.

We start with the following lemma that shows that the composition preserves stability between registers.

Lemma 3. Let σ , σ ′ be two copyless substitution in normal form. For any register x ∈X it holds that x is stable on σ and σ ′ if, and 
only if, x is (σ ◦ σ ′)-stable.

Proof. Suppose that x is stable on σ and σ ′ . This means that x ∈ Var(σ (x)) and x ∈ Var(σ ′(x)) and, thus, x ∈ Var(σ ◦ σ ′(x))
by composition, implying that x is (σ ◦ σ ′)-stable. For the other direction, suppose that x ∈ Var(σ ◦ σ ′(x)). Then we know 
that there exists y such that x ∈ Var(σ (y)) and y ∈ Var(σ ′(x)). Since σ and σ ′ are in normal form, then x � y � x which 
implies that x = y and, thus, x is stable on σ and σ ′ . �

In our constructions we will often require that registers are stable in A. By the previous lemma, it is enough to check 
that a register x is σ -stable for all transitions δ(p, a) = (q, σ) to know whether x is stable on all substitutions from Subs(A).

For Q ′ ⊆ Q we say that Q ′ is a bottom strongly connected component (BSCC) of A if (1) for every pair q1, q2 ∈ Q ′ there 
exists w ∈ �∗ such that δ∗(q1, w) = (q2, σ) for some substitution σ and (2) for every q1 ∈ Q ′ and w ∈ �∗ if δ∗(q1, w) =
(q2, σ) then q2 ∈ Q ′ . Intuitively a BSCC Q ′ of A is a set of mutually reachable states such that there is no word that 
leaves Q ′ . We say that A is strongly connected if the whole set Q is a BSCC of A.

Proposition 2. Let A be a copyless and strongly connected CRA in normal form. Then for all q, q′ ∈ Q there exists wq,q′ ∈ �∗ and a 
substitution σ such that δ∗(q, wq,q′

) = (q′, σ) and σ is an A-reset substitution. Furthermore, there exists wq,q′
containing all letters 

in �.

For instance in Example 1 it suffices to take the word w = ba or any word that contains a, given that the substitution 
defined by the a-transition is an A-reset substitution. For simplicity if q = q′ , we write wq and σ q instead of wq,q and σ q,q . 
Note that the additional requirement that wq,q′

contains all letters in � is rather technical and its usefulness will be clear 
later in Section 5.

Proof of Proposition 2. Let x1, . . . , xn be all registers in X in the increasing order with respect to �. We prove the fol-

lowing statement. For every i ≤ n there exist a word wq,q′
i and a substitution σ q,q′

i such that δ∗(q, wq,q′
i ) = (q′, σ q,q′

i ) and 
Var(σ q,q′

i (x)) = ∅ for all registers x with xi ≤ x which are non-stable in A. Then the proposition follows from this statement 
with wq,q′ = wq,q′

1 and σ = σ
q,q′
1 .

We start with the base case i = n. Now x = xn and we consider whether x is stable in A or not. If xn is stable, then take a 
word u and a substitution τ such that δ∗(q, u) = (q′, τ ) and u contains each letter in �. Given that A is strongly connected 
we know that u and τ always exists. Then by defining wq,q′

n = u and σ q,q′
n = τ , the statement holds because xn is stable in A. 

Now, suppose that xn is non-stable which means that there exist a pair p, p′ ∈ Q and a word u such that δ∗(p, u) = (p′, τ )

and xn is non-stable on τ . Given that A is in normal form and xn is the maximum register with respect to �, this implies 
that Var(τ (xn)) = ∅. Pick two words v1, v2 ∈ �∗ such that δ∗(q, v1) = (p, σ1) and δ∗(p′, v2) = (q′, σ2) for some substitutions 
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σ1 and σ2, and v1 contains each letter in �. Again, we know that v1 and v2 always exists since A is strongly connected. 
Then define wq,q′

n = v1 · u · v2 and σ q,q′
n = σ1 ◦ τ ◦ σ2. By construction, we know that δ∗(q, wq,q′

n ) = (q′, σ q,q′
n ) and wq,q′

n

contains all letters in �. To prove that Var(σ q,q′
n (xn)) = ∅, notice that xn is non-stable on τ . By Lemma 3 this implies that xn

is non-stable on σ1 ◦ τ ◦ σ2. Given that A is in normal form and xn is the maximal register, we get that Var(σ q,q′
n (xn)) = ∅.

For the inductive step, assume that wq,q′
i+1 and σ q,q′

i+1 exist. We show how to construct wq,q′
i and σ q,q′

i that satisfy the 
statement for registers greater than or equal to xi . Again, we consider two cases depending on whether xi is stable or 
not. If xi is stable, then by defining wq,q′

i = wq,q′
i+1 and σ q,q′

i = σ
q,q′
i+1 the inductive step trivially holds. Suppose that xi is 

non-stable and, therefore, there exist a pair p, p′ ∈ Q and a word u such that δ∗(p, u) = (p′, τ ) and xi is non-stable on τ . 
Let v1, v2 ∈ �∗ such that δ∗(q, v1) = (p, σ1) and δ∗(p′, v2) = (q′, σ2) for some substitutions σ1 and σ2. Recall that v1 and 
v2 exist because A is strongly connected. Now, define:

wq,q′
i = wq

i+1 · v1 · u · v2

σ
q,q′
i = σ

q
i+1 ◦ σ1 ◦ τ ◦ σ2

It is clear by construction that δ∗(q, wq,q′
i ) = (q′, σ q,q′

i ) and wq,q′
i contains all letter in � (because already wq

i+1 contains 

all letters in �). To conclude the proof, we show that Var(σ q,q′
i (x)) = ∅ for every non-stable register x � xi . Let x be any 

non-stable register x � xi (possibly xi ) and let τ ∗ = σ1 ◦τ ◦σ2. First, note that all y ∈ Var(τ ∗(x)) are non-stable. Otherwise, if 
y ∈ Var(τ ∗(x)) is stable, then y ∈ Var(τ ∗(y)), which is a contradiction because Var(τ ∗(x)) ∩ Var(τ ∗(y)) = ∅ by the definition 
of being copyless. Therefore, we have that every register in Var(τ ∗(x)) is non-stable. Note also that xi /∈ Var(τ ∗(x)). This 
is obvious when x �= xi because A is in normal form. Otherwise, x = xi and we know that xi /∈ Var(τ ∗(xi)) because xi
is non-stable. Then we have that all registers in Var(τ ∗(x)) are non-stable and strictly greater than xi . By the induction 
assumption Var(σ q

i+1(y)) = ∅ for all y ∈ Var(τ ∗(x)). By composing σ q
i+1 and τ ∗ , we conclude that Var(σ q,q′

i (x)) = ∅. �
3.3. Growing rate of stable registers in a cycle

The behavior of cycles in a computation model is always important; most of the decidability results can be derived from 
a good understanding of its cyclic behavior. Here, we study how the content of stable registers behaves through cycles. We 
say that a word w ∈ �∗ is a cycle over a state q ∈ Q in A if δ∗(q, w) = (q, σ) for some substitution σ . Of course, the 
iteration of a cycle w (i.e. wn for any n ≥ 1) is also a cycle over q and it satisfies δ∗(q, wn) = (q, σ n) for any n, where σ n

is σ composed n-times with itself. We will need the next result to show that by iterating cycles one can always “reset” the 
content of non σ -stable registers.

Lemma 4. Let A be in normal form and σ ∈ Subs(A) a copyless substitution. There exists N ≤ |X | such that σ N is a reset substitution.

Proof. Suppose x is non-stable over σ , i.e. x /∈ Var(σ (x)), and assume that Var(σ (x)) �= ∅. Then consider the register y1 =
min(Var(σ (x))). Since A is copyless and in normal form then x ≺ y1. But since y1 ∈ Var(σ (x)) and A is copyless then 
y1 /∈ Var(σ (y1)) (because y1 cannot appear twice in σ ). Recall that Var(σ (y1)) ⊆ Var(σ 2(x)) given that y1 ∈ Var(σ (x)). 
Combining both facts we get that y1 /∈ Var(σ 2(x)) and because A is in normal form y1 ≺ min(Var(σ 2(x))).

So far, we have proved that x ≺ y1 = min(Var(σ (x))) ≺ min(Var(σ 2(x))) and x /∈ Var(σ 2(x)). Also, we know that σ 2 is a 
copyless substitution in normal form. Then, we can repeat the same argument above for x and σ 2, forming an increasing 
sequence of registers:

x ≺ y1 = min(Var(σ (x))) ≺ y2 = min(Var(σ 2(x))) ≺ y3 = min(Var(σ 3(x))) ≺ . . .

The number of registers is finite so this sequence cannot be infinite. Thus for every x there exists Nx ≤ |X | such that 
Var(σ Nx(x)) = ∅. Then σ N is a reset substitution, where N = max{Nx | x is non-stable}. �

By Lemma 4 we know that a non-stable register x over σ becomes a constant when σ is iterated at least |X |-times. In 
the next proposition, we study the growing behavior of stable registers when a reset substitution is iterated. This will be 
useful to understand the behavior of copyless CRA inside their cycles. For this result we need additional assumptions that 
automata do not use 0 in their expressions and that the semiring S is non-zero (see Section 1 for details).

Proposition 3. Let S be a non-zero semiring and let A be a non-zero automaton in normal form. Let σ ∈ Subs(A) be a reset substi-
tution and x a σ -stable register. Then there exist c, d ∈ S with c �= 0 such that for every j ≥ 0 we have:

σ j+1(x) ≡ (c j � σ(x)) ⊕ (d �
j−1⊕
k=0

ck)

Before proving Proposition 3, we must show a straightforward fact about copyless expressions.
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Lemma 5. Suppose the semiring S is a non-zero semiring and A is a non-zero automaton. Let σ , τ ∈ Subs(A) where σ is a reset 
substitution and let x be a σ -stable and τ -stable register such that Var(σ (y)) = ∅ for all y ∈ Var(τ (x)) \ {x}. Then the expression 
σ ◦ τ (x) is equivalent to an expression of the form (c � σ(x)) ⊕ d, where c, d ∈ S and c �= 0.

We will use Lemma 5 in two cases: for τ = σ , or when σ is A-reset substitution. Notice that in both cases the assump-
tion Var(σ (y)) = ∅ for all y ∈ Var(τ (x)) \ {x} holds.

Proof of Lemma 5. We prove this by induction on the length of expression τ (x). For the base step take τ (x) = x. Then 
σ ◦ τ (x) = σ(x) is equivalent to (1 � σ(x)) ⊕ 0. Suppose we can write such an expression (c � σ(x)) ⊕ d for τ of length 
at most n. By the inductive assumption when τ is of length n + 1 then σ ◦ τ (x) is equivalent to ((c � σ(x)) ⊕ d) ⊕ σ(e)
or ((c � σ(x)) ⊕ d) � σ(e) for some expression e. Since τ (x) is copyless then Var(e) ⊆ X − {x}. Furthermore, Var(σ (y)) = ∅
for y ∈ Var(e) and we get σ(e) ≡ d′ for some constant d′ �= 0 (by the non-zero assumptions on A and S). Thus, σ ◦ τ (x) is 
equivalent to (c � σ(x)) ⊕ (d ⊕ d′) or (((d′ � c) � σ(x)) ⊕ (d′ � d)), respectively. �
Proof of Proposition 3. Since σ ∈ Subs(A) is a copyless and reset substitution, then for every y ∈ Var(σ (x)) either y = x or 
Var(σ (y)) = ∅. By Lemma 5 e = σ ◦ σ(x) (setting τ = σ ) is equivalent to e∗ = (c � σ(x)) ⊕ d for some c, d ∈ S and c �= 0.

We prove the proposition by induction using the constants c, d from e∗ . For j = 0 the claim is trivially true and for j = 1
the expression e∗ is of the desired form. For the inductive step, we have σ j+2(x) = σ j ◦ σ 2(x) = σ j ◦ e∗ . Then:

σ j+2(x) ≡ σ j ◦ ((c � σ(x)) ⊕ d) (because e∗ = (c � σ(x)) ⊕ d)

≡ (c � σ j+1(x)) ⊕ d

≡ (
c � ((c j � σ(x)) ⊕ (d �⊕ j−1

k=0 ck
)))⊕ d (by induction)

≡ (
(c j+1 � σ(x)) ⊕ (d �⊕ j

k=1 ck
))⊕ d

≡ (c j+1 � σ(x)) ⊕ (d �⊕ j
k=0 ck

) �
Proposition 3 shows how σ -stable registers grow with respect of the number of times that a cycle is iterated. In partic-

ular, when S = N−∞(max, +) then σ -stable registers grows linearly because � operation is + in this semiring.
For the next result we fix the N−∞(max, +)-semiring. Intuitively, when some specific substitutions are applied to regis-

ters then to measure the value of stable registers we will refine Proposition 3 while non-stable registers will have constant 
value. This result will be crucial in the proof of Theorem 2. Recall that, by Proposition 2, for any q ∈ Q there exists a word 
wq such that δ∗(q, wq) = (q, σ q) and σ q is an A-reset substitution.

Lemma 6. Let A be a copyless, strongly connected and non-zero CRA in normal form over the N−∞(max, +) semiring. Furthermore, 
let q ∈ Q and v �= ε be a cycle in q, namely, δ∗(q, v) = (q, τ ) for some reset substitution τ . For every j ∈ N let σ j = σ q ◦ τ j+1 ◦ σ q. 
Then for every x ∈X there exists c, d ∈ N such that for every λ ∈ Subs(A) and j big enough the following holds:

σ j ◦ λ(x) ≡
{
O(1) if x is non-stable

max{ j · c + σ q(x) +O(1), j · d +O(1) } otherwise.

The additional substitution λ will be necessary in Section 5. Intuitively, we will compose many substitutions and λ will 
represent a substitution from previous compositions.

Proof. Fix a substitution λ. For a non-stable register x in A the result is straightforward. Indeed, A is in normal form, and 
thus Var(λ(x)) contains just non-stable registers. This implies that:

σ j ◦ λ(x) = σ q ◦ τ j ◦ σ q ◦ λ(x) (by definition)

= σ q ◦ λ(x)

= O(1) (σ q and λ do not depend on j)

The second equality holds because Var(λ(x)) contains only non-stable register and σ q is a reset substitution, hence Var(σ q ◦
λ(x)) = ∅. Suppose now that x is a stable register in A. We need to show that:

σ j ◦ λ(x) ≡ max{ j · c + σ q(x) +O(1), j · d +O(1) } (4)

for j big enough and some constants c, d ∈ N such that c, d do not depend on λ. Note that by Proposition 3 it holds that 
for every j ≥ 0:
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τ j+1(x) ≡ (c j
x � τ (x)) ⊕ (dx �

j−1⊕
k=0

ck
x

)
(by Proposition 3)

= max

{
j · cx + τ (x),dx + j−1

max
k=0

{k · cx}
}

(by definition of N−∞(max,+))

= max { j · cx + τ (x), dx + ( j − 1) · cx } (by definition of max)

= max { j · cx + τ (x) +O(1), j · cx +O(1) } (by using the O-notation) (5)

Recall that A is a non-zero CRA and in this semiring 0 = −∞, thus cx ≥ 0. If dx = −∞ then the last equality is not 
immediate. It holds because:

max { j · cx + τ (x), dx + ( j − 1) · cx} = j · cx + τ (x) = max { j · cx + τ (x), j · cx } =
max { j · cx + τ (x) +O(1), j · cx +O(1) }

Coming back to the proof of (4), note that the expression σ j ◦ λ(x) is equivalent to the expression obtained by replacing 
σ q ◦ τ j+1(y) for each variable y in σ q ◦ λ(x). We start the proof by analyzing these expressions. Let y ∈ Var(σ q ◦ λ(x)). If 
y is not a τ -stable register, then Var(τ (y)) = ∅ and thus σ q ◦ τ j+1(y) = O(1). Otherwise, by (5) we know that τ j+1(y) =
max

{
j · c y + τ (x) +O(1), j · c y +O(1)

}
for some c y ∈ N and, thus, by applying σ q on τ j+1(y) we get:

σ q ◦ τ j+1(y) = max
{

j · c y + σ q ◦ τ (x) +O(1), j · c y +O(1)
}

(6)

If y is a τ -stable register, but non-stable on A (i.e. non-stable in general) then σ q ◦ τ (y) is equal to a constant and does 
not depend on j. Thus we can estimate σ q ◦ τ (y) by O(1) and then (6) becomes:

σ q ◦ τ j+1(y) = max
{

j · c y +O(1), j · c y +O(1)
}

= j · c y +O(1)

Otherwise, y is a stable register and, moreover, σ q is a reset substitution. Then by Lemma 5 we know that σ q ◦ τ (y) can 
be represented as:

σ q ◦ τ (y) = max{ c′ + σ q(y), d′ }
= max{ σ q(y) +O(1), O(1) } (7)

for some constants c′, d′ ∈ N not depending on j and where c′ �= −∞. Thus, by combining (6) and (7) we get:

σ q ◦ τ j+1(y) = max
{

j · c y + σ q ◦ τ (x) +O(1), j · c y +O(1)
}

(by (6))

= max
{

j · c y + max{ σ q(y) +O(1), O(1) } +O(1), j · c y +O(1)
}

(by (7))

= max
{

j · c y + σ q(y) +O(1), j · c y +O(1), j · c y +O(1)
}

(by distribution)

= max
{

j · c y + σ q(y) +O(1), j · c y +O(1)
}

(8)

Observe that a variable y ∈ Var(σ q ◦ λ(x)) is stable if, and only if, y = x. We summarize the three possible cases in the next 
equation:

σ q ◦ τ j+1(y) =

⎧⎪⎨
⎪⎩

O(1) if y is not τ -stable

j · c y +O(1) if y is non-stable

max
{

j · c y + σ q(y) +O(1), j · c y +O(1)
}

if x = y

(9)

Now we can prove (4). Recall that the expression σ j ◦ λ(x) is the expression σ q ◦ λ(x) where all registers y ∈ Var(σ q ◦
λ(x)) are substituted with σ q ◦ τ j+1(y). First notice that by Lemma 5 the expression σ q ◦ λ(x) is equivalent to max{c′′ +
σ q(x), d′′} = max{σ q(x) + O(1), O(1)}. We can do these estimations because λ does not depend on j. By combining this 
equation with the definition of σ j we have:

σ j ◦ λ(x) = σ q ◦ τ j+1 ◦ σ q ◦ λ(x)

= σ q ◦ τ j+1 ◦ max{ σ q(x) +O(1), O(1) }
= max{ σ j(x) +O(1), O(1) }
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Thus to finish the proof it suffices to show that:

σ j(x) = max{ j · c + σ q(x) +O(1), j · d +O(1) } (10)

for some constants c, d ∈ N. Indeed, if (10) holds, then σ j(x) +O(1) = max{ j · c + σ q(x) +O(1), j · d +O(1)}. Similarly the 
value O(1) can be estimated by the expression j · d +O(1) so the last max operation is not needed. Notice that this does 
not change the constants c and d, which proves that they do not depend on λ.

To conclude the proof, we show that (10) holds for a stable register x. Recall that σ j = σ q ◦ τ j+1 ◦ σ q . We will show 
that (10) holds even if we change σ j to σ ′

j = σ q ◦ τ j+1 ◦ σ ′ , where σ ′ is any copyless substitution in normal form and x is 
σ ′-stable. The proof is by induction on the size of σ ′(x). For the base step we must consider σ ′(x) = x (because x is stable). 
Then

σ ′
j(x) = σ q ◦ τ j+1 ◦ σ ′(x)

= σ q ◦ τ j+1(x)

= max{ j · cx + σ q(x) +O(1), j · cx +O(1) } (by (8)).

For the inductive step, assume that (10) holds for σ ′
j with substitutions σ ′ such that the length of σ ′(x) is at most n. 

Now let σ ′′ be a substitution such that the length of σ ′′(x) is n + 1. Then σ ′′(x) = σ ′(x) � f where � is either + or 
max, x is σ ′-stable and f is an expression where all registers are non-stable (recall that σ ′′ is copyless). By unraveling 
σ q ◦ τ j+1 ◦ σ ′′(x), we get that:

σ q ◦ τ j+1 ◦ σ ′′(x) = σ q ◦ τ j+1 ◦ (σ ′(x) � f )

= (σ q ◦ τ j+1 ◦ σ ′(x)) � (σ q ◦ τ j+1 ◦ f )

= max{ j · c + σ q(x) +O(1), j · d +O(1) } � (σ q ◦ τ j+1 ◦ f ) (by induction)

In the final expression it is easy to check that σ q ◦ τ j+1 ◦ f is equal to a constant or to j · c f + O(1) for some c f �= −∞. 
Indeed, by (9) we know that σ q ◦ τ j+1(y) = j · c y +O(1) for non-stable registers. Since f is an expression over non-stable 
registers, one can show by induction over the size of f that σ q ◦ τ j+1 ◦ f is of the form j · c f + O(1) for some constant 
c f �= −∞ (but possibly c f = 0) and j big enough.

We assume that σ q ◦ τ j+1 ◦ f = j · c f +O(1). Then we must consider two cases whether � is + or max operation. For 
the former we have:

σ q ◦ τ j+1 ◦ σ ′′(x) = max{ j · c + σ q(x) +O(1), d · j +O(1) } + j · c f +O(1)

= max{ j · (c + c f ) + σ q(x) +O(1), j · (d + c f ) +O(1) },
and for the latter we have:

σ q ◦ τ j+1 ◦ σ ′′(x) = max{ max{ j · c + σ q(x) +O(1), j · d +O(1) }, j · c f +O(1) }
= max{ j · c + σ q(x) +O(1), j · d +O(1), j · c f +O(1) },
= max{ j · c + σ q(x) +O(1), j · max{d, c f } +O(1) }.

The number of induction steps depends on the size of the expression σ ′(x) which for σ ′(x) = σ q(x) does not depend on j. 
This concludes the proof. �
4. Inexpressibility of copyless CRA over the natural semiring

In this section we show that there exists a function definable by WA (or linear CRA, see Section 2), which is not definable 
by copyless CRA over the semiring N(+, ·). For this, we use the structural results of copyless CRA introduced in the previous 
section. Consider the class of functions over the one-letter alphabet {a} over the semiring N(+, ·). Since all words are of 
the form an for n ∈ N we identify the domain of the functions with N. For WA this class of functions is equivalent to linear 
recurrence systems (cf. the matrix characterization of weighted automata [10]). In particular, one can define the Fibonacci 
sequence with a linear and non-copyless CRA as follows. Let F be the linear CRA with one state and two registers x, y
presented in Fig. 3. The only transition updates the registers by x := y, y := x + y with the initial values x = y = 1 and x
defined as the output. Then one can easily see that �F�(an) = Fn , where Fn is the n-th element in the Fibonacci sequence.

Theorem 1. The Fibonnaci sequence Fn is not recognizable by any copyless CRA.
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Fig. 3. A CRA recognizing the Fibonacci sequence Fn .

Proof. We will use some simple facts about Fibonacci numbers that are well known or can be easily extracted from the 
definitions, for a broader discussion see e.g. [13]. Let ϕ = 1+√

5
2 be the golden ratio. Then Fn = ϕn+(1−ϕ)n√

5
, and the following 

two properties hold:

lim
n→+∞

Fn+k

Fn
= ϕk for every fixed k, (11)

ϕn /∈ N for any n > 0. (12)

Combining these two properties with results in Section 3 we show that �F� cannot be defined by a copyless CRA. For 
a contradiction assume that there exists a copyless CRA A such that �A� = �F�. Since A is deterministic and the alphabet 
has one letter in every state there is always only one transition. Let q0 be the initial state of A; ν0 the initial valuation; 
and μ its final output function. Then there exists s, t ∈ N and a state q such that A loops in state q when reading as; and 
A moves from state q0 to state q when reading at . Let σ be the substitution defined by reading as from state q; and ρ the 
substitution defined by reading at from q0. Then �A�(at+i·s) = ν0 ◦ ρ ◦ σ i ◦ μ(q). We will analyze the values of σ i(x) for 
x ∈ Var(μ(q)).

By Proposition 1 we can assume A is in normal form. Then by Lemma 4 there exists N such that σ N is a reset substi-
tution. Then by Proposition 3 applied to σ N and a σ N -stable register x we have that:

σ N(i+1)(x) = ci · σ N(x) + d ·
i−1∑
j=0

c j

for some c, d ∈ N. Now σ N , ν0 and ρ do not depend on i so we can write that for every ν0 ◦ ρ ◦ σ N(x) = Ax , where Ax is a 
constant not depending on i. Hence we define the sequence x(i) of values of register x

x(i) = ν0 ◦ ρ ◦ σ N(i+1)(x) = ci · Ax + d ·
i−1∑
j=0

c j. (13)

If c = 0 then x(i) = 0 for all i. In the remaining cases c > 0 and it follows that either x(i) = 0 for all i or x(i) > 0 for 
i > 0. We will analyze only the latter case, and since we analyze only the asymptotic behavior we assume that i > 0. If c = 1
we have limi→+∞ x(i+1)

x(i) = 1. In the remaining cases c > 1 and

x(i) = ci · Ax + d · ci − 1

c − 1
.

By taking the limit of x(i) when i tends to infinity we have

lim
i→+∞

x(i + 1)

x(i)
= lim

i→+∞
ci+1 · Ax + d · ci+1−1

c−1

ci · Ax + d · ci−1
c−1

= lim
i→+∞

c · Ax + c · d · 1− 1
ci+1

c−1

Ax + d · 1− 1
ci

c−1

= c.

The goal now is to arrive to a contradiction using properties (11) and (12). Stipulating that n = t +(i +1) · Ns (the number 
of a’s to reach q and make i + 1 many σ N loops) and k = Ns (the number of a’s to make a single σ N loop) we analyze 
the value of limi→+∞ �A�(an+k)

�A�(an)
. By definition �A�(an+k) = ν0 ◦ ρ ◦ σ N(i+1) ◦ μ(q). We can assume μ(q) =∑l cl ·∏ j x j,l for 

some constants cl ∈ N (possibly in this form the registers x j,l can repeat and the expression is not copyless).
Now, ν0 ◦ ρ ◦ σ N(i+1) ◦ μ(q) =∑l cl ·∏ j ν0 ◦ ρ ◦ σ N(i+1)(x j,l). For every x ∈ Var(μ(q)) if x is stable then its value is 

ν0 ◦ ρ ◦ σ N(i+1)(x) = x(i) as in (13). Otherwise, it is a constant not depending on i. We substitute all such registers with 
constants and also all registers such that x(i) = 0 are replaced with 0. Now, consider i > 0 so the remaining registers satisfy 
x(i) > 0. For all registers x their sequences x(i) have the property that limi→+∞ x(i+1)

x(i) is a positive natural number. Consider 
two sequences x(i) and y(i) with such a property. The following are immediate:

lim
i→+∞

x(i + 1) · y(i + 1)

x(i) · y(i)
= lim

i→+∞
x(i + 1)

x(i)
· lim

i→+∞
y(i + 1)

y(i)

lim
i→+∞

x(i + 1) + y(i + 1)

x(i) + y(i)
= max

(
lim

i→+∞
x(i + 1)

x(i)
, lim

i→+∞
y(i + 1)

y(i)

)
.
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Fig. 4. On the left a copyless cost register automaton B recognizing fB . On the right a cost-register automaton recognizing f R
B . Notice that the latter 

automaton is not copyless because it uses x twice when reading #. On the other hand both automata are linear CRA.

It follows that limi→+∞ �A�(an+k)

�A�(an)
is a natural number, which is a contradiction with (11) and (12). �

In [18] it is shown that copyless CRA are contained in WA. Given that the Fibonnaci sequence Fn can be defined by a 
linear CRA and, thus, by a weighted automaton, then Theorem 1 delimit the expressiveness of copyless CRA over the natural 
semiring: they are strictly less expressive than WA.

Corollary 1. The class of functions defined by copyless CRA over the natural semiring is strictly contained in the class of functions 
defined by WA over the natural semiring.

5. Inexpressibility of copyless CRA over the max-plus semiring

Similar as in the previous section, we use here the techniques introduced in Section 3 to show a function definable by a 
weighted automaton over the max-plus semiring, that is not definable by any copyless CRA over the same semiring. Apart 
of delimiting the expressiveness of copyless CRA over the max-plus semiring, this result will show that copyless CRA are 
not closed under reverse given that the “reverse” of this function is definable by copyless CRA. Before we proceed, notice 
that the line of reasoning used in the previous section, where functions over one-letter was used, is not possible for au-
tomata over the N−∞(max, +) semiring. Indeed, it is known by [17] that over one-letter alphabets weighted automata over 
N−∞(max, +) semiring can be turned into unambiguous automata. Since by [4,18] we know that unambiguous weighted 
automata are contained in copyless CRA over any semiring it follows that over one-letter alphabets copyless CRA and 
weighted automata are equally expressive over the semiring N−∞(max, +). Therefore, to show inexpressibility of copyless 
CRA over the semiring N−∞(max, +) a more involved proof is needed over a non-unary alphabet.

Consider the function fB given by the copyless CRA B over � = {a, b, #} and N−∞(max, +) in Fig. 4. To understand fB , 
let us define the output of B formally. Any w ∈ �∗ can be written in the form w = w0#w1# . . . #wk for some k ≥ 0 and 
w0, . . . , wk ∈ {a, b}∗ . So, k is the number of #’s in w . Let na

i and nb
i be the number of a’s and b’s in wi , respectively. By the 

definition of B in Fig. 4, one can easily check that fB is defined by fB(ε) = 0 and:

fB(w) = max
j∈{−1,0,...,k}

⎧⎨
⎩ nb

j +
k∑

i= j+1

na
i

⎫⎬
⎭ (14)

for w �= ε , where nb−1 = 0. From the above definition, one can also give a formal definition of f R
B , the reverse function of fB , 

which is given by changing the interval of the index i from [ j + 1, k] to [0, j − 1] in (14). Formally, one can easily check 
that f R

B is defined by f R
B(ε) = 0, and

f R
B (w) = max

j∈{0,...,k,k+1}

⎧⎨
⎩

j−1∑
i=0

na
i + nb

j

⎫⎬
⎭ , (15)

for w �= ε , where nb
k+1 = 0. The following theorem is the main result of this section.

Theorem 2. The function f R
B is not recognizable by any copyless CRA.

Proof. Suppose there exists a copyless CRA A = (Q , �, X , δ, q0, ν0, μ) which computes the function f R
B . Since the function 

f R
B is non-zero (i.e. f R

B(w) �= −∞ for every w ∈ �∗) then by Lemma 2 we can assume that the transitions, initial and final 
functions in A do not use −∞. Moreover, since the N−∞(max, +) semiring is also non-zero then additionally we can 
assume that the registers never store −∞.
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Most of the time we will assume that A is a strongly connected automaton (see Section 3.2). If A is not strongly con-
nected, we change our analysis by adding a word w0 from the initial state to a BSCC and then construct a counterexample 
word from there. Formally, let δ∗(q0, w0) = (q′

0, σ0) where q′
0 is a state inside a BSCC Q ′ ⊆ Q of A. We can always rede-

fine A as follows: q′
0 is the new initial state, and the new initialization function ν ′

0 is defined as ν ′
0(x) = ν0 ◦ σ0(x). It is 

straightforward to check that for every word w the new automaton constructed from A will return the output value of A
over w0 · w . For the sake of simplification, in the following analysis we will assume that A is strongly connected and later 
we will include w0 and σ0 in the discussion.

We start the proof by analyzing the behavior of A on words containing cycles of just one letter. Since Q is strongly 
connected, then there exists a state qa , a word va = ana with na > 0 and a substitution τa such that δ∗(qa, va) = (qa, τa). We 
can assume by Lemma 4 that τa is a reset substitution, that is, Var(τa(x)) = ∅ for all non-stable registers x in τa . In addition, 
define a sequence of words:

wa( j) = wqa · v j+1
a · wqa

such that δ∗(qa, wa( j)) = (qa, σ
j

a ) for some substitution σ j
a (i.e. σ j

a depends on j). Recall that wqa is the reset word defined 
in Proposition 2 for the state qa and σ qa is an A-reset substitution such that δ∗(qa, wqa ) = (qa, σ qa ). By Lemma 6 we know 
that there exist constants cx

a and dx
a such that for j big enough:

σ
j

a ◦ λ(x) =
{
O(1) if x is non-stable

max{ j · cx
a + σ qa (x) +O(1), j · dx

a +O(1) } otherwise,
(16)

for any λ ∈ Subs(A) whose size does not depend on j. Analogously, by the definition of A we can find a state qb in A, 
a word vb = bnb for some nb ≥ 0 and a reset substitution τb such that δ∗(qb, vb) = (qb, τb). Then similar to the sequence 
wa( j), we can define the sequence of words:

wb( j) = wqb · v j+1
b wqb

such that δ∗(qb, wb( j)) = (qb, σ
j

b ) for a substitution σ j
b that satisfies:

σ
j

b ◦ λ(x) =
{
O(1) if x is non-stable

max{ j · cx
b + σ qb (x) +O(1), j · dx

b +O(1) } otherwise,
(17)

for any λ ∈ Subs(A) whose size does not depend on j.
The next step is to understand the growth of stable registers when we repeat the loop wa( j) several times. For any j ≥ 1

and s ≥ 1 we define the sequence of words:

wa(s, j) = (wqa · v j+1
a )s · wqa .

Let δ∗(qa, wa(s, j)) = (qa, σ
s, j
a ), then by definition σ s, j

a = (σ qa ◦ τ j+1)s ◦ σ qa . For any natural number s ≥ 1 if x is a stable 
register we prove by induction that

σ
s, j

a ◦ λ(x) = max{ s · j · cx
a + σ qa (x) +O(s), (s − 1) · j · cx

a + j · dx
a +O(s) }, (18)

for any λ ∈ Subs(A) whose size does not depend on j, and the component hidden in O(s) depends on s but does not 
depend on j. For s = 1 (18) follows from (16). For s > 1 we show:

σ
s+1, j

a ◦ λ(x) = σ qa ◦ τ j+1 ◦ σ
s, j

a ◦ λ(x) (by definition)

= σ qa ◦ τ j+1 ◦ (max{ s · j · cx
a + σ qa (x) +O(s), (s − 1) · j · cx

a + j · dx
a +O(s) }) (by induction)

= max{ s · j · cx
a + σ

j
a (x) +O(s), (s − 1) · j · cx

a + j · dx
a +O(s) }

= max{ s · j · cx
a + max{ j · cx

a + σ qa (x) +O(1), j · dx
a +O(1) } +O(s),

(s − 1) · j · cx
a + j · dx

a +O(s) } (by (16))

= max{ (s + 1) · j · cx
a + σ qa (x) +O(s), s · j · cx

a + j · dx
a +O(s),

(s − 1) · j · cx
a + j · dx

a +O(s) }
= max{ (s + 1) · j · cx

a + σ qa (x) +O(s), s · j · cx
a + j · dx

a +O(s) } (by dominance)

We are ready to define the word for which we prove that A gives the wrong output. Recall that w0 is a word such that 
δ∗(q0, w0) = (q′ , σ0), where q′ is in the BSCC of A. Without loss of generality we assume that q′ = qa . Let also wqa,qb and 
0 0 0
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wqb,qa be the reset words between qa and qb from Proposition 2 (given that we are inside a BSCC of A, we can assume that 
qb is accessible from qa and viceversa). For all j ≥ 0 we define the sequence of words:

w(s, j) = w0 · wa(s, j) · wqa,qb · wb( j2) · wqb,qa · wa( j) (19)

To understand the construction of w(s, j), consider the following diagram, which is a fragment of A.

qa qbwa(s, j)

wqa,qb

wqb,qa

wb( j2)

The automaton A starts from reading w0 to reach the state qa . Then it cycles in state qa reading wa(s, j). After that it 
moves to qb reading the reset word wqa,qb . Then it cycles in state qb reading wb( j2). Finally, it comes back to the state qa , 
where it cycles again. We show that A outputs wrong value over w(s, j) for some fixed s (to be determined later) and for 
j big enough.

First we estimate the correct value f R
B(w(s, j)) for any s, j ≥ 0. By definition the words wa(s, j), wa( j) and wb( j2)

contain blocks of a’s and b’s separated by reset words. By Proposition 2 each reset word contains the letter #, thus the 
cycles of a’s and b’s in the words wa(s, j), wa( j), and wb( j2) are all separated by #. From the definition of these cycles, 
one can easily check that the number of a’s in wa( j) is j · na + O(1) and the number of b’s in wb( j2) is j2 · nb + O(1). 
Furthermore, the number of a’s in wa(s, j) is equal to s · j · na +O(1). Notice that the only fragments in w(s, j) whose size 
depends on j are these cycles. The reset words between the cycles are of constant size and there is O(s) of them. Recall 
that by (15) f R

B(w) = max j

{ ∑ j−1
i=0 na

i + nb
j

}
, where na

i and nb
i are the numbers of a’s and b’s, respectively, between the 

#-letters. It is easy to see that for j big enough:

f R
B (w(s, j)) = nb · j2 + na · s · j +O(s) (20)

where O(s) represents the fixed number of a’s (their number does not depend on j) that are presented in w0, wqa , wqa,qb

or wqb . Notice that the last suffix wa( j) of a’s is not contributing into the sum. This is because the sequence wb( j2) is 
overshadowing the last sequence wa( j), i.e., the max-operator considers the number of b’s in wb( j2) instead of the number 
of a’s in wa( j). The rest of the proof is to show that A does not output the right value on w(s, j). The intuition behind this 
misbehavior of A with respect to w(s, j) is that if A is summing the sequence of a’s before wb( j2) then it will also add 
the sequence of a’s after wb( j2), which by the previous calculations should not happen.

We estimate now the values in the registers of A after reading the word w(s, j) for j big enough. By the construction 
of w(s, j) we know that δ∗(q0, w(s, j)) = (qa, σw(s, j)), and the final value in the registers of A after reading w(s, j) is given 
by composing substitutions corresponding to the composition of the words in (19):

ν0 ◦ σw(s, j) = ν0 ◦ σ0 ◦ σ
s, j

a ◦ σ qa,qb ◦ σ
j2

b ◦ σ qb,qa ◦ σ
j

a .

For all non-stable registers y this expression is equivalent to σ j
a (y), which is estimated by O(1) by (16) (where λ is the 

identity substitution). For a stable register x, the story is much more complicated. We evaluate the expression σw(s, j)(x)
step-by-step to estimate its value. First, by (16):

σ
j

a (x) = max{ j · cx
a + σ qa (x) +O(1), j · dx

a +O(1) }.
Then by composing σ j2

b ◦ σ qb,qa with σ j
a (x) we get:

σ
j2

b ◦ σ qb,qa ◦ σ
j

a (x) = σ
j2

b ◦ σ qb,qa ◦ (max{ j · cx
a + σ qa (x) +O(1), j · dx

a +O(1) })
= max{ j · cx

a + σ
j2

b ◦ σ qb,qa ◦ σ qa (x) +O(1), j · dx
a +O(1) }

= max{ j · cx
a + max{ j2 · cx

b + σ qb (x) +O(1), j2 · dx
b +O(1) } +O(1), j · dx

a +O(1) } (♥)

= max
{

j · cx
a + j2 · cx

b + σ qb (x) +O(1), j · cx
a + j2 · dx

b +O(1), j · dx
a +O(1)

}
There is only one nontrivial equality (♥). It holds by (17) and by considering λ = σ qb,qa ◦ σ qa . The next step is to compose 
σ

s, j
a ◦ σ qa,qb with σ j2

b ◦ σ qb,qa ◦ σ
j

a . We denote this composition by σ−w0
w(s, j):

σ
−w0
w(s, j)(x) = σ

s, j
a ◦ σ qa,qb ◦ (σ j2

b ◦ σ qb,qa ◦ σ
j

a (x)
)

= σ
s, j

a ◦ σ qa,qb ◦ max
{

j · cx
a + j2 · cx + σ qb (x) +O(1),
b
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j · cx
a + j2 · dx

b +O(1), j · dx
a +O(1)

}
= max

{
j · cx

a + j2 · cx
b + σ

s, j
a ◦ σ qa,qb ◦ σ qb (x) +O(1),

j · cx
a + j2 · dx

b +O(1), j · dx
a +O(1)

}
= max

{
j · cx

a + j2 · cx
b + max

{
s · j · cx

a + σ qa (x) +O(s), (s − 1) · j · cx
a + j · dx

a +O(s)
}+O(1), (�)

j · cx
a + j2 · dx

b +O(1), j · dx
a +O(1)

}
= max

{
j · cx

a + j2 · cx
b + s · j · cx

a + σ qa (x) +O(s), j · cx
a + j2 · cx

b + (s − 1) · j · cx
a + j · dx

a +O(s),

j · cx
a + j2 · dx

b +O(1), j · dx
a +O(1)

}
= max

{
(s + 1) · j · cx

a + j2 · cx
b + σ qa (x) +O(s), j · (s · cx

a + dx
a) + j2 · cx

b +O(s),

j · cx
a + j2 · dx

b +O(1), j · dx
a +O(1)

}
Like before all equalities are routine except for (�). It holds by (18) and by considering λ = σ qa,qb ◦σ qb . We compose σ−w0

w(s, j)
with ν0 ◦ σ0(x), Given that ν0 ◦ σ0(x) is a constant with respect to j (i.e. ν0 ◦ σ0(x) = O(1)), we have that ν0 ◦ σw(s, j) over 
a stable register x in A is equal to:

ν0 ◦ σw(s, j)(x) = max
{

(s + 1) · j · cx
a + j2 · cx

b +O(s), j · (s · cx
a + dx

a) + j2 · cx
b +O(s),

j · cx
a + j2 · dx

b +O(1), j · dx
a +O(1)

}
(21)

For the rest of the proof, let us fix the value for s that does not depend on j (the exact value of s will be defined at the 
very end of the proof). For a fixed s we denote the quadratic functions on j by:

gx
1( j) = cx

b · j2 + cx
a · (s + 1) · j +O(1)

gx
2( j) = cx

b · j2 + (cx
a · s + dx

a) · j +O(1)

gx
3( j) = dx

b · j2 + cx
a · j +O(1)

gx
4( j) = dx

a · j +O(1)

where O(1) denotes some constant that does not depend on j (recall that s is fixed). Then for every stable register x we 
have

ν0 ◦ σw(s, j)(x) = 4
max
i=1

{gx
i ( j)}.

Notice that if dx
a < cx

a then for j big enough it holds that gx
2( j) ≤ gx

1( j) and gx
2( j) is dominated by gx

1( j). This motivates the 
definition of ex

a , given by ex
a = dx

a − cx
a when dx

a ≥ cx
a and ex

a = 0 otherwise. Furthermore, redefine gx
2( j) by:

gx
2( j) = cx

b · j2 + (cx
a · (s + 1) + ex

a) · j +O(1)

It is easy to see that ν0 ◦ σw(s, j)(x) = max4
i=1{gx

i ( j)} holds for the new definition of gx
2( j).

Towards the end of the proof, we study the output function �A�(w(s, j)) = ν0 ◦ σw(s, j) ◦ μ(qa). By Lemma 1, we know 
that the copyless expression μ(qa) can be presented as an expression of the form:

μ(qa) = k
max
i=1

⎧⎨
⎩�i +

∑
x∈Xi

x

⎫⎬
⎭ ,

where X1, . . . , Xk is a sequence of different sets over X and �1, . . . , �k is a sequence of values over N for k ≥ 0. Notice 
that in this representation the expression μ(qa) might be not copyless. By the previous analysis we know that for j big 
enough ν0 ◦ σw(s, j)(x) is either estimated by O(1) when x is non-stable or equal to max4

i=1{gx
i ( j)} when x is stable. Then 

by composing ν0 ◦ σw(s, j) with μ(qa) we get:

�A�(w(s, j)) = ν0 ◦ σw(s, j) ◦ μ(qa)

= ν0 ◦ σw(s, j) ◦ k
max
i=1

{
�i +

∑
x∈Xi

x
}

= k
max
i=1

{
�i +

∑
ν0 ◦ σw(s, j)(x)

}

x∈Xi
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= h
max
i=1

{
nb

i +
∑
x∈Yi

4
max
i=1

{ gx
i ( j) } } (22)

where Y1, . . . , Yh is a new sequence of subsets of stable registers and m1, . . . , mh is a sequence of values over N for k ≥ 0. 
The last equality holds since ν0 ◦ σw(s, j)(x) are constants for non-stable registers. Thus we can sum the constants with �i

and get new constants nb
i ; and regroup the sets Xi to form new sets of stable registers Yi . Notice that we might need 

multiple copies of the same Yi .
The next step is to further simplify the output �A�(w(s, j)). For this, note that �A�(w(s, j)) is the max and sum of 

quadratic functions over j. Then for j big enough there exists a constant i∗ ≤ h and a partition of Yi∗ = Z1 � Z2 � Z3 � Z4

such that:

�A�(w(s, j)) = mi∗ +
∑
x∈Z1

gx
1( j) +

∑
x∈Z2

gx
2( j) +

∑
x∈Z3

gx
3( j) +

∑
x∈Z4

gx
4( j).

The index i∗ is the one where (22) is maximized for j big enough and the partition Yi∗ = Z1 � Z2 � Z3 � Z4 is the division 
of Yi∗ where each function gx

i dominates for j big enough. Thus, �A�(w(s, j)) is a sum of quadratic functions and by 
summing common j-terms we can reduce �A�(w(s, j)) to a polynomial of the form B · j2 + A · j + C . Intuitively, the value 
B · j2 should correspond to the number of b’s in w(s, j) and A · j to the number of a’s in w(s, j). In the last part of this 
proof, we analyze the A-coefficient and compare it with the corresponding coefficient in f R

B(w(s, j)).
Recall from (20) that the output of f R

B over w(s, j) is equal to nb · j2 + na · s · j + O(s). If the output �A�(w(s, j)) is 
correct then we should have A = na · s. By adding the linear coefficients of gx

i ( j) for i ∈ {1, 2, 3, 4} and x ∈ Zi we get that

A =
∑
x∈Z1

cx
a · (s + 1) +

∑
x∈Z2

(
cx

a · (s + 1) + ex
a

) +
∑
x∈Z3

cx
a +

∑
x∈Z4

dx
a

= (s + 1) ·
∑

x∈Z1∪Z2

cx
a +

∑
x∈Z2

ex
a +

∑
x∈Z3

cx
a +

∑
x∈Z4

dx
a.

Given that A should be equal to na · s this implies that 
∑

x∈Z1∪Z2
cx

a < na . Otherwise, A > na · s. Therefore, 
∑

x∈Z1∪Z2
cx

a ≤
na − 1 and thus

(s + 1) ·
∑

x∈Z1∪Z2

cx
a ≤ (s + 1) · (na − 1)

By replacing this fact in the definition of A, we can over-approximate the A-coefficient as follows

A ≤ (s + 1) · (na − 1) +
∑
x∈Z2

ex
a +

∑
x∈Z3

cx
a +

∑
x∈Z4

dx
a

≤ s · na − s + na − 1 +
∑
x∈X

(ex
a + cx

a + dx
a). (23)

For the last bound, recall that Zi are pairwise disjoint subsets. It is important to notice that the inequality (23) does not 
depend on how we choose s.

We are ready to show that, by suitably choosing a fix value for s, A will not be equal to na · s. It suffices to choose 
s > na − 1 +∑x∈X (ex

a + cx
a + dx

a). This with (23) implies that A < na · s which is a contradiction. In other words, A is not 
counting all the a’s in w(s, j) for j big enough. �

From Theorem 2 we get that copyless CRA over max-plus semiring is strictly less expressive than WA: we know that 
copyless CRA are contained in WA [18] and by Fig. 4 the function f R

B is definable by a linear CRA and thus by a WA. It is 
also well-known [24,10] that the class of functions defined by WA is closed under reverse.

Corollary 2. The class of functions defined by copyless CRA over the max-plus semiring is strictly contained in the class of functions 
defined by WA over the max-plus semiring.

Moreover, from Theorem 2 we immediately get the following corollary.

Corollary 3. The class of functions recognizable by copyless CRA over the max-plus semiring is not closed under reverse.
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6. Bounded alternation copyless CRA

Given that copyless CRA are not closed under reverse operation we look for a robust subclass of copyless CRA. The proof 
of Theorem 2 suggests that the alternation between semiring operations is the reason why copyless CRA cannot replicate 
the behavior of the CRA B in backward mode: B can sum the number of a- and b-symbols to maximize each time that 
a #-symbol is read, but it cannot do the same alternation of operations when the word is read in the other direction. 
This fact inspires the definition of bounded alternation copyless CRA, a strict subclass of copyless CRA where the output 
is restricted to expressions with bounded alternation. This class was proposed in [18] and characterized in terms of the 
so-called Maximal Partition logic. In this section, we show that bounded alternation copyless CRA has also good closure 
properties; this class is closed under unambiguous non-determinism, regular look-ahead and, moreover, under reverse.

The alternation of e ∈ Expr(X ) is defined as the maximum number of switches between ⊕ and � operations over all 
branches of the parse-tree of e. Formally, let ⊗ ∈ {⊕, �} and ⊗̄ be the dual operation of ⊗ in S. We define the set of 
expressions Expr⊗0 (X ) with 0-alternation by Expr⊗0 = X ∪ S. For any N ≥ 1, we define the set of expressions Expr⊗

N (X ) as 
the ⊗-closure of Expr⊗̄N−1(X ), namely, Expr⊗N (X ) is the minimal set of expressions that contains Expr⊗̄

N−1(X ) and satisfies 
that e1 ⊗ e2 ∈ Expr⊗N (X ) whenever e1, e2 ∈ Expr⊗N (X ). We define ExprN(X ) = Expr⊕N (X ) ∪ Expr�N (X ).

We say that a copyless CRA A has bounded alternation if there exists N such that |A|(w) ∈ ExprN (X ) for every w ∈ �∗ . 
A copyless CRA A is called a bounded alternation copyless CRA (BAC) if A has bounded alternation. All the examples of 
copyless CRA presented in Section 2 have bounded alternation. For example, one can easily check that the alternation of the 
copyless CRA in Example 1 is bounded by 2.

The alternation of any expression can be easily derived just by counting what is the maximum number of alternation 
between ⊕ and �. However, it is not directly clear how to check if a copyless CRA has bounded alternation from its 
definition. We show that this semantical property can be verified in NLogSpacein the size of a copyless CRA.

Proposition 4. The problem of deciding whether a copyless CRA has bounded alternation can be computed in NLogSpace. Furthermore, 
if a copyless CRA has bounded alternation, the alternation is bounded by |Q | · max{ alt(σ ) | ∃.p, q ∈ Q . δ(q, a) = (p, σ) } where 
alt(σ ) is the alternation of σ .

Proof. Let A = (Q , �, X , 
, q0, ν0, μ) be a copyless CRA. We define the graph GA = (VA, EA) in which we look for 
cycles that produce unbounded alternation in A. The set of vertices VA of GA are triples in Q ×X × {⊕, �}. Each vertex 
(q, x, ⊗) ∈ VA keeps track of the current state q, a register x, and the last operation ⊗ seen in the last transition. We define 
EA ⊆ (Q × X × {⊕, �})2 such that ((q1, x1, ⊗1), (q2, x2, ⊗2)) ∈ EA if, and only if: (1) δ(q1, a) = (q2, σ) for some a ∈ �, 
(2) x1 ∈ Var(σ (x2)), and (3) ⊗2 is equal to ⊗ whenever σ(x2) = e1 ⊗ e2 for some expressions e1 and e2, or equal to ⊗1
otherwise. Intuitively, ⊗2 keeps track of the last operation seen when x1 passes its value to x2 in the expression σ(x2).

Furthermore, we define Ealt
A ⊆ EA that indicates edges that produce an alternation of operations. Precisely, ((q1, x1, ⊗1),

(q2, x2, ⊗2)) ∈ Ealt
A if, and only if, ((q1, x1, ⊗1), (q2, x2, ⊗2)) ∈ EA and there exists a subexpression e1 ⊗ e2 in σ(x2) with 

x1 ∈ Var(e1 ⊗ e2) and ⊗ �= ⊗1. In other words, there exists an alternation with respect to the last operation ⊗1 in the 
transition from q1 to q2.

Let V alt
A be the set of all (q, x, ⊗) ∈ VA such that x ∈ Var(μ(q)) and let G′

A = (V ′
A, E ′

A) be the subgraph of GA induced 
by vertices that can reach V alt

A in GA . It is straightforward to prove that if G′
A has a cycle with an Ealt

A -edge then A has 
unbounded alternation. Conversely, note that if G′

A do not have a cycle with an Ealt
A -edge, then any path can cross at most 

|Q | Ealt
A -edges, each with at most max{ alt(σ ) | ∃.p, q ∈ Q . δ(q, a) = (p, σ) } alternations. These properties can be checked 

in NLogSpace since GA can be generated on the fly in logarithmic space. �
6.1. Closure under unambiguous non-determinism

We first extend the model of bounded alternation copyless CRA with non-determinism. The class CRA was designed 
as a deterministic model in contrast to weighted automata, where non-determinism plays a crucial role. Thus, we restrict 
non-determinism to be unambiguous, namely, we allow many runs over a word but at most one accepting run, which 
defines the output. Formally, a non-deterministic CRA is a tuple A = (Q , �, X , 
, I0, V 0, F , μ) where Q , �, X , and μ are 
defined as before, 
 ⊆ Q ×� × Q × Subs(X ) is a finite transition relation, I0 ⊆ Q is a set of initial states, V 0 : I0 → Val(X )

assigns an initial valuation for each initial state, and F is the set of final states. Additionally, we require that for every 
q, q′ ∈ Q and a ∈ � there exists at most one σ ∈ Subs(X ) such that (q, a, q′, σ) ∈ 
. Given a string w = a1 . . .an ∈ �∗ , a run 
of A over w is a sequence of configurations: (q0, ν0) 

a1−→ (q1, ν1) 
a2−→ . . .

an−→ (qn, νn) such that q0 ∈ I0, ν0 = V 0(q0), and 
for 1 ≤ i ≤ n, (qi−1, ai, qi, σi) ∈ 
 and νi(x) = �νi−1 ◦ σi(x)� for each x ∈X . Furthermore, a run of A over w is an accepting 
run if qn ∈ F . We say that A is unambiguous if for every w ∈ �∗ there exists exactly one accepting run of A over w . The 
output of A over w is defined as �A�(w) = �νn ◦ μ(qn)� where (qn, νn) is the final configuration of the only accepting run 
of A over w . The definitions of unambiguous copyless CRA and unambiguous BAC are straightforward restrictions of this 
definition.



20 F. Mazowiecki, C. Riveros / Journal of Computer and System Sciences 100 (2019) 1–29
Fig. 5. Unambiguous BAC recognizing f from Example 4.

Example 4. Fix � = {a, b}. For every w ∈ �∗ let #a(w) denote the number of a’s in w and #last
b (w) denote the length of 

the last contiguous subsequence of b’s (e.g. #last
b (ab2ab4ab3aa) = 3). Consider the function f : �∗ → N defined as f (w) =

max(#a(w), #last
b (w)). This function can be easily defined by a nondeterministic unambiguous BAC in Fig. 5. The automaton 

keeps the number of a’s in register x and the number of b’s in the last subsequence in y. To do that the automaton guesses 
that the word reached the last contiguous subsequence of b’s (i.e. state q2) and then it continues only if the remaining 
letters are a (i.e. state q3). For simplicity, assignments keeping the value (x := x) were omitted in the picture. All transitions 
are labeled with the alphabet letter and the register assignments. If both assignments keep the value of the register this is 
denoted by “−”.

We do not know whether for each unambiguous copyless CRA there is an equivalent deterministic copyless CRA. 
However, this is true when we assume bounded alternation. In particular, one can define f from Example 4 without unam-
biguous nondeterminism.

Theorem 3. Let A = (Q , �, X , δ, I0, V 0, F , μ) be an unambiguous BAC whose alternation is bounded by N. There exists a determin-
istic BAC A′ that computes the same function as A, that is, �A�(w) = �A′�(w) for every w ∈ �∗ . Furthermore, the number of states 
of A′ is of size 2O(|Q |3·|X |5·N2) and the number of registers in A′ is of size O(|Q | · |X |2 · N).

Proof of Theorem 3. To start we need to introduce some notation for trees, expressions, and substitutions that will be the 
main objects during the proof.

Trees. Let � be a set of labels. An (unordered) labeled �-tree t is a finite function t : nodes(t) → � such that nodes(t) is a 
finite prefix-closed subset of N∗ (i.e. w ∈ nodes(t) whenever w · i ∈ nodes(t) for some i ∈ N). We say that ε is the root of t
and w · i ∈ nodes(t) is a child of w . For any w ∈ nodes(t), we denote by t[w] the subtree rooted at w , i.e. t[w](i) = t(w · i)
for every i ∈ nodes(t[w]). For every a ∈ � we write a{t1, . . . , tk} to denote a tree whose root is labeled by a and t1, . . . , tk
are the subtrees hanging from the root. We say that w ∈ nodes(t) is an internal node of t if w · i ∈ nodes(t) for some i ∈ N. 
Otherwise, w is called a leaf of t and the set of all leaves of t is denoted by leaves(t). We say that a tree is complete if every 
internal nodes has at least two children. One can easily check that if t is a complete tree, then | nodes(t)| ≤ 2 · | leaves(t)|. 
Finally, we denote by Trees(�) the set of all �-trees.

Expressions and substitutions. From now on, we see expressions as unordered labeled trees by exploiting the commutativity 
and associativity of the semiring (recall that in this paper we always assume that semirings are commutative). Formally, for 
⊗ ∈ {⊕, �} we define Expr⊗(X ) as the minimal set such that S ∪ X ⊆ Expr⊗(X ) and ⊗{e1, . . . , ek} ∈ Expr⊗(X ) for every 
e1, . . . , ek ∈ Expr⊗̄(X ) with k ≥ 1 (recall that ⊗̄ is the dual operation of ⊗ in S). Indeed, any expression can be represented 
by a unique unordered tree in Expr⊕(X ) or Expr⊕(X ). For example, the expression ((x � (y � 2)) ⊕ 3) ⊕ (z � 4) can be 
represented by:

⊕{� {x, y,2}, 3, �{z,4}} (24)

Intuitively, the unordered tree encodes the expression by removing the parenthesis and the order of multiplication and 
addition. For the sake of simplification, in the sequel we represent every expression with its canonical representation in 
Expr⊕(X ) ∪ Expr�(X ) and we associate Expr(X ) with Expr⊕(X ) ∪ Expr�(X ).

For two disjoint set of variables X1 and X2, we define Subs(X1, X2) to be the set of all copyless substitutions σ : X1 →
Expr(X1 ∪ X2), that is, copyless substitutions where the domain contains only variables in X1. Here, composition between 
substitutions in Subs(X1, X2) is defined in a straightforward way where X2-variables are treated as constants. Notice that 
the composition of two substitutions is copyless for the registers X1 but not necessarily for the registers X2. This is because 
the registers X2 are not in the domain of these substitutions.

Substitution trees. We denote by Trees(X1, X2) the set of all trees labeled by substitutions in Subs(X1, X2). Furthermore, 
we say that t ∈ Trees(X1, X2) is copyless if t(u) is copyless for every u ∈ nodes(t) and:

Var(t(u)) ∩ Var(t(v)) ⊆ X1 (25)
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for every u, v ∈ nodes(t) where, for any substitution σ , Var(σ ) are the variables mentioned in any expression of σ . In 
other words, each X2-variable is used at most once in a substitution tree t (note that there is no restriction in X1). With 
the condition (25), the composition of substitutions between different nodes is also copyless for the set X2 . Indeed, for 
every two different nodes u and v the substitutions t(u), t(v) : X1 → Expr(X1 ∪X2) are copyless and do not share variables 
from X2. Thus, t(u) ◦ t(v) will still contain each variable from X2 at most once. We say that t ∈ Trees(X1, X2) is constant-free
if, for every u ∈ nodes(t) the substitution t(u) does not use elements from S . Finally, for any node u ∈ nodes(t) we define 
the collapse operation t↓(u) such that:

t↓(u) = t(ε) ◦ t(u[·,1]) ◦ . . . ◦ t(u[·,k])
where k = |u| and u[·, i] is the prefix of u until position i. In other words, t↓(u) is the composition of all substitution along 
the branch from the root until u. Note that, by condition (25), this composition always produces a copyless substitution.

Before going into the details of the proof we recall the following lemma which is a well-known property of unambiguous 
finite automata and, in particular, of unambiguous CRA.

Lemma 7. [24,26] For every different runs ρ and ρ ′ of an unambiguous finite automaton A over w ∈ �∗ , the last states of ρ and ρ ′
are different, that is, ρ(|w|) �= ρ ′(|w|).

Let A = (Q , �, X , δ, I0, V 0, F , μ) be an unambiguous BAC whose alternation is bounded by N . To construct a deter-
ministic BAC A′ from A, the idea is to execute all runs of A over a word in parallel, simulating some sort of subset 
construction [14]. The problem here is that we cannot make arbitrary copies of registers (recall that A′ must be copyless) 
and then we cannot simulate directly with a deterministic automaton the arbitrary branching of runs, namely, non-
deterministic transitions. To solve this, we keep in states a tree of runs that encodes how runs are branching when the 
word is read. Of course, if we keep the branching of all runs in memory, the tree would be unbounded. A characteristic 
property of unambiguous CRA (Lemma 7) is that, for each prefix, there are at most |Q | partial runs and, moreover, all 
leading states are different. These two facts suggest a tree structure of the runs where each branch is a run and where the 
number of branches is bounded by |Q |. Although we can keep in finite memory the branching structure of the partial runs 
of A, we cannot do the same trick for registers and naively keep copies of registers for each run (recall again that A′ must 
be copyless). To overcome this problem, A′ will postpone the evaluation of registers by keeping substitutions inside the 
internal tree structure of runs (i.e. substitutions trees). Clearly, A′ cannot postpone these substitutions forever and store a 
long sequence of these objects with finite memory. The key idea here is to prune and reduce the tree structure by doing 
partial evaluation of the substitutions whenever is possible. We show that by exploiting the bounded alternation of the 
output and the copyless restriction of A, we need only a finite amount of memory to remember the tree structure and the 
substitutions of all runs. Finally, for the sake of simplification we present the main construction for the restricted case when 
A has only one initial state, namely, A = (Q , �, X , δ, q0, ν0, F , μ) where q0 is the only initial state and the initialization 
valuation is just ν0 :X → S.

Let X be the set of registers in A and X̂ = {x̂ | x ∈ X } a disjoint copy of X . We construct a deterministic BAC A′ =
(Q ′, �, Y, δ′, q′

0, ν
′
0, μ

′) as follows.

• Q ′ is the set of all pairs (t, B) where t ∈ Trees(X , Y) is a complete, copyless, constant-free substitution tree and B :
leaves(t) → Q is an injective function.

• Y is a set of registers of size |Y| = 2 · |Q | · |X | · (|X | · N + 1) satisfying X̂ ⊆Y and X ∩Y = ∅.

• q′
0 = (t0, B0) is the initial state of A′ where t0 is a single-node tree labeled with σ0 ∈ Subs(X , Y) and B0(ε) = q0 such 

that σ0(x) = x̂ for every x ∈X .

• ν ′
0 : Y → S is the initial substitution such that ν ′

0(x̂) = ν0(x) for all x ∈X and ν ′
0(y) = 0 for all y ∈ Y \ X̂ .

• μ′ is the final substitution such that μ′((t, B)) = t↓(u) ◦ μ(q) for every (t, B) ∈ Q ′ whenever u ∈ leaves(t) is the only 
leaf satisfying B(u) ∈ F and q = B(u).

• δ′ is the transition function defined below.

We start explaining the relation between the set of registers X̂ , X and Y . The X -variables in the construction are 
used inside the internal structure of A′ (i.e. states). In fact, X -variables will never be used as real variables by A′ . They 
will just be used to keep track of temporary substitutions. Regarding Y , the decision of taking the size of Y equal to 
2 · |Q | · |X | · (|X | · N + 1) is technical and will be clear later in the proof. Regarding X̂ , the property X̂ ⊆ Y is needed for 
the definition of the initial substitution. Besides that we will not use the fact that X̂ ⊆ Y .

Recall that each state in Q ′ is composed by a complete, copyless, and constants free substitution tree t and an injective 
function B : leaves(t) → Q . As was suggested before, t keeps track of the branching history of the partial runs of A and B
labels leaves of t with states in Q . The plan here is that each partial run of A is represented by a different branch of t and 
the states assigned by B represent the current state of each run.
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Next, we show that Q ′ is a finite set. Indeed, we can bound the size of any state (t, B) ∈ Q ′ in terms of |Q |, |X |, 
and |Y|. First, the number of nodes in t is bounded by 2 · |Q |, that is, | nodes(t)| ≤ 2 · | leaves(t)| ≤ 2 · |Q | since t is a 
complete tree and B is an injective function over leaves(t). Second, each copyless and constants-free expression that one 
can write with |X ∪ Y| variables is of size at most 2 · (|X | + |Y|) (i.e. the expression has no constant, and each variable 
can be used at most once). Third, the size of any copyless and constants-free substitution σ ∈ Subs(X , Y) is bounded by 
|σ | =O(2 · |X | · (|X | + |Y|)) and thus the number of possible labels for t is finite, which implies that |t| is of bounded size. 
Fourth, B is an injective function from leaves(t) into Q and, given that t is of bounded size, then B is also bounded. Finally, 
given that the size of t and B is bounded by |Q |, |X |, and |Y|, then we can conclude that Q ′ is a finite set. Furthermore, 
by composing and counting the previous arguments, one can show that |Q ′| = 2O(|Q |·|X |·|Y |2) = 2O(|Q |3·|X |5·N2) .

For a given word w , consider the set of partial runs in A. By Lemma 7 every partial run on w is determined by its last 
state. Then, we define Q (w) ⊆ Q as the set of states in the partial runs of A over w . To understand the main purpose of 
(t, B), we state the following Lemma. Its proof is postponed to the end of this section.

Lemma 8. Let ρ be a run of A over w and (q, ν) be the last configuration of ρ . Then the run of A′ over w reaches configuration 
((t, B), ξ), where ξ is a valuation over Y . Moreover Q (w) = range(B) and for every q ∈ Q (w) there exists u ∈ leaves(t) such that 
B(u) = q and ν = ξ ◦ t↓(u).

In other words, from a state (t, B) we can recover the configuration (q, ν) from a leaf u, by applying B over u and 
composing the substitutions from the root to u.

A key notion for defining the transition function δ′ is the notion of an X -reduction. An X -reduction of an expression 
e ∈ Expr(X ∪Y) is a tuple (r, σ) where r ∈ Expr(X ∪Y) is a copyless expression without constants and σ :Y ⇀ Expr(Y) is a 
partial substitution (i.e. partial function) such that e = σ̂ (r). Notice that dom(σ ) ∩X = ∅ since we assumed X ∩Y = ∅. The 
goal of an X -reduction is to factorize constants into Y-variables. Of course, an X -reduction could increment the number of 
Y-variables by trying to remove constants. The trick is to define for every expression an X -reduction (r, σ) such that the 
size of dom(σ ) depends only on N and |X |.

We define an X -reduction by induction over expressions by using a function redX (·). For this definition we assume that 
Y is possibly infinite. Later, in Lemma 9, we show that we only need a finite number of variables to define redX (·). For 
the base case, if e = x ∈ X , then we define redX (e) = (x, σ∅) where σ∅ is the empty function. Otherwise, if e = s ∈ S or 
e = y ∈ Y then we choose a fresh variable y′ ∈ Y and define redX (e) = (y′, σ), where σ(y′) = e and dom(σ ) = {y′}. For 
the inductive step, suppose that e is of the form:

e = ⊗{e1, . . . , en, f1, . . . , fm} (26)

where each ei ∈ Expr(X ∪Y) contains at least one variable in X and each f i ∈ Expr(Y) contains no variables in X . Further-
more, suppose that redX (e1) = (r1, σ1), . . . , redX (en) = (rn, σn) are already defined and dom(σi) ∩ dom(σ j) = ∅ (without 
lost of generality, we can relabel the variables). Then we define redX (e) = (r, σ) recursively as follows:

r = ⊗{r1, . . . , rn, y} (27)

σ = (σ1 ∪ . . . ∪ σn
)[y → ⊗{ f1, . . . , fm}]

where y ∈ Y is a fresh variable not used in σ1, . . . , σn and 
(
σ1 ∪ . . . ∪ σn

)
. If m = 0, then we do not add the additional 

variable y.
In the recursive definition of redX (e), the subexpression f1, . . . , fm that do not use X registers are replaced by a new 

fresh variable y and its content ⊗{ f1, . . . , fm} is assigned into y. It is clear from the definition that (r, σ) is an X -reduction 
for e. Since σ1, . . . , σn have disjoint domains and y was chosen as a fresh variable then r is copyless and the domain of σ
is equal to 

⋃
i dom(σi) ∪ {y} = Var(r) ∩ Y . For example, recall the expression e = ⊕{�{x, y, 2}, 3, �{z, 4}} in (24). Suppose 

that x ∈X and y, z ∈Y . Then the X -reduction redX (e) = (r, σ) is equal to:

r := ⊕{� {x, u}, v
}

σ : u := y � 2
v := 3 ⊕ (z � 4)

where u and v are fresh variables in Y . One can easily check that e = σ̂ (r) and, thus, the expression defined by e is 
preserved in (r, σ). In the next lemma, we show that we need at most |X | · N + 1 fresh variables from Y for the above 
definition of redX (·).

Lemma 9. Let e ∈ Expr(X ∪Y) be copyless and with alternation bounded by N. If redX (e) = (r, σ), then r is copyless with alternation 
bounded by N, σ is copyless with respect to dom(σ ), and | Var(r) ∩Y| ≤ |X | · N + 1.

Proof. Suppose that redX (e) = (r, σ). By definition it is straightforward to check that r is copyless and has alternation 
bounded by N . In fact, each time that a subexpression is replaced, we use a new fresh variable and since e is copyless this 
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proves that r and σ are also copyless. The most interesting part is to bound the number of Y-variables in r. For this, we 
prove a slightly stronger bound: | Var(r) ∩Y| ≤ | Var(r) ∩X | · N + 1. Since | Var(r) ∩X | ≤ |X | this will prove the lemma.

The proof goes by induction over the alternation of e. For the base case we have | Var(r)| ≤ 1 thus the bound is trivially 
true. For the inductive step suppose that the statement holds for expression with alternation at most N and consider an 
expression e like (26) with alternation N +1. By definition of Expr⊕(X ) and Expr⊕(X ) each ei has alternation at most N and 
the inductive hypothesis applies: | Var(ri) ∩Y| ≤ | Var(ri) ∩X | · N + 1 where (ri, σi) = redX (ei). Given that Var(ri) ⊆ Var(r)

n∑
i=1

|Var(ri) ∩Y| ≤
n∑

i=1

(|Var(ri) ∩X | · N + 1) ≤ |Var(r) ∩X | · N + n.

Also, the set Var(r) ∩ Y is partitioned by the sets Var(ri) ∩ Y and the fresh variable y. Therefore, we derive the following 
bound:

|Var(r) ∩Y| ≤
n∑

i=1

|Var(ri) ∩Y| + 1 ≤ |Var(r) ∩X | · N + n + 1

Finally, given that r is copyless, we cannot have more subexpressions ei than variables in X and, thus, n ≤ | Var(r) ∩ X |
which leads to the desire conclusion: | Var(r) ∩X | · N + n + 1 ≤ | Var(r) ∩X | · (N + 1) + 1. �

We can naturally extend the function redX (·) from Expr(X ∪Y) to Subs(X , Y). More precisely, for any α ∈ Subs(X , Y)

define redX (α) = (β, σβ) such that redX (α(x)) = (β(x), σx) for every x ∈ X and σβ =⋃x∈X σx (similar to X -reduction of 
expressions we can assume that dom(σx) ∩ dom(σy) = ∅ by relabeling σx and σy if necessary). Further, we extend redX (·)
from substitutions to substitution trees such that redX (t) = (t′, σt′) where nodes(t) = nodes(t′), redX (t(u)) = (t′(u), σu) for 
each u ∈ nodes(t), and σt′ is the disjoint union of all substitutions σu (again, we assume that domains of σu are disjoint). 
The following lemma, similar to Lemma 9 but for substitution trees, will be useful later in the correctness proof of δ′ . We 
omit the proof since it is straightforward from Lemma 9 and the copyless restriction.

Lemma 10. For any copyless substitution tree t ∈ Trees(X , Y), if redX (t) = (t′, σt′ ), then t′ is a copyless and constants-free 
substitution tree and σt′ is a copyless partial substitution. Furthermore, the number of Y-variables used in t′ is bounded by 
| nodes(t)| · |X | · (|X | · N + 1).

Recall that states of A′ are of the form (t, B) where t is a complete, copyless, and constants-free substitution tree and 
B : leaves(t) → Q is an injective function. To define the transition δ′(t, B) = ((t′, B ′), σ) we show how to convert t into t′
and how to update B into B ′ through the composition of four different processes: extend, prune, shrink, and reduce. In the 
sequel, we explain each procedure in detail.

Extend. The first step is to extend branches in (t, B) to the next states when reading a ∈ �. We define this process formally 
by the function extend((t, B), a) = (t1, B1) that receives a state (t, B) ∈ Q ′ and a letter a ∈ � and outputs the pair (t1, B1), 
where t1 is a substitution tree and B1 : leaves(t1) ⇀ Q is a partial injective function. The substitution tree t1 is defined as 
an extension of t (i.e., nodes(t) ⊆ nodes(t1)) such that t1(u) = t(u) whenever u ∈ nodes(t) and for every v ∈ leaves(t), if 
there exists a transition (B(v), a, q, σ) ∈ δ, then there exists i ∈ N such that t1(v · i) = σ . The function B1 is defined only on 
the new leaves such that B1(v · i) = q. Intuitively, extend((t, B), a) = (t1, B1) extends t whenever the state on a leaf of t can 
evolve to a new state by reading a. Notice that δ is not deterministic and a leaf v ∈ leaves(t) could be extended with more 
than one node. Since trees are unordered, extend is a deterministic procedure.

Prune. The problem with (t1, B1) is that there could exist leaves in t1 that are not marked by the function B1 and therefore 
(t1, B1) /∈ Q ′ . This happens when for a leaf v there is no transition (B(v), a, q, σ) and this branch of the tree becomes a 
“dead run”. The purpose of the function prune(t1, B1) = (t2, B2) is to prune branches that are dead and to update B1 into 
a total function B2. Formally, t2 is a subset of t1 (i.e., nodes(t2) ⊆ nodes(t1) and t2(u) = t1(u) for every u ∈ nodes(t2)) such 
that v ∈ nodes(t2) iff v · u ∈ dom(B1) for some u ∈ N∗ . In other words, we keep only nodes that are ancestors of leaves that 
are marked by B1. Finally, we define B2 = B1. Note that dom(B2) = leaves(t2) since we did not remove any node from the 
domain of B1. Moreover, paths from the root to leaves were not modified and, in particular, it holds that t↓

2 (u) = t↓
1 (u) for 

every u ∈ leaves(t2).

Shrink. By adding and removing branches with the procedures extend and prune it could happen that t2 is not a complete 
tree and (t2, B2) /∈ Q ′ (i.e., t2 could contain internal nodes with just one child). These nodes are redundant and they can 
be easily removed by shrinking the tree. For this purpose, we define the procedure shrink(t2, B2) = (t3, B3) recursively. We 
define shrink by induction on the depth of t2, maintaining the following properties: t3 is a complete tree; B3 is an injective 
function from leaves(t3) into Q ; range(B3) = range(B2) and that for every u ∈ leaves(t2) there is u′ ∈ leaves(t3) such that 
B2(u) = B3(u′) and t↓

2 (u) = t↓
3 (u′). In particular this means that the size of t3 is bounded by 2 · |Q |.

For trees that have only one node we define shrink as the identity function and the properties are kept trivially. Suppose 
t2 = σ {r1, . . . , rn} for some σ ∈ Subs(X , Y). For every j ∈ {1, . . . , n} let i j ∈ N be the node in t2 corresponding to the root 



24 F. Mazowiecki, C. Riveros / Journal of Computer and System Sciences 100 (2019) 1–29
of ri . Then for every leaf u ∈ leaves(r j) the node i j · u is a leaf in t2. Moreover leaves(t2) =⋃ j{i j · u | u ∈ leaves(r j)}. We 
define the functions C j : leaves(r j) → Q by C j(u) = B2(i j · u). Notice that range(B2) =⋃ j range(C j).

If n > 1 then shrink(t2, B2) = (σ {r′
1, . . . , r

′
n}, B3), where shrink(r j, C j) = (r′

j, C
′
j) and B3(i j · u) = C ′

j(u) for every j and 
u ∈ dom(C j). By induction the properties are kept in shrink(r j, C j) for all j. Then it is easy to see that they are also kept for 
shrink(t2, B2). The remaining case is for n = 1, for simplicity we skip the indexes and write t2 = σ {r} and C : leaves(r) → Q . 
Let r′ be a tree such that nodes(r′) = nodes(r), r′(u) = r(u) for every node u �= ε and r′(ε) = σ ◦ r(ε). Then we define 
shrink(t2, B2) = shrink(r′, C). That is, the edge between the root of σ {r} and its unique child r is removed. By induction 
the properties are kept in the step from (r′, C) to (t3, B3) = shrink((r′, C)). Thus we only have to prove that range(B3) =
range(B2) and that for every u ∈ leaves(t2) there is u′ ∈ leaves(t3) such that t↓

2 (u) = t↓
3 (u′). The first property follows from 

the fact that range(B2) = range(C) = range(B3). To prove the second property let u ∈ leaves(t2). By definition there exists 
an i such that u = i · v and B2(i · v) = C(v). Let |u| = k then:

t↓
2 (u) = t2(ε) ◦ t2(u[·,1]) ◦ t2(u[·,2]) ◦ . . . ◦ t2(u[·,k])

= σ ◦ t2(u[·,1])︸ ︷︷ ︸
r′(ε)

◦ t2(u[·,2])︸ ︷︷ ︸
r′(v[·,1])

◦ . . . ◦ t2(u[·,k])︸ ︷︷ ︸
r′(v[·,k−1])

= r′ ↓(v).

By the induction assumption there is u′ ∈ leaves(t3) such that r′ ↓(v) = t↓
3 (u′).

Reduce. The pair (t3, B3) is almost ready after shrinking single-child internal nodes, except that substitutions inside t3 could 
have constants (e.g. extend(·) could have introduced constants). To solve this issue, we apply the X -reduction procedure 
redX (·) to reduce all substitutions in t3. Formally, we define the procedure reduce(t3, B3) = ((t4, B4), σ) where redX (t3) =
(t4, σ) and B3 = B4. The function redX changes only the labels (i.e. substitutions of the nodes) and, in particular, it does not 
change its tree structure, namely, nodes(t3) = nodes(t4). Thus | nodes(t4)| = | nodes(t3)| ≤ 2 · |Q |. By Lemma 10, this implies 
that the number of fresh Y-variables needed to apply the procedure redX (·) is at most | nodes(t3)| · |X | · (|X | · N + 1) =
2 · |Q | · |X | · (|X | · N + 1) which is exactly the size of Y . The remaining issue is that the function redX is not deterministic 
since it has to choose “fresh variables” to apply the X -reduction. To make it deterministic we can fix a deterministic choice 
of every fresh variable inside redX (·) (e.g. by following an arbitrary total order over Y). With this change the procedure 
reduce is deterministic.

With the definitions of the procedures extend, prune, shrink and reduce, we are ready to define formally the transition 
function δ′ of A′ . Specifically, for every state (t, B) ∈ Q ′ and every a ∈ �∗ we define:

δ′((t, B),a) = reduce( shrink( prune( extend((t, B),a) ) ) ) = ((t4, B4),σ )

Note that all procedures (reduce, shrink, prune, extend) are deterministic so δ′ is also deterministic. In the next lemma, we 
show that the definition of δ′ is correct.

Lemma 11. For any (t, B) ∈ Q ′ and a ∈ � let:

reduce( shrink( prune( extend((t, B),a) ) ) ) = ((t4, B4),σ ).

Then (t4, B4) ∈ Q ′ and σ is a copyless substitution over Y .

Proof. Assume that we have (t1, B1) = extend((t, B), a), (t2, B2) = prune(t1, B1), (t3, B3) = shrink(t2, B2) and (t4, B4) =
reduce(t3, B3). We first check that t4 is a complete, copyless, and constants-free substitution tree in Trees(X , Y). We start 
from showing that t4 is complete. The tree t3 is a result of prune(t2), which by definition is a complete tree. This proves 
completeness because t4 has the same structure as t3.

We show that t4 is copyless and constant-free. The procedure extend(·) introduces new variables in t only from X in 
new nodes. We label the new nodes with substitutions σ from A, which by definition are substitutions from Subs(X , Y). 
Moreover it does not introduce new variables from Y thus the tree t1 is copyless. The procedures prune(·) and shrink(·)
do not introduce new variables in t1, and t2. This shows that the tree t3 is copyless. By Lemma 10 we conclude that t4 is 
copyless, constants-free, and σ is a copyless substitution. �

Now we have all the ingredients to prove Lemma 8.

Proof of Lemma 8. The lemma is proved by induction over the size of w ∈ �∗ . For the base case w = ε by definition 
q′ = (t0, B0) where t0 is a single-node tree labeled with σ0 ∈ Subs(X , Y) and B0(ε) = q0, where σ0(x) = x̂ for every x ∈X , 
0



F. Mazowiecki, C. Riveros / Journal of Computer and System Sciences 100 (2019) 1–29 25
where x̂ is the copy of x in X̂ . The initial function ν ′
0 is defined as ν ′

0(x̂) = ν0(x) for every x̂ ∈ X̂ and ν ′
0(y) = 0 for every 

y ∈Y \ X̂ . In this setting

ξ ◦ t↓(u)(x) = ν ′
0 ◦ σ0(x) = ν ′

0(x̂) = ν0(x).

In the initial configuration there is only one run which ends in q0 and range(B0) = {q0}, which finishes the proof of the 
base case.

For the induction step, assume that the lemma holds for w ∈ �∗ and we show that it also holds for w · a for any a ∈ �. 
Let (q′, ν ′) be a configuration reached by a run of A over w · a. By Lemma 7, there is a unique run of A on w that ends 
in a configuration (q, ν) such that (q, a, q′, σ) ∈ δ and ν ′ = ν ◦ σ . By the induction assumption we have that there is a run 
of A′ on w reaching configuration ((t, B), ξ) such that Q (w) = range(B) and for every x ∈X that there exists u ∈ nodes(t)
such that B(u) = q and

ν = ξ ◦ t↓(u). (28)

Fix (t1, B1) = extend((t, B), a), (t2, B2) = prune(t1, B1), (t3, B3) = shrink(t2, B2) and (t4, B4, τ ) = reduce(t3, B3). By def-
inition of extend the set range(B1) is the set of all p such that (B(v), a, p, σp) ∈ δ for some σp and v ∈ leaves(t). 
Since Q (w) = range(B) then Q (w · a) = range(B1). Clearly by definition of the procedures prune, shrink, reduce we have 
range(B1) = range(B2) = range(B3) = range(B4). By the unambiguity of A we get that |range(B4) ∩ F | = |Q (w · a) ∩ F | = 1. 
Similarly to prove that B4 is injective it suffices to show that B1 is injective. Suppose contrary that B1 maps two different 
leaves to the same state p. Then by definition of B1 there are at least two runs of A on w · a that end in q, which con-
tradicts Lemma 7. We conclude by Lemma 11 that δ′((t, B), a) = (t4, B4) and A′ is in configuration ((t4, B4), ξ ◦ τ ) after 
reading w · a. Since range(B4) = Q (w · a) then there exists i ∈ N such that ui ∈ leaves(t1), B1(u · i) = q′ , and t1(ui) = σ . If 
we compose both sides of (28) with σ then we get:

ν ◦ σ︸ ︷︷ ︸
ν ′

= ξ ◦ t↓(u) ◦ σ︸ ︷︷ ︸
t↓1 (u·i)

and ν ′ = ξ ◦ t↓
1 (u · i).

We know that the procedure prune(·) and shrink(·) preserve the outputs of the collapse operation. Thus there exists v ∈
nodes(t3) such that B3(v) = B ′(v) = q′ and ν ′ = ξ ◦ t↓

3 (v). Given that (t4, B4, τ ) = reduce(t3, B3) is an X -reduction, we 
know that τ ◦ t↓

4 (v) = t↓
3 (v). By replacing the last equation in the above formula, we get ν ′ = ξ ◦ τ ◦ t↓

4 (v), which concludes 
the induction step. �

Lemma 8 in particular proves that δ′ is a total function when Q ′ is restricted to the reachable states Q ′
r . For this reason 

we restrict the set of states to Q ′
r . With Q ′

r as the set of states the automaton A′ is a deterministic CRA.
To conclude the proof, we show that A and A′ have the same output on every word w . Let (q, ν) be the configuration of 

the unique accepting run of A on w and let ((t, B), ξ) be the configuration of A′ of the run on w . By Lemma 8 there exists 
a node u such that u ∈ leaves(t) such that B(u) = q and ν = ξ ◦ t↓(u). The output of A′ on w is defined as ξ ◦ μ′(t, B). By 
definition q ∈ F and |range(B) ∩ F | = 1 thus q is the unique accepting state in leaves(t). By definition μ′(t, B) = t↓(u) ◦μ(q). 
Thus we get the following equalities for the output of A′ on w:

ξ ◦ μ′(t, B) = ξ ◦ t↓(u) ◦ μ(q) = ν ◦ μ(q).

This finishes the proof given that ν ◦ μ(q) is exactly the output of A on w . �
6.2. Closure under regular look-ahead

Our next extension of the CRA model is based on regular look-ahead, namely, transitions that can check regular prop-
erties over the input. Regular look-ahead has been extensively studied for finite automata [11,12] and has been stated 
as a key property of a model for computing non-boolean functions [3,4]. Let REG� be the set of all regular languages 
over �. A CRA with regular look-ahead (CRA-RLA) is a tuple A = (Q , �, X , 
, q0, ν0, μ) where Q , �, X , q0, ν0, and 
μ are defined as before and 
 : Q × REG� ⇀ Q × Subs(X ) is a partial transition function with finite domain. Given a 
string w = a1 . . .an ∈ �∗ , the run of A over w is a sequence of configurations: (q0, ν0) 

L1−→ (q1, ν1) 
L2−→ . . .

Ln−→ (qn, νn)

such that for 1 ≤ i ≤ n, 
(qi−1, Li) = (qi, σi), ai . . .an ∈ Li and νi(x) = �νi−1 ◦ σi(x)� for each x ∈ X . The output of A over 
w is defined as usual, i.e. �A�(w) = �νn ◦ μ(qn)�. To keep determinism, we also restrict 
 as follows: for a fixed state 
q let 
(q, L1) = (q1, σ1), 
(q, L2) = (q2, σ2), . . . , 
(q, Lk) = (qk, σk) be all transitions with q in the first coordinate and 
L1, . . . , Lk ∈ REG� . Then the languages L1, . . . , Lk are pairwise disjoint (i.e. Li ∩ L j = ∅). Note that A is always deterministic, 
i.e. after reading the remaining suffix the automaton is forced to take at most one available transition. The restrictions to 
copyless and bounded alternation CRA-RLA are defined as expected.



26 F. Mazowiecki, C. Riveros / Journal of Computer and System Sciences 100 (2019) 1–29
Fig. 6. BAC extended with regular look-ahead recognizing f from Example 5.

Example 5. Consider the function f : �∗ → N from Example 4. This function can be defined by a BAC extended with regular 
look-ahead in Fig. 6. The automaton has two registers x and y keeping the number of all a’s and the number of b’s in the 
last block, respectively. When updating register y, to verify if the automaton is in the last block of b’s it checks whether 
the suffix belongs to b+a∗ . For simplicity, the transition b+a+b(a + b)∗ , which does not change the value of the registers, is 
omitted.

Like for unambiguous copyless CRA, we do not know if extending copyless CRA with regular look-ahead results in a more 
expressive model. Assuming bounded alternation we prove that the resulting class of functions is the same.

Theorem 4. For every BAC A with regular look-ahead there exists a BAC A′ without regular look-ahead that computes the same 
function, that is, �A�(w) = �A′�(w) for every w ∈ �∗ . Furthermore, the number of states and the number of registers of A′ is 
double-exponential and polynomial, respectively, in the size of A.

Proof. Let A = (Q , �, X , 
, q0, ν0, μ) be a BAC with regular look-ahead where 
 : Q × REG� ⇀ Q × Subs(X ) is the partial 
transition function (recall that 
 has finite domain). To represent 
 finitely, let L1, . . . , LN be all the regular languages in 
the finite domain of 
 and, for each i ≤ N , let Ai = (Pi, �, δi, p0

i , Fi) be a finite state automaton such that Li = L(Ai). 
To unify the structure of each Ai , define the set of states P =⊎N

i=1 Pi , the transition function δ =⊎N
i=1 δi , and the set of 

final states F =⊎N
i=1, Fi , that is, P , δ and F are the disjoint union of states, transitions and final states, respectively, of the 

automata A1, . . . , AN . Then for every i ≤ N , define the automaton Ri = (P , �, δ, p0
i , F ). By definition of P , δ and F , one 

can easily see that Li =L(Ri) for every i ≤ N .
We are ready to show an unambiguous BAC equivalent to A. By Theorem 3 this will show that A can be defined by a 

deterministic BAC. Let A′ = (Q ′, �, X , 
′, I ′0, ν0, F ′, μ′) be a BAC such that:

• Q ′ = Q × 2P is the set of states,
• 
′ ⊆ Q ′ × � × Q ′ × Subs(X ) where ((q, S), a, (q′, S ′), σ) ∈ 
′ iff there exist (q, Li, q′, σ) ∈ 
 for some i ≤ N , and a 

surjective function f : S ∪ {p0
i } → S ′ such that δ(s, a) = f (s) for every s ∈ S ∪ {p0

i },
• I ′0 = {(q0, ∅)},
• F ′ = {(q, S) | S ⊆ F }, and
• μ′ : Q ′ → Expr(X ) where μ′(q, S) = μ(q) for every (q, S) ∈ Q ′ .

The idea behind A′ is to guess, at each letter, all transitions in A that are satisfied by the remaining suffix. In each state 
(q, S) of A′ we keep the current state q of a run and a subset S of P that includes all regular transitions that have been 
taken so far by the run on q. Then we have a transition ((q, S), a, (q′, S ′), σ) ∈ 
′ if there exists a transition (q, Li, q′, σ) ∈ 


(i.e. a transition from q to q′) such that we can extend each state in S ∪ {p0
i } to a state in S ′ . Note that, in order to start 

simulating the finite automaton Ri over the suffix, p0
i is also included on the set of states that are updated. Finally, if the 

last state (q, S) of a run satisfies S ⊆ F , then we know that all suffixes during the run satisfies the regular look-ahead of the 
transitions and, then, the state (q, S) is final.

We show first that A′ is unambiguous. By contradiction, suppose that A′ is not unambiguous, that is, there exist 
w = a1 . . .an ∈ �∗ and two different accepting runs ρ and ρ ′ of A′ over w . Let i ≤ n be the least position such that 
ρ(i) = ρ ′(i) = (q, S) but ρ(i + 1) = (q1, S1) �= (q2, S2) = ρ ′(i + 1). We know that this position exists since, by construc-
tion, it holds that ρ(0) = ρ ′(0). Let (q, L, q1, σ1) ∈ 
 and (q, L′, q2, σ2) ∈ 
 be the transitions that witness the transitions 
((q, S), ai+1, (q1, S1), σ1) ∈ 
′ and ((q, S), ai+1, (q2, S2), σ2) ∈ 
′ . Since both runs are accepting, then it is straightforward 
to show by induction that w[i, ·] ∈ L and w[i, ·] ∈ L′ for the suffix w[i, ·] of w at position i. Then we have a contradiction 
since, by definition of CRA-RLA, we know that L ∩ L′ = ∅. We conclude that A′ must be unambiguous. Note that during the 
construction we did not change the assignments σ in the transitions. For this reason, we can also conclude that A′ is a 
copyless CRA with bounded alternation.

For the last part of the proof, we have to show that �A�(w) = �A′�(w) for every w ∈ �∗ . It is easy to verify that for 
every run (q0, ν0) 

L1−→ . . .
Ln−→ (qn, νn) of A over w ∈ �∗ , there exist sets Si such that the sequence ((q0, S0), ν0) 

a1−→ . . .
an−→

((qn, Sn), νn) is an accepting run of A′ over w . For a given word w the sets Si are uniquely determined by the transitions 

 and δ. Thus, �A�(w) = �ν̂n(μ(qn))� = �A′�(w) for every w ∈ �∗ . �
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Fig. 7. BAC recognizing f r from Example 6.

6.3. Closure under reverse

We finish this section proving that, in contrast to copyless CRA (see Section 5), BAC are closed under reverse. Recall 
that a subclass C of CRA is closed under reverse if for every A ∈ C there exists A′ ∈ C such that �A�(w) = �A′�(wr) for 
every w ∈ �∗ . First, we show an example that sometimes it is more convenient to define the reverse of the function.

Example 6. Consider the function f : �∗ → N from Example 4. We define the function f r by a BAC in Fig. 7. The automaton 
has two registers x and y keeping the number of all a’s and the number of b’s in the last block, respectively. By adding 
extra two states the automaton updates the register y only in the first block of b’s, and then it keeps its value.

Theorem 5. For every BAC A there exists a BAC A′ that computes the reverse function of A, that is, �A�(w) = �A′�(wr) for every 
w ∈ �∗ . Furthermore, the number of states is double-exponential and the number of registers is polynomial in the size of A.

Proof. Let A = (Q , �, X , 
, q0, ν0, μ) be a (deterministic) BAC with alternation bounded by N . The main idea of this 
construction is to run A backwardly over an input. For this purpose, we start from any state in Q where A could have 
potentially finished and follow the transitions in the other direction. Of course, by starting from any state and going back 
there are many non-deterministic choices that the reverse automaton must take to find the run of A over the input. 
Fortunately, A is a deterministic automaton which implies that there is at most one run that starts in q0 and ends in some 
state in Q . That is, the reverse automaton constructed from A will be unambiguous and, by Theorem 3, we know that there 
is an equivalent deterministic BAC cost-register automaton. The only remaining issue is to construct the output expression 
of A over the input from the back. For this, we exploit the bounded alternation of A and X -reductions (see below) to 
extend and reduce expressions starting from the final output.

Let Y be a non-empty set of variables such that X ∩Y = ∅. We recall here the idea of an X -reduction introduced in the 
proof of Theorem 3. An X -reduction for e ∈ Expr(X ∪Y) is a pair redX (e) = (r, σ) where r ∈ Expr(X ∪Y) is an expression 
without constants and σ : Y → Expr(Y) is a substitution such that e = σ̂ (r). Moreover, r is copyless whenever e is copyless. 
By Lemma 9, we know that if e has alternation bounded by N , then r has alternation bounded by N , σ is a copyless 
substitution, and the number of Y-variables in r is bounded by |X | · N + 1.

We have now all the ingredients to define a reverse BAC cost register automaton from A. Formally, we construct an 
unambiguous BAC A′ = (Q ′, �, Y, 
′, I ′0, V ′

0, F
′, μ′) from A as follows.

• Q ′ is the set of all pairs (q, r) where q ∈ Q and r ∈ Expr(X ∪Y) is a copyless and constants-free expression, in particular, 
the size of r is bounded by |X | + |Y|.

• Y is a set of registers such that X ∩Y = ∅ and |Y| = |X | · N + 1.
• I ′0 is the set of all pairs (q, r) such that redX (μ(q)) = (r, σ) for some substitution σ .
• V ′

0 : I ′0 → Val(Y) is the initial substitution function such that V ′
0((q, r)) = σ for every (q, r) ∈ I ′0 and redX (μ(q)) =

(r, σ).
• F ′ is the set of all pairs (q0, r) ∈ Q ′ such that q0 is the initial state of A.
• μ′ is the final substitution such that μ′((q, r)) = ν0 ◦ r for every (q, r) ∈ Q ′ .
• 
′ is the transition relation where ((q, r), a, (q′, r′), σ ′) ∈ 
′ if, and only if, δ(q′, a) = (q, σ) and redX (σ ◦ r) = (r′, σ ′).

We start by explaining the definition of the initial substitution function V ′
0 and the transition relation 
′ . First, note that 

V ′
0 is well defined, namely, V ′

0((q, r)) = σ is a valuation over Y for every (q, r) ∈ I0 satisfying redX (μ(q)) = (r, σ). Indeed, 
the expressions μ(q) contains X -variables and constants which implies that σ is a substitution over Y , where σ(y) is a 
ground expression for every y ∈ dom(σ ). We consider σ(y) as a constant because as an expression without variables it can 
be evaluated into a constant. Regarding the transition relation 
′ , notice that for ((q, r), a, (q′, r′), σ ′) ∈ 
′ we are following 
the transition δ(q′, a) = (q, σ) backwardly and “extending and reducing” r by applying σ . This is similar to the extend
function used in the transition function of Theorem 3. The result of this “extension” is reduced by the redX procedure 
into an expression that has bounded size by Lemma 9. In other words, we are constructing the output of A over the 
input backwardly by extending the final output μ(q), reducing the tree whenever it is possible and storing this in the 
states. Finally, one can easily show that A′ is unambiguous given that for each transition ((q, r), a, (q′, r′), σ ′) ∈ 
′ we are 
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following the transition δ(q′, a) = (q, σ) backwardly and given (q, t), a, and q′ one can easily check by definition that r′ and 
σ ′ are uniquely determined.

It is left to show that for every word w = a1a2 . . .an ∈ �∗ we have �A�(a1a2 . . .an) = �A′�(anan−1 . . .a1). Let ρ :
(q0, ν0) 

a1−→ . . .
an−→ (qn, νn) be a run of A over w such that, for every 1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi) and νi(x) =

�νi−1 ◦ σi(x)� for each x ∈X . Recall that the output of A over w is defined by �A�(w) = �νn ◦ μ(qn)�. By the construction 
of A′ and 
′ , let

ρ ′ : ((qn, rn),χn)
an−→ ((qn−1, rn−1),χn−1)

an−1−−−→ . . .
a1−→ ((q0, r0),χ0)

be a run of A′ over anan−1 . . .a1 such that redX (μ(qn)) = (rn, χn) and, for every 1 ≤ i ≤ n, it holds that ((qi, ri), ai,

(qi−1, ri−1), τi) ∈ 
′ where redX (σi ◦ ri) = (ri−1, τi) and χi−1(y) = �χi ◦ τi(y)� for each y ∈ Y . One can easily check that 
ρ ′ is the only run of A′ over anan−1 . . .a1. Indeed, rn is determined by qn and each pair (qi−1, ri−1) is determined by qi , 
ri and ρ . Therefore, it is left to show that the output of ρ ′ is equal to the output of ρ . For this, we prove by backward 
induction (i.e. starting from n and ending in 0) that:

�νi ◦ χi ◦ ri � = �A�(w[1, i]). (29)

This concludes the proof, since νi and χi are valuations over disjoint sets of variables

�A�(w) = �ν0 ◦ χ0 ◦ r0 � = �χ0 ◦ ν0 ◦ r0 � = �χ0 ◦ μ′((q0, r0))� = �A′�(anan−1 . . .a1).

To prove the base of induction in (29) notice that �A�(w) = �νn ◦ μ(qn)� = �νn ◦ χn ◦ rn �, since by definition χn ◦rn = μ(qn). 
For the inductive step suppose that (29) holds for i +1 and we prove it for i. By definition of 
′ we have redX (σi+1 ◦ri+1) =
(ri, τi+1), furthermore

τi+1 ◦ ri = σi+1 ◦ ri+1 (by definition of X -reduction)

νi ◦ τi+1 ◦ ri = νi ◦ σi+1 ◦ ri+1
νi ◦ τi+1 ◦ ri = νi+1 ◦ ri+1 (by definition of νi)

χi+1 ◦ νi ◦ τi+1 ◦ ri = χi+1 ◦ νi+1 ◦ ri+1
νi ◦ χi ◦ ri = νi+1 ◦ χi+1 ◦ ri+1 (by definition of χi)

νi ◦ χi ◦ ri = �A�(w) (by inductive hyphotesis) �
Notice that, as proved in Theorem 2, this construction fails for the function f R

B , where fB is given by the copyless 
CRA B. This is because while B is copyless its alternation is not bounded. In the above construction when the output is 
read backwards we encode in the states the tree expression obtained by composing the substitutions from backwards. In 
the constructions we ensure that one can store such a tree in a succinct way by using the X -reductions. The X -reductions 
deal with constants and registers that are on the same ‘level’ of alternation but it does not lower its alternation level. Since 
we do not have any reductions to drop the alternation of the tree, keeping such trees would require unbounded memory.

We conclude this section by stressing the robustness of bounded alternation copyless CRA: they are closed under un-
ambiguous non-determinism, regular look-ahead, and reverse operation. Notice that all the structural properties studied in 
Section 3 also apply to this class, in particular, the results regarding normal form and stable registers.

7. Conclusions and future work

In this paper, we studied structural properties, expressiveness and closure properties of copyless CRA. In particular, we 
showed that the class of functions recognized by copyless CRA are not closed under reverse. Due to this result we proved 
that copyless CRA are strictly contained in the class of weighted automata. In [4] Alur et al. introduced the class of regular 
cost functions defined in terms of streaming string-to-tree transducers. This class contained copyless CRA but it was left 
open whether this inclusion is strict or not. Since the class of regular cost functions is closed under reverse operation, we 
can conclude that copyless CRA are strictly contained in the class of regular cost functions.

To recover the closure properties of CRA, we proposed the subclass of bounded alternation copyless CRA (BAC). We prove 
that BAC are closed under unambiguous non-determinism, regular look-ahead, and reverse. An open problem here is to 
show whether these constructions are optimal or not. In particular, the construction to show that BAC are closed under 
regular look-ahead is double exponential: first constructing an unambiguous BAC; and second by determinizing it. Each step 
takes exponential time, and one can envision a construction in one step that requires only a single exponential. For general 
copyless CRA, we do not know whether this class is closed under unambiguous non-determinism or regular look-ahead. 
A positive answer would be surprising, since unambiguous automata are often trivially closed under the reverse operation 
(e.g. finite automata or weighted automata).

To study whether a subclass of CRA is closed under reverse, one could approach the problem in a more general way. 
A natural extension of BAC is to enhance the model with the ability of moving in both directions. Our results do not 
give a straightforward argument that BAC is closed under two-way extension, but we believe that this could be shown by 
exploiting the copyless restriction and bounded alternation similar as in the proof of Theorem 4.
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The most important task for future work is to study the decidability properties of copyless CRA or BAC. The classical 
questions for computational models, like boundedness or equivalence of two automata, remain unanswered. We hope that 
the machinery developed in Section 3 is a first step towards answering these questions.
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