
Descriptive Complexity
for Counting Complexity Classes

Marcelo Arenas
Pontificia U. Católica de Chile

marenas@ing.puc.cl

Martin Muñoz
Pontificia U. Católica de Chile

mmunos@uc.cl

Cristian Riveros
Pontificia U. Católica de Chile

cristian.riveros@uc.cl

Abstract—Descriptive Complexity has been very successful in
characterizing complexity classes of decision problems in terms
of the properties definable in some logics. However, descriptive
complexity for counting complexity classes, such as FP and #P,
has not been systematically studied, and it is not as developed as
its decision counterpart. In this paper, we propose a framework
based on Weighted Logics to address this issue. Specifically,
by focusing on the natural numbers we obtain a logic called
Quantitative Second Order Logics (QSO), and show how some
of its fragments can be used to capture fundamental counting
complexity classes such as FP, #P and FPSPACE, among others.
We also use QSO to define a hierarchy inside #P, identifying
counting complexity classes with good closure and approximation
properties, and which admit natural complete problems. Finally,
we add recursion to QSO, and show how this extension naturally
captures lower counting complexity classes such as #L.

I. INTRODUCTION

The goal of descriptive complexity is to measure the com-
plexity of a problem in terms of the logical constructors
needed to express it [22]. The starting point of this branch
of complexity theory is Fagin’s theorem [10], which states
that NP is equal to existential second-order logic. Since
then, many more complexity classes have been characterized
in terms of logics (see [16] for a survey) and descriptive
complexity has found a variety of applications in different
areas [22], [29]. For instance, Fagin’s theorem was the key
ingredient to define the class MAXSNP [33], which was later
shown to be a fundamental class in the study of hardness
of approximation [3]. It is important to mention here that
the definition of MAXSNP would not have been possible
without the machine-independent point of view of descriptive
complexity, as pointed out in [33].

Counting problems differ from decision problems in that
what has to be computed is the value of a function. More
generally, a counting problem corresponds to computing a
function f from a set of instances (e.g. graphs, formulae,
etc.) to natural numbers.1 The study of counting problems has
given rise to a rich theory of counting complexity classes [2],
[13], [18]. Some of these classes are natural counterparts of
some classes of decision problems; for example, FP is the
class of all functions that can be computed in polynomial
time, the natural counterpart of P. However, the existence
of computation problems for which little can be said by

1This value is usually associated to counting the number of solutions in a
search problem, but here we consider a more general definition.

considering solely their decision counterparts has engendered
other function complexity classes. This is the case of the class
#P, a counting complexity class introduced in [36] to prove
that natural problems like counting the number of satisfying
assignments of a propositional formula or the number of per-
fect matchings of a bipartite graph [36] are difficult, namely,
#P-complete. Starting from #P, many more natural counting
complexity classes have been defined, such as #L, SPANP and
GAPP [13], [18].

Although counting problems play a prominent role in com-
putational complexity, descriptive complexity for this type of
problem has not been systematically studied and it is not as
developed as for the case of decision problems. Insightful
characterizations of #P and some of its extensions have been
provided [4], [35]. However, these characterizations do not
define function problems in terms of a logic, but instead in
terms of some counting problems associated to a logic like
FO. Thus, it is not clear how these characterizations can be
used to provide a general descriptive complexity framework
for counting complexity classes like FP and FPSPACE (the
class of functions computable in polynomial space).

In this paper, we propose to study the descriptive complexity
of counting complexity classes in terms of Weighted Logics
(WL) [5], a general logical framework that combines Boolean
formulae (e.g. in FO or SO) with operations over a fixed
semi-ring (e.g. N). Specifically, we propose a restriction of
WL over natural numbers, called Quantitative Second Order
Logic (QSO), and study its expressive power for defining
counting complexity classes over ordered structures. As a
proof of concept, we show that natural syntactical fragments
and extensions of QSO captures counting complexity classes
like #P, SPANP, FP and FPSPACE. Furthermore, by slightly
extending the framework we can prove that QSO can also
capture classes like GAPP and OPTP, showing the robustness
of our approach.

The next step is to use the machine-independent point of
view of QSO to search for subclasses of #P with some
fundamental properties. The question here is, what properties
are desirable for a subclass of #P? First, it is desirable to
have a class of counting problems whose associated decision
versions are tractable, in the sense that one can decide in
polynomial time whether the value of the function is greater
than 0. In fact, this requirement is crucial in order to find
efficient approximation algorithms for a given function (see

Section V). Second, we expect that the class is closed under
basic arithmetical operations like sum, multiplication and
subtraction by one. This is a common topic for counting
complexity classes; for example, it is known that #P is not
closed under subtraction by one (under some complexity-
theoretical assumption). Finally, we want a class with natural
complete problems, which characterize all problems in it.

In this paper, we give the first results towards defining sub-
classes of #P that are robust in terms of existence of efficient
approximations, having good closure properties, and existence
of natural complete problems. Specifically, we introduce a
syntactic hierarchy inside #P, called ΣQSOpFOq-hierarchy,
and we show that it is closely related to the FO-hierarchy
introduced in [35]. Looking inside the ΣQSOpFOq-hierarchy,
we propose the class ΣQSOpΣ1[FO]q and show that every
function in it has a tractable associated decision version, and
it is closed under sum, multiplication, and subtraction by one.
Unfortunately, it is not clear whether this class admits a natural
complete problem. Thus, we also introduce a Horn-style
syntactic class, inspired by [15], that has tractable associated
decision versions and a natural complete problem.

After studying the structure of #P, we move beyond QSO
by introducing new quantifiers. By adding variables for func-
tions on top of QSO, we introduce a quantitative least fixed
point operator to the logic. Adding finite recursion to a numer-
ical setting is subtle since functions over natural numbers can
easily diverge without finding any fixed point. By using the
support of the functions, we give a natural halting condition
that generalizes the least fixed point operator of Boolean
logics. Then, with a quantitative recursion at hand we show
how to capture FP from a different perspective and, moreover,
how to restrict recursion to capture lower complexity classes
such as #L, the counting version of NL.

Organisation. The main terminology used in the paper is
given in Section II. Then the logical framework is introduced
in Section III, and it is used to capture standard counting
complexity classes in Section IV. The structure of #P is
studied in Section V. Section VI is devoted to define recursion
in QSO, and to show how to capture classes below FP. Finally,
we give some concluding remarks in Section VII.

II. PRELIMINARIES

A. Second-order logic, LFP and PFP

A relational signature R (or just signature) is a finite set
tR1, . . . , Rku, where each Ri (1 ď i ď k) is a relation name
with an associated arity greater than 0, which is denoted by
aritypRiq. A finite structure over R (or just finite R-structure)
is a tuple A “ xA,RA

1 , . . . , R
A
k y such that A is a finite set

and RA
i Ď AaritypRiq for every i P t1, . . . , ku. In this paper

we only consider finite structures, so we omit the word finite
when referring to them. An R-structure A is said to be ordered
if ă is a binary predicate name in R and ăA is a linear order
on A. Let STRUCTrRs be the class of all R-structures and
ORDSTRUCTrRs be the class of all ordered R-structures.

From now on, assume given disjoint infinite sets FV and
SV of first-order variables and second-order variables, respec-
tively. Notice that every variable in SV has an associated arity,
which is denoted by aritypXq. Then given a signature R, the
set of second-order logic formulae (SO-formulae) over R is
given by the following grammar:

ϕ :“ x “ y | Rpūq | J | Xpv̄q |

 ϕ | pϕ_ ϕq | Dxϕ | DX ϕ

where x, y P FV, R P R, ū is a tuple of (not necessarily
distinct) variables from FV whose length is aritypRq, J is
a reserved symbol to represent a tautology, X P SV, v̄ is a
tuple of (not necessarily distinct) variables from FV whose
length is aritypXq, and x P FV.

We assume that the reader is familiar with the semantics
of SO, so we only introduce here some notation that will be
used in this paper. Given a signature R and an R-structure
A with domain A, a first-order assignment v for A is a total
function from FV to A, while a second-order assignment V
for A is a total function with domain SV that maps each
X P SV to a subset of AaritypXq. Moreover, given a first-
order assignment v for A, x P FV and a P A, we denote
by vra{xs a first-order assignment such that vra{xspxq “ a
and vra{xspyq “ vpyq for every y P FV distinct from x.
Similarly, given a second-order assignment V for A, X P SV
and B Ď AaritypXq, we denote by V rB{Xs a second-order
assignment such that V rB{XspXq “ B and V rB{XspY q “
V pY q for every Y P SV distinct from X . We use notation
pA, v, V q |ù ϕ to indicate that structure A satisfies ϕ under v
and V . In particular, we have that pA, v, V q |ù J.

In this paper, we consider several fragments and exten-
sions of SO, in particular first-order logic (FO), least fixed
point logic (LFP) and partial fixed point logic (PFP) [29].
Moreover, for every i P N, we consider the fragment Σi
(resp., Πi) of FO, which is the set of FO-formulae of the
form Dx̄1@x̄2 ¨ ¨ ¨ Dx̄i´1@x̄i ψ (resp., @x̄1Dx̄2 ¨ ¨ ¨ @x̄i´1Dx̄i ψ)
if i is even, and of the form Dx̄1@x̄2 ¨ ¨ ¨ @x̄i´1Dx̄i ψ (resp.,
@x̄1Dx̄2 ¨ ¨ ¨ Dx̄i´1@x̄i ψ) if i is odd, where ψ is a quantifier-
free formula. Finally, we say that a fragment L1 is contained
in a fragment L2, denoted by L1 Ď L2, if for every formula ϕ
in L1, there exists a formula ψ in L2 such that ϕ is logically
equivalent to ψ. Besides, we say that L1 is properly contained
in L2, denoted by L1 (L2, if L1 Ď L2 and L2 * L1.

B. Counting complexity classes

We consider the following counting complexity classes in
this paper. FP is the class of functions f : Σ˚ Ñ N computable
in polynomial time, while FPSPACE is the class of functions
f : Σ˚ Ñ N computable in polynomial space. Given a
nondeterministic Turing Machine (NTM) M , let #acceptM pxq
be the number of accepting runs of M with input x. Then #P
is the class of functions f for which there exists a polynomial-
time NTM M such that fpxq “ #acceptM pxq for every input
x, while #L is the class of functions f for which there exists
a logarithmic-space NTM M such that fpxq “ #acceptM pxq

for every input x. Given an NTM M with output tape, let
#outputM pxq be the number of distinct outputs of M with
input x (notice that M produces an output if it halts in
an accepting state). Then SPANP is the class of functions
f for which there exists a polynomial-time NTM M such
that fpxq “ #outputM pxq for every input x. Notice that
#P Ď SPANP, and this inclusion is believed to be strict.

III. A LOGIC FOR QUANTITATIVE FUNCTIONS

We introduce here the logical framework that we use for
studying counting complexity classes. This framework is based
on the framework of Weighted Logics (WL) [5] that has
been used in the context of weighted automata for studying
functions from words (or trees) to semirings. We propose here
to use the framework of WL over any relational structure and
to restrict the semiring to natural numbers. The extension to
any relational structure will allow us to study general counting
complexity classes and the restriction to the natural numbers
will simplify the notation in this context (see Section III-A for
a more detailed discussion).

Given a relational signature R, the set of Quantitative
Second-Order logic formulae (or just QSO-formulae) over R
is given by the following grammar:

α :“ ϕ | s | pα` αq | pα ¨ αq |

Σx. α | Πx. α | ΣX.α | ΠX.α (1)

where ϕ is an SO-formula over R, s P N, x P FV and
X P SV. Moreover, if R is not mentioned, then QSO refers to
the set of QSO formulae over all possible relational signatures.

Note that the syntax of QSO formulae is divided in two
levels. The first level is composed by SO-formulae over R
(called Boolean formulae) and the second level is made by
counting operators of addition and multiplication. For this rea-
son, the quantifiers in SO (e.g. Dx or DX) are called Boolean
quantifiers and the quantifiers that make use of addition and
multiplication (e.g. Σx or ΠX) are called quantitative quan-
tifiers. Furthermore, Σx and ΣX are called first- and second-
order sum, and Πx and ΠX are called first- and second-
order product, respectively. This division between Boolean and
quantitative level is essential for understanding the difference
between the logic and the quantitative part. Furthermore, this
will allow us later to parametrize both levels of the logic in
order to capture different counting complexity classes.

Let R be a signature, A an R-structure with domain A, v a
first-order assignment for A and V a second-order assignment
for A. Then the evaluation of a QSO-formula α over pA, v, V q
is defined as a function JαK that on input pA, v, V q returns a
number in N. Formally, the function JαK is recursively defined
in Table I. A QSO-formula α is said to be a sentence if
it does not have any free variable, that is, every variable in
α is under the scope of a usual quantifier or a quantitative
quantifier. It is important to notice that if α is a QSO-sentence
over a signature R, then for every R-structure A, first-order
assignments v1, v2 for A and second-order assignments V1, V2

for A, it holds that JαKpA, v1, V1q “ JαKpA, v2, V2q. Thus, in

JϕKpA, v, V q “

#

1 if pA, v, V q |ù ϕ

0 otherwise

JsKpA, v, V q “ s

Jα1 ` α2KpA, v, V q “ Jα1KpA, v, V q ` Jα2KpA, v, V q

Jα1 ¨ α2KpA, v, V q “ Jα1KpA, v, V q ¨ Jα2KpA, v, V q

JΣx. αKpA, v, V q “
ÿ

aPA

JαKpA, vra{xs, V q

JΠx. αKpA, v, V q “
ź

aPA

JαKpA, vra{xs, V q

JΣX.αKpA, v, V q “
ÿ

BĎAaritypXq

JαKpA, v, V rB{Xsq

JΠX.αKpA, v, V q “
ź

BĎAaritypXq

JαKpA, v, V rB{Xsq

Table I
THE SEMANTICS OF QSO FORMULAE.

such a case we use the term JαKpAq to denote JαKpA, v, V q,
for some arbitrary first-order assignment v for A and some
arbitrary second-order assignment V for A.

Example III.1. Let G “ tEp¨, ¨q,ău be the vocabulary
for graphs and G be an ordered G-structure encoding an
undirected graph. Suppose that we want to count the number
of triangles in G. Then this can be defined as follows:

α1 :“ Σx.Σy.Σz. pEpx, yq ^ Epy, zq ^ Epz, xq^

x ă y ^ y ă zq

We encode a triangle in α1 as an increasing sequence of
nodes tx, y, zu, in order to count each triangle once. Then
the Boolean subformula Epx, yq ^ Epy, zq ^ Epz, xq ^ x ă
y ^ y ă z is checking the triangle property, by returning 1 if
tx, y, zu forms a triangle in G and 0 otherwise. Finally, the
sum quantifiers in α1 aggregates all the values, counting the
number of triangles in G.

Suppose now that we want to count the number of cliques
in G. We can define this function with the following formula:

α2 :“ ΣX. cliquepXq,

where cliquepXq :“ @x@yppXpxq ^ Xpyq ^ x ‰ yq Ñ
Epx, yqq. In the Boolean sub-formula of α2 we check whether
X is a clique, and with the sum quantifier we add one for each
clique in G. But in contrast to α1, in α2 we need a second-
order quantifier in the quantitative level. This is according
to the complexity of evaluating each formula: α1 defines an
FP-function while α2 defines a #P-complete function.

Example III.2. For a more involved example that includes
multiplication, let M “ tMp¨, ¨q,ău be a vocabulary for
storing 0-1 matrices; in particular, a structure M over M
encodes a 0-1 matrix A as follows: if Ari, js “ 1, then Mpi, jq
is true, otherwise Mpi.jq is false. Suppose now that we want
to compute the permanent of an n-by-n 0-1 matrix A, that is:

permpAq “
ÿ

σPSn

n
ź

i“1

Ari, σpiqs,

where Sn is the set of all permutations over t1, . . . , nu. The
permanent is a fundamental function on matrices that has
found many applications; in fact, showing that this function is
hard to compute was one of the main motivations behind the
definition of the counting class #P [36].

To define the permanent of a 0-1 matrix in QSO, assume
that for a binary relation symbol S, permutpSq is an FO-
formula that is true if and only if S is a permutation, that
is, a total bijective function (the definition of permutpSq
is straightforward). Then the following is a QSO-formula
defining the permanent of a matrix:

α3 :“ ΣS. permutpSq ¨Πx. pDy. Spx, yq ^Mpx, yqq.

Intuitively, the subformula βpSq :“ Πx. pDy. Spx, yq ^
Mpx, yqq calculates the value

śn
i“1Ari, σpiqs whenever S en-

codes a permutation σ. Moreover, the subformula permutpSq¨
βpSq returns βpSq when S is a permutation, and returns 0
otherwise (i.e. permutpSq behaves like a filter). Finally, the
second order sum aggregates these values iterating over all
binary relations and calculating the permanent of the matrix.
We would like to finish with this example by highlighting
the similarity of α3 with the permanent formula. Indeed, an
advantage of QSO-formulae is that the first- and second-
order quantifiers in the quantitative level naturally reflect the
operations used to define mathematical formulae.

We consider several fragments of QSO, which are obtained
by restricting the syntax of the Boolean formulae or the use
of the quantitative quantifiers. In this direction, we denote
by QFO the fragment of QSO where second-order sum and
product are not allowed. For instance, for the QSO-formulae
defined in Example III.1, we have that α1 is in QFO and
α2 is not. Another interesting fragment of QSO consists of
the QSO-formulae where only sum operators and quantifiers
are allowed. Formally, we denote by ΣQSO the fragment of
QSO where first- and second-order products (i.e. Πx. and
ΠX.) are not allowed. For example, α1 and α2 in Example
III.1 are formulae of ΣQSO, while α3 in Example III.2 is not.
We also consider fragments of QSO by further restricting the
Boolean part of the logic. If L is a fragment of SO, then we
define the quantitative logic QSOpL q to be the fragment of
QSO obtained by restricting ϕ in (1) to be a formula in L .
Moreover, we also consider other fragments of QSO by using
the same idea. For example, we define QFOpFOq to be the
fragment of QFO obtained by restricting ϕ in (1) to be an
FO-formula, and likewise for ΣQSOpFOq.

In the following section, we use different fragments of QSO
to capture counting complexity classes. But before doing this,
we show the connection of QSO with previous frameworks
for defining functions over relational structures.

A. Previous frameworks for quantitative functions

In this section, we discuss some previous frameworks pro-
posed in the literature and how they differ from our approach.
We start by discussing the connection between QSO and
weighted logics (WL) [5]. As it was previously discussed,

QSO is a fragment of WL. The main difference is that we
restrict the semiring used in WL to natural numbers in order
to study counting complexity classes. Another difference of
WL with our approach is that, to the best of our knowledge,
this is the first paper to study weighted logics over general
relational signatures, in order to do descriptive complexity for
counting complexity classes. Previous works on WL usually
restrict the signature of the logic to strings, trees, and other
specific structures (see [6] for more examples), and they did
not study the logic over general structures. Furthermore, in this
paper we propose further extensions for QSO (see Section VI)
which differ from previous approaches in WL.

Another approach that resembles QSO are logics with
counting [9], [17], [23], [29], which include operators that
extend FO with quantifiers that allow to count in how many
ways a formula is satisfied (the result of this counting is a
value of a second sort, in this case the natural numbers).
In contrast to our approach, counting operators are usually
used for checking Boolean properties over structures and not
for producing values (i.e. they do not define a function).
In particular, we are not aware of any paper that uses this
approach for capturing counting complexity classes.

Finally, the work in [35] and [4] is of particular inter-
est for our research. In [35], it was proposed to define a
function over a structure by using free variables in an SO-
formula; in particular, the function is defined by the number
of instantiations of the free variables that are satisfied by
the structure. Formally, Saluja et. al [35] define a family
of counting classes #L for a fragment L of FO. For a
formula ϕpx̄, X̄q over R, the function fϕpx̄,X̄q is defined as
fϕpx̄,X̄qpAq “ |tpā, Āq | A |ù ϕpā, Āqu|, for every A P

ORDSTRUCTrRs. Then a function g : ORDSTRUCTrRs Ñ N
is in #L if there exists a formula ϕpx̄, X̄q in L such
that g “ fϕpx̄,X̄q. In [35], several results were proved about
capturing counting complexity classes which are relevant for
our work. We discuss and use these results in Sections IV
and V. Notice that for every formula ϕpx̄, X̄q, it holds that
fϕpx̄,X̄q is the same function as JΣX̄.Σx̄. ϕpx̄, X̄qK, that is, the
approach in [35] can be seen as a syntactical restriction of our
approach based on QSO. Thus, the advantage of our approach
relies on the flexibility to define functions by alternating sum
with product operators and, moreover, by introducing new
quantitative operators (see Section VI). Furthermore, we show
in the following section how to capture some fundamental
classes that cannot be captured by following the approach
in [35].

IV. COUNTING UNDER QSO

In this section, we show that by syntactically restricting
QSO one can capture different counting complexity classes.
In other words, by using QSO we can extend the theory
of descriptive complexity [22] from decision problems to
computation problems. For this, we first formalize the notion
of capturing a complexity class of functions.

Fix a signature R “ tR1, . . . , Rku and assume that A is an
ordered (finite) R-structure with a domain A “ ta1, . . . , anu.

Recall that ă is a linear order on A, say a1 ă a2 ă . . . ă an.
For every i P t1, . . . , ku, define the encoding of RA

i , denoted
by encpRA

i q, as the following binary string. Assume that ` “
aritypRiq and consider an enumeration of the `-tuples over A
in the lexicographic order induced by ă. Then let encpRA

i q be
a binary string of length n` such that the i-th bit of encpRA

i q

is 1 if the i-th tuple in the enumeration belongs to RA
i , and

0 otherwise. Moreover, define the encoding of A, denoted by
encpAq, as the string 0n 1 encpRA

1 q ¨ ¨ ¨ encpRA
k q [29]. We can

now formalize the notion of capturing a counting complexity
class.

Definition IV.1. Let F be a fragment of QSO and C a
counting complexity class. Then F captures C over ordered
R-structures if the following conditions hold:
1) for every α P F , there exists f P C such that JαKpAq “

fpencpAqq for every A P ORDSTRUCTrRs.
2) for every f P C , there exists α P F such that

fpencpAqq “ JαKpAq for every A P ORDSTRUCTrRs.
Moreover, F captures C over ordered structures if F cap-
tures C over ordered R-structures for every signature R.

In Definition IV.1, function f P C and formula α P F must
coincide in all the strings that encode ordered R-structures.
Notice that this restriction is natural as we want to capture C
over a fixed set of structures (e.g. graphs, matrices). Moreover,
this restriction is fairly standard in descriptive complexity
[22], [29], and it has also been used in the previous work
on capturing complexity classes of functions [4], [35].

What counting complexity classes can be captured with
fragments of QSO? For answering this question, it is rea-
sonable to start with #P, a well-known and widely-studied
counting complexity class [2]. Since #P has a strong similarity
with NP, one could expect a “Fagin-like” Theorem [10] for
this class. Actually, in [35] it was shown that the class #FO
captures #P. In our setting, the class #FO is contained in
ΣQSOpFOq, which also captures #P as expected.

Proposition IV.2. ΣQSOpFOq captures #P over ordered
structures.

Recall that every function class #L is contained in
ΣQSOpL q, for some fragment L of FO. (see Section III-A).
Thus, it directly follows from [35] that every #P-function can
be defined in ΣQSOpFOq. The other direction of Proposition
IV.2 follows by the fact that #P is closed under first- and
second-order sum.

By following the same approach as [35], Compton and
Grädel [4] show that #(DSO) captures SPANP, where DSO
is the existential fragment of SO. As one could expect, if we
parametrize ΣQSO with DSO, we can also capture SPANP.

Proposition IV.3. ΣQSOpDSOq captures SPANP over ordered
structures.

Can we capture FP by using #L for some fragment L
of SO? A first attempt could be based on considering a
fragment L of FO. But even if we consider the existential
fragment Σ1 of FO the approach fails, as #Σ1 can encode

#P-complete problems like counting the number of satisfying
assignments of a 3-DNF propositional formula [35]. A second
attempt could be based on disallowing the use of second-order
free variables in #FO. But in this case one cannot capture
exponential functions definable in FP such as 2n. Thus, it
is not clear how to capture FP by following the approach
proposed in [35]. On the other hand, if we consider our
framework and move out from ΣQSO, we have other options
for counting like first- and second-order products. In fact, the
combination of QFO with LFP is exactly what we need to
capture FP.

Theorem IV.4. QFOpLFPq captures FP over ordered struc-
tures.

To prove this theorem, one first shows that every formula
in QFOpLFPq can be evaluated in polynomial time. Indeed,
LFP is a polynomial-time logic [20], [38], and the sum and
product quantifiers can also be computed in polynomial time.
For the other direction, one has to use QFOpLFPq to simulate
the run of a polynomial time TM M computing a function,
in particular using the quantitative quantifiers to reconstruct
the natural number returned by M in the output tape. It
is important to notice that the alternation between sum and
product quantifiers is used for this reconstruction.

At this point it is natural to ask whether one can extend the
previous idea to capture FPSPACE [28], the class of functions
computable in polynomial space. For capturing this class
one can use a logical core powerful enough, like PFP, for
simulating the run of a polynomial-space TM. Moreover, one
also needs more powerful quantitative quantifiers as functions
like 22n

can be computed in polynomial space, so second-
order sum is not enough for the quantitative layer of a logic
for FPSPACE. In fact, by considering second-order product
we obtain the fragment QSOpPFPq that captures FPSPACE.

Theorem IV.5. QSOpPFPq captures FPSPACE over ordered
structures.

The proof of the previous theorem follows the same line
as for the logical characterization of FP: one shows that
each function in QSOpPFPq can be computed in FPSPACE
and, conversely, the output of a polynomial-space TM can be
reconstructed by using PFP and quantitative quantifiers.

From the proof of the previous theorem a natural question
follows: what happens if we use first-order quantitative quan-
tifiers and PFP? In [28], Ladner also introduced the class
FPSPACE(POLY) of all functions computed by polynomial-
space TMs with output length bounded by a polynomial.
Interestingly, if we restrict to FO-quantitative quantifiers we
can also capture this class.

Corollary IV.6. QFOpPFPq captures FPSPACE(POLY) over
ordered structures.

The results of this section validate QSO as an appropriate
logical framework for extending the theory of descriptive
complexity to counting complexity classes. In the following
sections, we provide more arguments for this claim, by con-

sidering some fragments of ΣQSO and, moreover, by showing
how to go beyond ΣQSO to capture other classes.

A. Extending QSO to capture non-counting classes

There exist complexity classes that do not fit in our frame-
work because either the output of a function is not a natural
number (e.g. a negative number) or the class is not defined
purely in terms of arithmetical operations (e.g. min and max
are used). To remedy this problem, we show here how QSO
can be easily extended to capture such classes that go beyond
sum and product over natural numbers.

It is well-known that, under some reasonable complexity-
theoretical assumptions, #P is not closed under subtraction,
not even under subtraction by one [30]. To overcome this
limitation, GAPP was introduced in [12] as the class of
functions f for which there exists a polynomial-time NTM
M such that fpxq “ #acceptM pxq ´ #rejectM pxq, where
#rejectM pxq is the number of rejecting runs of M with input x.
That is, GAPP is the closure of #P functions under subtraction,
and its functions can obviously take negative values. Given that
our logical framework was built on top of the natural numbers,
we need to extend QSO in order to capture GAPP. The most
elegant way to do this is by allowing constants coming from Z
instead of just N. Formally, we define the logic QSOZ whose
syntax is the same as in (1) and whose semantics is the same
as in Table I except that the atomic formula s (i.e. a constant)
comes from Z. Just as we did for QSO, we define the fragment
ΣQSOZ as the extension of ΣQSO with constants in Z.

Example IV.7. Recall the setting of Example III.1 and suppose
now that we want to compute the number of cliques in a graph
that are not triangles. This can be easily done in QSOZ with
the formula: α5 :“ α2 ` p´1q ¨ α1.

Adding negative constants is a mild extension to allow
subtraction in the logic. It follows from our characterization
of #P that this is exactly what we need to capture GAPP.

Corollary IV.8. ΣQSOZpFOq captures GAPP over ordered
structures.

This result shows how robust QSO is when capturing
different complexity classes.

A different class of functions comes from considering the
optimization version of a decision problem. For example,
one can define MAX-SAT as the problem of determining the
maximum number of clauses, of a given CNF propositional
formula, that can be made true by an assignment. Here,
MAX-SAT is defined in terms of a maximization problem
which in its essence differs from the functions in #P. To
formalize this set of optimization problems, Krentel defined
OPTP [27] as the class of functions computable by taking
the maximum or minimum of the output values over all runs
of a polynomial-time NTM machine with output tape (i.e.
each run produces a binary string which is interpreted as a
number). For instance, MAX-SAT is in OPTP as many other
optimization versions of NP-problems are. Given that in [27]
the author does not make the distinction between max and

min, in [39] the authors define the classes MAXP and MINP
as the max and min version of the problems in OPTP (i.e.
OPTP “ MAXP YMINP).

In order to capture classes of optimization functions, we
extend as follows QSO with max and min quantifiers (called
OptQSO). Given a signature R, the set of OptQSO-formulae
over R is given by extending the syntax in (1) with the
following operators:

maxtα, αu | mintα, αu |

Maxx. α | Minx. α | MaxX.α | MinX.α

where x P FV and X P SV. The semantics of the QSO-
operators in OptQSO are defined as usual. Furthermore, the
semantics of the max and min quantifiers are defined as
the natural extension of the sum quantifiers in QSO (see
Table I) by maximizing or minimizing, respectively, instead
of computing a sum.

Example IV.9. Recall again the setting of Example III.1 and
suppose now that we want to compute the size of the largest
clique in a graph. This can be done in OptQSO as follows:

α6 :“ MaxX. p cliquepXq ¨ Σz.Xpzq q

Notice that formula Σz.Xpzq is used to compute the number
of nodes in a set X .

Similar than for MAXP and MINP, we have to distin-
guish between the max and min fragments of OptQSO.
For this, we define the fragment MaxQSO of all OptQSO
formulae constructed from QFO operators and max-formulae
maxtα, αu, Maxx. α and MaxX.α. The class MinQSO is
defined analogously changing max with min. Notice that in
MaxQSO and MinQSO, second-order sum and product are
not allowed. For instance, formula α6 in Example IV.9 is in
MaxQSO. As one could expect, MaxQSO and MinQSO are
the logics needed to capture MAXP and MINP.

Theorem IV.10. MaxQSOpFOq and MinQSOpFOq capture
MAXP and MINP, respectively, over ordered structures.

It is important to mention that a similar result was proved
in [26] for the class MAXPB (resp., MINPB) of problems
in MAXP (resp., MINP) whose output value is polynomially
bounded. Interestingly, Theorem IV.10 is stronger since our
logic has the freedom to use sum and product quantifiers,
instead of using a max-and-count problem over Boolean
formulae. Finally, it is easy to prove that our framework can
also capture MAXPB and MINPB by disallowing the product
Πx in MaxQSOpFOq and MinQSOpFOq, respectively.

V. EXPLORING THE STRUCTURE OF #P THROUGH QSO

The class #P was introduced in [36] to prove that computing
the permanent of a matrix, as defined in Example III.2, is a
#P-complete problem. As a consequence of this result many
counting problems have been proved to be #P-complete [2],
[37]. Among them, problems having easy decision counter-
parts play a fundamental role, as a counting problem with a

hard decision version is expected to be hard. Formally, the
decision problem associated to a function f : Σ˚ Ñ N is
defined as Lf “ tx P Σ˚ | fpxq ą 0u, and f is said to have
an easy decision version if Lf P P. Many prominent examples
satisfy this property, like computing the number of: perfect
matchings of a bipartite graph (#PERFECTMATCHING) [36],
satisfying assignments of a DNF (#DNF) [7], [25] or Horn
(#HORNSAT) [37] propositional formula, among others.

Counting problems with easy decision versions play a
fundamental role in the search of efficient approximation
algorithms for functions in #P. A fully-polynomial randomized
approximation scheme (FPRAS) for a function f : Σ˚ Ñ N
is a randomized algorithm A : Σ˚ ˆ p0, 1q Ñ N such that:
(1) for every string x P Σ˚ and real value ε P p0, 1q,
the probability that |fpxq ´ Apx, εq| ď ε ¨ fpxq is at least
3
4 , and (2) the running time of A is polynomial in the
size of x and 1{ε [25]. Notably, there exist #P-complete
functions that can be efficiently approximated as they admit
FPRAS; for instance, there exist FPRAS for #DNF [25] and
#PERFECTMATCHING [24]. A key observation here is that if
a function f admits an FPRAS, then Lf is in the randomized
complexity class BPP [14]. Hence, under the widely believed
assumption that NP * BPP, we cannot hope for an FPRAS for
a function in #P whose decision counterpart is NP-complete,
and we have to concentrate on the class of counting problems
with easy decision versions.

The importance of the class of counting problems with
easy decision counterparts has motivated the search of robust
classes of functions in #P with this property [31]. But the key
question here is what should be considered a robust class. A
first desirable condition has to do with the closure properties
satisfied by the class, which is a common theme when studying
function complexity classes [11], [30]. As in the cases of
P and NP that are closed under intersection and union, we
expect our class to be closed under multiplication and sum.
For a more elaborated closure property, assume that sat one
is a function that returns one plus the number of satisfying
assignments of a propositional formula. Clearly sat one is a
#P-complete function whose decision counterpart Lsat one is
trivial. But should sat one be part of a robust class of counting
functions with easy decision versions? The key insight here is
that if a function in #P has an easy decision counterpart L,
then as L P NP we expect to have a polynomial-time algorithm
that verifies whether x P L by constructing witnesses for x.
Moreover, if such an algorithm for constructing witnesses
exists, then we also expect to be able to manipulate such
witnesses and in some cases to remove them. In other words,
we expect a robust class C of counting functions with easy
decision versions to be closed under subtraction by one, that
is, if g P C , then the function g ´ 1 should also be in C ,
where pg ´ 1qpxq is defined as gpxq ´ 1 if gpxq ě 1, and
as 0 otherwise. Notice that, unless P “ NP, no such class can
contain the function sat one because sat one ´ 1 counts the
number of satisfying assignments of a propositional formula.

A second desirable condition of robustness is the existence
of natural complete problems [32]. Special attention has to be

paid here to the notion of reduction used for completeness.
Notice that under the notion of Cook reduction, originally
used in [36], the problems #DNF and #SAT are #P-complete.
However, #DNF has an easy decision counterpart and admits
an FPRAS, while #SAT does not satisfy these conditions
unless P “ NP. Hence a more strict notion of reduction
has to be considered; in particular, the notion of parsimonious
reduction (to be defined later) satisfies that if a function f is
parsimoniously reducible to a function g, then Lg P P implies
that Lf P P and the existence of an FPRAS for g implies the
existence of a FPRAS for f .

In this section, we use the framework developed in this
paper to address the problem of defining a robust class of
functions with easy decision versions. More specifically, we
use the framework to introduce in Section V-A a syntactic
hierarchy of counting complexity classes contained in #P.
Then this hierarchy is used in Section V-B to define a class
of functions with easy decision versions and good closure
properties, and in Section V-C to define a class of functions
with easy decision versions and natural complete problems.

A. The ΣQSOpFOq-hierarchy inside #P

Inspired by the connection between #P and #FO, a hierar-
chy of subclases of #FO was introduced in [35] by restricting
the alternation of quantifiers in Boolean formulae. Specifically,
the #FO-hierarchy consists of the the classes #Σi and #Πi

for every i ě 0, where #Σi (resp., #Πi) is defined as #FO
but restricting the formulae used to be in Σi (resp., Πi). By
definition, we have that #Π0 “ #Σ0. Moreover, it is shown
in [35] that:

#Σ0 (#Σ1 (#Π1 (#Σ2 (#Π2 “ #FO

In light of the framework introduced in this paper, natu-
ral extensions of these classes are obtained by considering
ΣQSOpΣiq and ΣQSOpΠiq for every i ě 0, which form
the ΣQSOpFOq-hierarchy. Clearly, we have that #Σi Ď
ΣQSOpΣiq and #Πi Ď ΣQSOpΠiq. Indeed, each formula
ϕpX̄, x̄q in #Σi is equivalent to the formula ΣX̄.Σx̄. ϕpX̄, x̄q
in ΣQSOpΣiq, and likewise for #Πi and ΣQSOpΠiq. But
what is the exact relationship between these two hierarchies?
To answer this question, we first introduce two normal forms
for ΣQSOpL q that helps us to characterize the expressive
power of this quantitative logic. A formula α in ΣQSOpL q

is in L -prenex normal form (L -PNF) if α is of the form
ΣX̄.Σx̄. ϕpX̄, x̄q, where X̄ and x̄ are sequences of zero or
more second-order and first-order variables, respectively, and
ϕpX̄, x̄q is a formula in L . Notice that a formula ϕpX̄, x̄q in
#L is equivalent to the formula ΣX̄.Σx̄. ϕpX̄, x̄q in L -PNF.
Moreover, a formula α in ΣQSOpL q is in L -sum normal
form (L -SNF) if α is of the form Σni“1αi where each αi is
in L -PNF.

Proposition V.1. Every formula in ΣQSOpL q can be rewrit-
ten in L -SNF.

If a formula is in L -PNF then clearly the formula is in
L -SNF. Unfortunately, for some L there exist formulae in

#Σ0

#Σ1

(

ΣQSOpΣ0q

(
ΣQSOpΣ1q

(

(
#Π1(ΣQSOpΠ1q“ #Σ2(ΣQSOpΣ2q“ #Π2(ΣQSOpΠ2q“ #FO“

Figure 1. The relationship between the #FO-hierarchy and the ΣQSOpFOq-hierarchy, where #Σ1 and ΣQSOpΣ0q are incomparable.

ΣQSOpL q that cannot be rewritten in L -PNF. Therefore, to
unveil the relationship between the #FO-hierarchy and the
ΣQSOpFOq-hierarchy, we need to understand the boundary
between PNF and SNF. We do this in the following theorem.

Theorem V.2. For i “ 0, 1, there exists a formula αi in
ΣQSOpΣiq that is not equivalent to any formula in Σi-PNF.
On the other hand, if Π1 Ď L and L is closed under
conjunction and disjunction, then every formula in ΣQSOpL q

can be rewritten in L -PNF.

As a consequence of Proposition V.1 and Theorem V.2,
we obtain that #Σi (ΣQSOpΣiq for i “ 0, 1, and that
#L “ ΣQSOpL q for L equal to Π1, Σ2 or Π2. The
following proposition completes our picture of the relationship
between the #FO-hierarchy and the ΣQSOpFOq-hierarchy.

Proposition V.3. The following properties hold:

• ΣQSOpΣ0q and #Σ1 are incomparable, that is, #Σ1 *
ΣQSOpΣ0q and ΣQSOpΣ0q * #Σ1

• ΣQSOpΣ1q (ΣQSOpΠ1q

The relationship between the two hierarchies is summarized
in Figure 1. Our hierarchy and the one proposed in [35] only
differ in Σ0 and Σ1. Interestingly, we show next that this
difference is crucial for finding classes of functions with easy
decision versions and good closure properties.

B. Defining a class of functions with easy decision versions
and good closure properties

We use the ΣQSOpFOq-hierarchy to define syntactic classes
of functions with good algorithmic and closure properties.
But before doing this, we introduce a more strict notion of
counting problem with easy decision version. Recall that a
function f : Σ˚ Ñ N has an easy decision counterpart if
Lf “ tx P Σ˚ | fpxq ą 0u is a language in P. As the goal
of this section is to define a syntactic class of functions in
#P with easy decision versions and good closure properties,
we do not directly consider the semantic condition Lf P P,
but instead we consider a more restricted syntactic condition.
More precisely, a function f : Σ˚ Ñ N is said to be in the
complexity class TOTP [31] if there exists a polynomial-time
NTM M such that fpxq “ #totalM pxq ´ 1 for every x P Σ˚,
where #totalM pxq is the total number of runs of M with input
x. Notice that one is subtracted from #totalM pxq to allow for
fpxq “ 0. Besides, notice that TOTP Ď #P and that f P TOTP
implies that Lf P P.

The complexity class TOTP contains many important
counting problems with easy decision counterparts, such as

#PERFECTMATCHING, #DNF, and #HORNSAT among oth-
ers [31]. Besides, TOTP has good closure properties as it
is closed under sum, multiplication and subtraction by one.
However, some functions in TOTP do not admit FPRAS under
standard complexity-theoretical assumptions,2 and no natural
complete problems are known for this class [31]. Hence, we
use the ΣQSOpFOq-hierarchy to find restrictions of TOTP
with good approximation and closure properties.

It was proved in [35] that every function in #Σ1 admits
an FPRAS. Besides, it can be proved that #Σ1 Ď TOTP.
However, this class is not closed under sum, and then it is not
robust under basic closure properties.

Proposition V.4. There exist functions f, g P #Σ1 such that
pf ` gq R #Σ1.

To overcome this limitation, one can consider the class
ΣQSOpΣ1q, which is closed under sum by definition. In fact,
the following proposition shows that the same good properties
as for #Σ1 hold for ΣQSOpΣ1q, together with the fact that
it is closed under sum and multiplication.

Proposition V.5. ΣQSOpΣ1q Ď TOTP and every function in
ΣQSOpΣ1q has an FPRAS. Moreover, ΣQSOpΣ1q is closed
under sum and multiplication.

Hence, it only remains to prove that ΣQSOpΣ1q is closed
under subtraction by one. Unfortunately, it is not clear whether
this property holds; in fact, we conjecture that it is not the case.
Thus, we need to find an extension of ΣQSOpΣ1q that keeps
all the previous properties and is closed under subtraction
by one. It is important to notice that #P is believed not
to be closed under subtraction by one by some complexity-
theoretical assumption.3 So, the following proposition rules
out any logic that extends Π1 for a possible extension
of ΣQSOpΣ1q with the desired closure property.

Proposition V.6. If Π1 Ď L Ď FO and ΣQSOpL q is closed
under subtraction by one, then #P is closed under subtraction
by one.

2As an example consider the problem of counting the number of indepen-
dent sets in a graph, and the widely believed assumption that NP is not equal
to the randomized complexity class RP (Randomized Polynomial-Time [14]).
This counting problem is in TOTP, and it is known that NP “ RP if there
exists an FPRAS for it [8].

3A decision problem L is in the randomized complexity class SPP if
there exists a polynomial-time NTM M such that for every x P L it holds
that #acceptM pxq ´ #rejectM pxq “ 2, and for every x R L it holds that
#acceptM pxq “ #rejectM pxq [12], [30]. It is believed that NP * SPP.
However, if #P is closed under subtraction by one, then it holds that
NP Ď SPP [30].

Therefore, the desired extension has to be achieved by
allowing some local extensions to Σ1. More precisely, we
define Σ1[FO] as Σ1 but allowing atomic formulae over a
signature R to be of the form either (1) u “ v, or (2) Xpūq,
where X is a second-order variable, or (3) ϕpūq, where ϕpūq
is a first-order formula over R (in particular, (3) does not
mention any second-order variable). With this extension we
obtain a class with the desired properties.

Theorem V.7. The class ΣQSOpΣ1[FO]q is closed un-
der sum, multiplication and subtraction by one. More-
over, ΣQSOpΣ1[FO]q Ď TOTP and every function in
ΣQSOpΣ1[FO]q has an FPRAS.

The proof that ΣQSOpΣ1[FO]q is closed under subtraction
by one is the most involved of the paper. We think the main
technique used in this proof, which is based on considering
some witnesses of logarithmic size, is of independent interest.

C. Defining a class of functions with easy decision versions
and natural complete problems

The goal of this section is to define a class of functions
in #P with easy decision counterparts and natural complete
problems. To this end, we consider the notion of parsimonious
reduction. Formally, a function f : Σ˚ Ñ N is parsimoniously
reducible to a function g : Σ˚ Ñ N if there exists a function
h : Σ˚ Ñ Σ˚ such that h is computable in polynomial time
and fpxq “ gphpxqq for every x P Σ˚. As mentioned at the
beginning of this section, if f can be parsimoniously reduced
to g, then Lg P P implies that Lf P P and the existence of an
FPRAS for g implies the existence of an FPRAS for f .

In the previous section, we show that the class
ΣQSOpΣ1[FO]q has good closure and approximation prop-
erties. Unfortunately, it is not clear whether it admits a nat-
ural complete problem under parsimonious reductions, where
natural means any of the counting problems defined in this
section or any other well-known counting problem (not one
specifically designed to be complete for the class). Hence,
in this section we follow a different approach to find a
class of functions in #P with easy decision counterparts and
natural complete problems, which is inspired by the approach
followed in [15] that uses a restriction of second-order logic
to Horn clauses for capturing P (over ordered structures). The
following example shows how our approach works.

Example V.8. Let R “ tPp¨, ¨q,Np¨, ¨q,Vp¨q,NCp¨q,ău. This
vocabulary is used as follows to encode a Horn formula. A fact
Ppc, xq indicates that propositional variable x is a disjunct in
a clause c, while Npc, xq indicates that x is a disjunct in c.
Furthermore, Vpxq holds if x is a propositional variable, and
NCpcq holds if c is a clause containing only negative literals,
that is, c is of the form p x1 _ ¨ ¨ ¨ _ xnq.

To define #HORNSAT, we consider an SO-formula ϕpTq
over R, where T is a unary predicate, such that for every
Horn formula θ encoded by an R-structure A, the number
of satisfying assignments of θ is equal to JΣT. ϕpTqKpAq. In

particular, Tpxq holds if and only if x is a propositional
variable that is assigned value true. More specifically,

ϕpTq :“ @x pTpxq Ñ Vpxqq ^

@c pNCpcq Ñ Dx pNpc, xq ^ Tpxqqq ^

@c@x prPpc, xq ^ @y pNpc, yq Ñ Tpyqqs Ñ Tpxqq.

We can rewrite ϕpTq in the following way:

@x p Tpxq _ Vpxqq ^

@c p NCpcq _ Dx pNpc, xq ^ Tpxqqq ^

@c@x p Ppc, xq _ Dy pNpc, yq ^ Tpyqq _ Tpxqq.

Moreover, by introducing an auxiliary predicate A defined as:

@c@x p Apc, xq Ø rNpc, xq ^ Tpxqsq,

we can translate ϕpTq into the following equivalent formula:

ψpT,Aq :“ @x p Tpxq _ Vpxqq ^

@c p NCpcq _ Dx Apc, xqq ^

@c@x p Ppc, xq _ Dy Apc, yq _ Tpxqq ^

@c@x p Npc, xq _ Tpxq _ Apc, xqq ^

@c@x pApc, xq _ Npc, xqq ^

@c@x pApc, xq _ Tpxqq.

More precisely, we have that:

JΣT. ϕpTqKpAq “ JΣT.ΣA. ψpT,AqKpAq,

for every R-structure A encoding a Horn formula. Therefore,
the formula ψpT,Aq also defines #HORNSAT. More impor-
tantly, ψpT,Aq resembles a conjunction of Horn clauses except
for the use of negative literals of the form Dv Apu, vq.

The previous example suggests that to define #HORNSAT,
we can use Horn formulae defined as follows. A positive literal
is a formula of the form Xpx̄q, where X is a second-order
variable and x̄ is a tuple of first-order variables, and a negative
literal is a formula of the form Dv̄ Xpū, v̄q, where ū and v̄ are
tuples of first-order variables. Given a signature R, a clause
over R is a formula of the form @x̄ pϕ1 _ ¨ ¨ ¨ _ ϕnq, where
each ϕi (1 ď i ď n) is either a positive literal, a negative
literal or an FO-formula over R. A clause is said to be Horn
if it contains at most one positive literal, and a formula is said
to be Horn if it is a conjunction of Horn clauses. With this
terminology, we define Π1-HORN as the set of Horn formulae
over a signature R.

We have that #HORNSAT P ΣQSOpΠ1-HORNq. More-
over, one can show that ΣQSOpΠ1-HORNq forms a
class of functions with easy decision counterparts, namely,
ΣQSOpΠ1-HORNq Ď TOTP. Thus, ΣQSOpΠ1-HORNq is a
new alternative in our search for a class of functions in
#P with easy decision counterparts and natural complete
problems. Moreover, an even larger class for our search can
be generated by extending the definition of Π1-HORN with
outermost existential quantification. Formally, a formula ϕ is
in Σ2-HORN if ϕ is of the form Dx̄ ψ with ψ a Horn formula.

Proposition V.9. ΣQSOpΣ2-HORNq Ď TOTP.

Interestingly, we have that both #HORNSAT and #DNF
belong to ΣQSOpΣ2-HORNq. An imperative question at
this point is whether in the definitions of Π1-HORN and
Σ2-HORN, it is necessary to allow negative literals of the
form Dv̄ Xpū, v̄q. Actually, this forces our Horn classes to
be included in ΣQSOpΠ2q and not necessarily in ΣQSOpΣ2q.
The following result shows that this is indeed the case.

Proposition V.10. #HORNSAT R ΣQSOpΣ2q.

We conclude this section by showing that
ΣQSOpΣ2-HORNq is the class we were looking for, as
not only every function in ΣQSOpΣ2-HORNq has an easy
decision counterpart, but also ΣQSOpΣ2-HORNq admits a
natural complete problem under parsimonious reductions.
More precisely, define #DISJHORNSAT as the problem of
counting the satisfying assignments of a formula Φ that is a
disjunction of Horn formulae. Then we have that:

Theorem V.11. #DISJHORNSAT is ΣQSOpΣ2-HORNq-
complete under parsimonious reductions.

VI. ADDING RECURSION TO QSO

We have used weighted logics to give a framework for de-
scriptive complexity of counting complexity classes. Here, we
go beyond weighted logics and give the first steps on defining
recursion at the quantitative level. This goal is not trivial not
only because we want to add recursion over functions, but
also because it is not clear what could be the right notion of
“fixed point”. To this end, we show first how to extend QSO
with function symbols that are later used to define a natural
generalization for functions of the notion of least fixed point
of LFP. As a proof of concept, we show how this notion can be
used to capture FP. Moreover, we use this concept to define an
operator for counting paths in a graph, a natural generalization
of the transitive closure operator [22], and show that this gives
rise to a logic that captures #L.

We start by defining an extension of QSO with function
symbols. Assume that FS is an infinite set of function sym-
bols, where each h P FS has an associated arity denoted by
arityphq. Then the set of FQSO formulae over a signature R
is defined by the following grammar:

α :“ ϕ | s | hpx1, . . . , x`q | pα` αq | pα ¨ αq |

Σx. α | Πx. α | ΣX.α | ΠX.α, (2)

where h P FS, arityphq “ ` and x1, . . . , x` is a sequence
of (not necessarily distinct) first-order variables. Given an
R-structure A with domain A, we say that F is a function
assignment for A if for every h P FS with arityphq “ `,
we have that F phq : A` Ñ N. The notion of function
assignment is used to extend the semantics of QSO to the
case of a quantitative formula of the form hpx1, . . . , x`q. More
precisely, given first-order and second-order assignments v and
V for A, respectively, we have that:

Jhpx1, . . . , x`qKpA, v, V, F q “ F phqpvpx1q, . . . , vpx`qq.

As for the case of QFO, we define FQFO disallowing
quantifiers ΣX and ΠX in (2).

It is worth noting that function symbols in FQSO represent
functions from tuples to natural numbers, so they are different
from the classical notion of function symbol in FO [29].
Furthermore, a function symbol can be seen as an “oracle”
that is instantiated by the function assignment. To the best of
our knowledge, this is the first paper to propose this extension
of weighted logics, which should be further investigated.

We define an extension of LFP [20], [38] to allow count-
ing. More precisely, the set of RQFOpFOq formulae over
a signature R, where RQFO stands for recursive QFO, is
defined as an extension of QFOpFOq that includes the formula
rlsfpβpx̄, hqs, where (1) x̄ “ px1, . . . , x`q is a sequence of
` distinct first-order variables, (2) βpx̄, hq is an FQFOpFOq-
formula over R whose only function symbol is h, and (3)
arityphq “ `. The free variables of the formula rlsfpβpx̄, hqs
are x1, . . . , x`; in particular, h is not considered to be free.

Fix an R-structure with domain A and a quantitative for-
mula rlsfpβpx̄, hqs with arityphq “ `, and assume that F is
the set of functions f : A` Ñ N. To define the semantics of
rlsfpβpx̄, hqs, we first show how βpx̄, hq can be interpreted
as an operator Tβ on F . More precisely, for every f P F and
tuple ā “ pa1, . . . , a`q P A

`, the function Tβpfq satisfies that:

Tβpfqpāq “ Jβpx̄, hqKpA, v, F q,

where v is a first-order assignment for A such that vpxiq “ ai
for every i P t1, . . . , `u, and F is a function assignment for A
such that F phq “ f .

As for the case of LFP, it would be natural to consider the
point-wise partial order ď on F defined as f ď g if, and only
if, fpiq ď gpiq for every i P t1, . . . , `u, and let the semantics
of rlsfpβpx̄, hqs be the least fixed point of the operator Tβ .
However, pF ,ďq is not a complete lattice, so we do not have a
Knaster-Tarski Theorem ensuring that such a fixed point exists.
Instead, we generalize the semantics of LFP as follows. In the
definition of the semantics of LFP, an operator T on relations
is considered, and the semantics is defined in terms of the least
fixed point of T , that is, a relation R such that [20], [38]: (a)
T pRq “ R, and (b) R Ď S for every S such that T pSq “ S.
We can view T as an operator on functions if we consider the
characteristic function of a relation. Given a relation R Ď A`,
let χR be its characteristic function, that is χRpāq “ 1 if
ā P R, and χRpāq “ 0 otherwise. Then define an operator T ‹

on characteristic functions as T ‹pχRq “ χT pRq. Moreover, we
can rewrite the conditions defining a least fixed point of T in
terms of the operator T ‹ if we consider the notion of support
of a function. Given a function f P F , define the support
of f , denoted by supppfq, as tā P A` | fpāq ą 0u. Then
given that supppχRq “ R, we have that the conditions (a)
and (b) are equivalent to the following conditions on T ‹: (a)
supppT ‹pχRqq “ supppχRq, and (b) supppχRq Ď supppχSq
for every S such that supppT ‹pχSqq “ supppχSq. To define
a notion of fixed point for Tβ we simply generalized these
conditions. More precisely, a function f P F is a s-fixed point
of Tβ if supppTβpfqq “ supppfq, and f is a least s-fixed point

of Tβ if f is a s-fixed point of Tβ and for every s-fixed point g
of Tβ it holds that supppfq Ď supppgq. The existence of such
fixed point is ensured by the following lemma:

Lemma VI.1. If f, g P F and supppfq Ď supppgq, then
supppTβpfqq Ď supppTβpgqq.

In fact, as for the case of LFP, this lemma gives us a simple
way to compute a least s-fixed point of Tβ . Let f0 P F be a
function such that f0pāq “ 0 for every ā P A` (i.e. f0 is the
only function with empty support), and let function fi`1 be
defined as Tβpfiq for every i P N. Then there exists j ě 0 such
that supppfjq “ supppTβpfjqq. Let k be the smallest natural
number such that supppfkq “ supppTβpfkqq. We have that fk
is a least s-fixed point of Tβ , which is used to defined the
semantics of rlsfpβpx̄, hqs. More specifically, for an arbitrary
first-order assignment v for A:

Jrlsfpβpx̄, hqsKpA, vq “ fkpvpx̄qq

Example VI.2. We would like to define an RQFOpFOq-
formula that, given a directed acyclic graph G with n nodes
and a pair of nodes b, c in G, counts the number of paths of
length at most n from b to c in G. To this end, assume that
graphs are encoded using the signature R “ tEp¨, ¨q,ău, and
then define formula αpx, y, fq as follows:

Epx, yq ` Σz. fpx, zq ¨ Epz, yq.

We have that rlsfpαpx, y, fqs defines our counting function.
In fact, assume that A is an R-structure with n elements in its
domain encoding an acyclic directed graph. Moreover, assume
that b, c are elements of A and v is a first-order assignment
over A such that vpxq “ b and vpyq “ c. Then we have that
Jrlsfpαpx, y, fqsKpA, vq is equal to the number of paths in A
from b to c of length at most n.

Assume now that we need to extend our previous counting
function to the case of arbitrary directed graphs. To this end,
suppose that ϕfirstpxq and ϕsuccpx, yq are the FO-formulae for
defining the first and successor predicates, respectively, of ă.
Moreover, define formula βpx, y, t, gq as follows:

pEpx, yq ` Σz. gpx, z, tq ¨ Epz, yqq ¨ ϕfirstptq `

Σt1. ϕsuccpt
1, tq ¨

`

Σx1.Σy1. gpx1, y1, t1q
˘

Then our extended counting function is defined by:

Σt. pϕfirstptq ¨ rlsfpβpx, y, t, gqsq.

In fact, the number of paths of length at most n from a node
x to a node y is recursively computed by using the formula
pEpx, yq `Σz. gpx, z, tq ¨Epz, yqq ¨ ϕfirstptq, which stores this
value in gpx, y, tq with t the first element in the domain. The
other formula Σt1. ϕsuccpt

1, tq¨pΣx1.Σy1. gpx1, y1, t1qq is just an
auxiliary artifact that is used as a counter to allow reaching a
fixed point in the support of g in n steps. Notice that the use of
the filter ϕsuccpt

1, tq prevents this formula for incrementing the
value of gpx, y, tq when t is the first element in the domain.

In contrast with LFP, to reach a fixed point we do not
need to impose any positive restriction on the formula βpx̄, hq.

Indeed, since β is constructed from monotone operations (i.e.
sum and product) over the natural numbers, the resulting
operator Tβ is monotone as well.

Now that a least fixed point operator over functions is
defined, the next step is to understand its expressive power.
In the following theorem, we show that this operator can be
used to capture FP.

Theorem VI.3. RQFOpFOq captures FP over ordered struc-
tures.

Our last goal in this section is to use the new character-
ization of FP to explore classes below it. It was shown in
[20], [21] that FO extended with a transitive closure operator
captures NL. Inspired by this work, we show that a restricted
version of RQFO can be used to capture #L, the counting
version of NL. Specifically, we use RQFO to define an
operator for counting the number of paths in a directed graph,
which is what is needed to capture #L.

Given a relational signature R, the set of transitive QFO
formulae (TQFO-formulae) is defined as an extension of QFO
with the formula rpath ψpx̄, ȳqs, where ψpx̄, ȳq is an FO-
formula over R, and x̄ “ px1, . . . , xkq, ȳ “ py1, . . . , ykq
are tuples of pairwise distinct first-order variables. The se-
mantics of rpath ψpx̄, ȳqs can easily be defined in terms of
RQFOpFOq as follows. Given an R-structure A with domain
A, define a (directed) graph GψpAq “ pN,Eq such that
N “ Ak and for every pair b̄, c̄ P N , it holds that pb̄, c̄q P E
if, and only if, A |ù ψpb̄, c̄q. Just as we did for Example VI.2,
we can count the paths of length at most |Ak| in GψpAq with
the formula βψpx̄,ȳqpx̄, ȳ, t̄, gq:

pψpx̄, ȳq ` Σz̄. gpx̄, z̄, t̄q ¨ ψpz̄, ȳqq ¨ ϕfirst-lexpt̄q `

Σt̄1. ϕsucc-lexpt̄
1, t̄q ¨

`

Σx̄1.Σȳ1. gpx̄1, ȳ1, t̄1q
˘

,

where ϕfirst-lex and ϕsucc-lex are FO-formulae defining the first
and successor predicates over tuples in Ak, following the
lexicographic order induced by ă. Then the semantics of the
path operator can be defined by using the following definition
of rpath ψpx̄, ȳqs in RQFO:

rpath ψpx̄, ȳqs :“ Σt̄. pϕfirstpt̄q ¨ rlsfpβψpx̄,ȳqpx̄, ȳ, t̄, gqsq.

In other words, Jrpath ψpx̄, ȳqsKpA, vq counts the number of
paths from vpx̄q to vpȳq in the graph GψpAq whose length is at
most |Ak|. As it was previously said, the operator for counting
paths is exactly what we need to capture #L.

Theorem VI.4. TQFOpFOq captures #L over ordered struc-
tures.

This last result perfectly illustrates the benefits of our logical
framework for the development of descriptive complexity for
counting complexity classes. The distinction in the language
between the Boolean and the quantitative level allows us to
define operators at the latter level that cannot be defined
at the former. As a example showing how fundamental this
separation is, consider the issue of extending QFOpFOq at the
Boolean level in order to capture #L. The natural alternative to

do this is to use FO extended with a transitive closure operator,
which is denoted by TC. But then the problem is that for every
language L P NL, it holds that its characteristic function χL
is in QFOpTCq, where χLpxq “ 1 if x P L, and χLpxq “ 0
otherwise. Thus, if we assume that QFOpTCq captures #L
(over ordered structures), then we have that χL P #L for
every L P NL. This would imply that NL “ UL,4 solving
an outstanding open problem [34].

VII. CONCLUDING REMARKS AND FUTURE WORK

We proposed a framework based on Weighted Logics to
develop a descriptive complexity theory for complexity classes
of functions. We consider the results of this paper as a first step
in this direction. In this sense, there are several directions for
future research, some of which are mentioned here. TOTP is
an interesting counting complexity class as it naturally defines
a class of functions in #P with easy decision counterparts.
However, we do not have a logical characterization of this
class. In the same direction, we are missing characterizations
of complexity classes such as SPANL, or characterizations
of quantitative logics such as QSOpFOq. We would also
like to define a larger syntactic subclass of #P where each
function admits an FPRAS; notice that #PERFECTMATCHING
is an important problem admitting an FPRAS [24] that is not
included in the classes defined in Section V-B. Moreover, by
following the approach proposed in [19], we would like to
include second-order free variables in the operator for counting
paths introduced in Section VI, so to have alternative ways to
capture FPSPACE and even #P. Finally, the least fixed point
operator introduced in Section VI clearly deserves further
investigation.

VIII. ACKNOWLEDGEMENTS

The authors are grateful to Luis Alberto Croquevielle for
providing the proof of Proposition V.10. This research has
been supported by the Fondecyt grant 1161473 and the Mil-
lennium Nucleus Center for Semantic Web Research under
grant NC120004.

REFERENCES

[1] S. Abiteboul and V. Vianu, “Fixpoint extensions of first-order logic and
datalog-like languages,” in Proceedings of LICS’89, 1989, pp. 71–79.

[2] S. Arora and B. Barak, Computational complexity: a modern approach.
Cambridge University Press, 2009.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof
verification and the hardness of approximation problems,” J. ACM,
vol. 45, no. 3, pp. 501–555, 1998.

[4] K. J. Compton and E. Grädel, “Logical definability of counting func-
tions,” J. Comput. Syst. Sci., vol. 53, no. 2, pp. 283–297, 1996.

[5] M. Droste and P. Gastin, “Weighted automata and weighted logics,”
Theor. Comput. Sci., vol. 380, no. 1-2, pp. 69–86, 2007.

[6] M. Droste, W. Kuich, and H. Vogler, Handbook of weighted automata.
Springer Science & Business Media, 2009.

[7] A. Durand, M. Hermann, and P. G. Kolaitis, “Subtractive reductions and
complete problems for counting complexity classes,” Theor. Comput.
Sci., vol. 340, no. 3, pp. 496–513, 2005.

[8] M. E. Dyer, A. M. Frieze, and M. Jerrum, “On counting independent
sets in sparse graphs,” SIAM J. Comput., vol. 31, no. 5, pp. 1527–1541,
2002.

4A decision language L is in UL is there exists a logarithmic-space NTM
M accepting L and satisfying that #acceptM pxq “ 1 for every x P L.

[9] K. Etessami, “Counting quantifiers, successor relations, and logarithmic
space,” J. Comput. Syst. Sci., vol. 54, no. 3, pp. 400–411, 1997.

[10] R. Fagin, “Monadic generalized spectra,” Math. Log. Q., vol. 21, no. 1,
pp. 89–96, 1975.

[11] P. Faliszewski and L. A. Hemaspaandra, “The consequences of elimi-
nating NP solutions,” Comp. Sci. Review, vol. 2, no. 1, pp. 40–54, 2008.

[12] S. A. Fenner, L. Fortnow, and S. A. Kurtz, “Gap-definable counting
classes,” J. Comput. Syst. Sci., vol. 48, no. 1, pp. 116–148, 1994.

[13] L. Fortnow, “Counting complexity,” in Complexity Theory Retrospective
II. Springer, 1997, pp. 81–107.

[14] J. Gill, “Computational complexity of probabilistic turing machines,”
SIAM J. Comput., vol. 6, no. 4, pp. 675–695, 1977.

[15] E. Grädel, “Capturing complexity classes by fragments of second-order
logic,” Theor. Comput. Sci., vol. 101, no. 1, pp. 35–57, 1992.

[16] ——, “Finite model theory and descriptive complexity,” in Finite Model
Theory and Its Applications. Springer, 2007, pp. 125–230.

[17] E. Grädel and Y. Gurevich, “Metafinite model theory,” Inf. Comput., vol.
140, no. 1, pp. 26–81, 1998.

[18] L. A. Hemaspaandra and H. Vollmer, “The satanic notations: counting
classes beyond #P and other definitional adventures,” SIGACT News,
vol. 26, no. 1, pp. 2–13, 1995.

[19] N. Immerman, “Languages which capture complexity classes (prelimi-
nary report),” in Proceedings of STOC’83, 1983, pp. 347–354.

[20] ——, “Relational queries computable in polynomial time,” Information
and Control, vol. 68, no. 1-3, pp. 86–104, 1986.

[21] ——, “Nondeterministic space is closed under complementation,” SIAM
J. Comput., vol. 17, no. 5, pp. 935–938, 1988.

[22] ——, Descriptive complexity, ser. Graduate texts in computer science.
Springer, 1999.

[23] N. Immerman and E. Lander, “Describing graphs: a first order approach
to graph canonization,” in Complexity Theory Retrospective, A. L.
Selman, Ed. Springer-Verlag, 1990, pp. 59–81.

[24] M. Jerrum, A. Sinclair, and E. Vigoda, “A polynomial-time approxima-
tion algorithm for the permanent of a matrix with nonnegative entries,”
J. ACM, vol. 51, no. 4, pp. 671–697, 2004.

[25] R. M. Karp and M. Luby, “Monte-carlo algorithms for enumeration and
reliability problems,” in Proceedings of FOCS’83, 1983, pp. 56–64.

[26] P. G. Kolaitis and M. N. Thakur, “Logical definability of NP optimization
problems,” Information and Computation, vol. 115, no. 2, pp. 321–353,
1994.

[27] M. W. Krentel, “The complexity of optimization problems,” Journal of
computer and system sciences, vol. 36, no. 3, pp. 490–509, 1988.

[28] R. E. Ladner, “Polynomial space counting problems,” SIAM J. Comput.,
vol. 18, no. 6, pp. 1087–1097, 1989.

[29] L. Libkin, Elements of Finite Model Theory. Springer, 2004.
[30] M. Ogiwara and L. A. Hemachandra, “A complexity theory for feasible

closure properties,” J. Comput. Syst. Sci., vol. 46, no. 3, pp. 295–325,
1993.

[31] A. Pagourtzis and S. Zachos, “The complexity of counting functions with
easy decision version,” in Proceedings of MFCS’06, 2006, pp. 741–752.

[32] C. H. Papadimitriou, Computational complexity. Addison-Wesley, 1994.
[33] C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation,

and complexity classes,” J. Comput. Syst. Sci., vol. 43, no. 3, pp. 425–
440, 1991.

[34] K. Reinhardt and E. Allender, “Making nondeterminism unambiguous,”
Electronic Colloquium on Computational Complexity (ECCC), vol. 4,
no. 14, 1997.

[35] S. Saluja, K. V. Subrahmanyam, and M. N. Thakur, “Descriptive
Complexity of #P Functions,” J. Comput. Syst. Sci., vol. 50, no. 3, pp.
493–505, 1995.

[36] L. G. Valiant, “The complexity of computing the permanent,” Theor.
Comput. Sci., vol. 8, pp. 189–201, 1979.

[37] ——, “The complexity of enumeration and reliability problems,” SIAM
J. Comput., vol. 8, no. 3, pp. 410–421, 1979.

[38] M. Vardi, “The complexity of relational query languages,” in Proceed-
ings of STOC’82, 1982, pp. 137–146.

[39] H. Vollmer and K. W. Wagner, “Complexity classes of optimization
functions,” Inf. and Comp., vol. 120, no. 2, pp. 198–219, 1995.

APPENDIX

A. Notation for the appendix

For a given signature R, we define ORDSTRUCTrRs˚ as

ORDSTRUCTrRs˚ “ tpA, v, V q | A P ORDSTRUCTrRs, v (V) is a first-order (second-order) assignment for Au.

The conditional count symbol pϕ ÞÑ αq is defined as p ϕ` pϕ ¨ αqq for given SO formula ϕ and QSO formula α. Note that
for each pA, v, V q P ORDSTRUCTrRs˚,

Jpϕ ÞÑ αqKpA, v, V q “

#

JαKpA, v, V q if pA, v, V q |ù ϕ,

0 otherwise.

We will use the symbol ă also to denote the lexicographic order over same-sized tuples. If x̄ “ px1, . . . , xmq and ȳ “
py1, . . . , ymq are tuples of first-order variables, we denote x̄ ă ȳ for the formula

Žm
i“1r

Źi´1
j“1 xj “ yj ^ xi ă yis. Similarly,

we use “ to denote equality between tuples, as x̄ “ ȳ denotes
Źm
i“1pxi “ yiq, and also x̄ ď ȳ denotes x̄ ă ȳ _ x̄ “ ȳ. We

also denote minpx̄q :“ @ȳpx̄ ď ȳq.
If x̄ “ px1, . . . , xmq (X̄ “ pX1, . . . , Xmq) is a tuple of first-order (second-order) variables, we denote Σx̄. α for

Σx1. ¨ ¨ ¨Σxm. α and ΣX̄. α for ΣX1. ¨ ¨ ¨ΣXm. α for each QSO formula α. We also denote |x̄| as the size of x̄ (|X̄| as
the size of X̄). In this case, |x̄| “ m (|X̄| “ m).

B. Proofs from Section IV

Proof of Proposition IV.2

We construct recursively a #P-machine Mα for each ΣQSOpFOq formula α over a signature R. This machine, on input
pA, v, V q accepts in JαKpA, v, V q of its non-deterministic paths for each pA, v, V q P ORDSTRUCTrRs˚. Suppose A has domain
A. If α is a FO-formula ϕ, then the machine checks if pA, v, V q |ù ϕ deterministically in polynomial time, and accepts if and
only if it holds true. If α is a constant s, it produces s branches and accepts in all of them. If α “ pβ ` γq, then it chooses
between 0 or 1, if it is 0 (1), it simulates Mβ (Mγ) on input pA, v, V q. If α “ Σx. β, it chooses a P A non-deterministically and
simulates Mβ on input pA, vra{xs, V q. If α “ ΣX.β, it chooses B P AaritypXq and simulates Mβ on input pA, v, V rB{Xsq.
This covers all possible cases for α. Let α be a formula in ΣQSOpFOq over a signature R and let f be a function over R
such that fpencpAqq is equal to the accepting paths of Mα on input pA, v, V q for some pA, v, V q P ORDSTRUCTrRs˚. We
have that f is a #P-function over R and fpencpAqq “ JαKpAq for every A P ORDSTRUCTrRs.

For the other direction, note that Saluja et al. [35] proved that #P “ #FO. Since a function in #FO can also be defined
ΣQSOpFOq (see Section III-A), the condition holds. 2

Proof of Proposition IV.3

Similar than the previous proof, we construct recursively a SPANP machine Mα for each ΣQSOpDSOq formula α over
a signature R. This machine, on input pA, v, V q, non-deterministically produces JαKpA, v, V q distinct accepting outputs for
each pA, v, V q P ORDSTRUCTrRs˚. Suppose A has domain A. If α is a DSO-formula ϕ it checks if pA, v, V q |ù ϕ non-
deterministically in polynomial time [10], and accepts if and only if the condition holds true. If α is a constant s, then the
machine produces s branches and accepts in all of them. If α “ pβ ` γq, then it chooses between 0 or 1, if it is 0 (1), it
simulates Mβ (Mγ) on input pA, v, V q. If α “ Σx. β, it chooses a P A non-deterministically and simulates Mβ on input
pA, vra{xs, V q. If α “ ΣX.β, it chooses B P AaritypXq and simulates Mβ on input pA, v, V rB{Xsq. This covers all possible
cases for α. Additionally, the machine produces a different output on each path. This can be done by printing the trace of all
the non-deterministic choices. However, when the machine starts checking whether pA, v, V q |ù ϕ for some DSO formula ϕ,
it stops printing in the output tape. This way the machine produces exactly one output from that point onwards. Let α be a
formula in ΣQSOpDSOq over a signature R and let f be a function over R such that fpencpAqq is equal to the number of
accepting outputs of Mα on input pA, v, V q for some pA, v, V q P ORDSTRUCTrRs˚. We have that f is a SPANP function over
R and that fpencpAqq “ JαKpAq for every A P ORDSTRUCTrRs.

For the other direction, Compton et al. [4] proved that SPANP “ #DSO. Since a function in #DSO can also be defined in
ΣQSOpDSOq, then ΣQSOpDSOq captures SPANP over ordered structures.

Proof of Theorem IV.4

For the first condition, let α P QFOpLFPq over some signature R. Let f be a function over R defined by the following
procedure. Let encpAq be an input, where A is an ordered structure over R with domain A “ t1, . . . , nu. In the procedure we
slightly extend the grammar of QFOpLFPq to include constants. We replace each first order sum and first order product in α
by an expansion using the elements in A. This is, Σx. βpxq is replaced by pβp1q ` ¨ ¨ ¨ ` βpnqq and Πx. βpxq is replaced by
pβp1q ¨ ¨ ¨ ¨ ¨ βpnqq. Then each sub-formula ϕ P LFP in α is evaluated in polynomial time and replaced by 1 if A |ù ϕ and by
0 otherwise. The resulting formula is an arithmetic expression of polynomial size (recall that α is fixed) which is evaluated
and lastly given as output. Note that f P FP and fpencpAqq “ JαKpAq.

For the second condition, let f P FP defined over some signature R. Let ` P N be such that for each A P ORDSTRUCTrRs,
rlog2 fpencpAqqs ď n` (i.e. n` is an upper bound for the output size), where A has a domain of size n. Let x̄ “ px1, . . . , x`q.
Consider a procedure that receives encpAq and an assignment ā to x̄. Let m be the position of ā in the lexicographic order of
the tuples in A`. The procedure then computes the m-th bit of fpencpAqq, from least to most significant. Since this procedure
works in polynomial time, it can be described by an LFP formula Φpx̄q. Then we use

α “ Σx̄.Φpx̄q ¨ ϕpx̄q,

where ϕpx̄q :“ Πȳ. pȳ ă x̄ ÞÑ 2q. Note that if ā P A` is the m-th tuple in the given order (starting from 0), then JϕpāqKpAq “
2m. Adding these values for each ā P A` gives exactly fpencpAqq. In other words, Φpx̄q simulates the behavior of the
FP-machine and the formula α reconstruct the binary output. Then, α is in QFOpLFPq over R and JαKpAq “ fpencpAqq.

Proof of Theorem IV.5

To show how to evaluate a QSOpPFPq-formula, we construct recursively a #PSPACE-machine Mα for each QSOpPFPq
formula α over a signature R. This machine runs in non-deterministic polynomial space and, on input pA, v, V q, accepts
in JαKpA, v, V q of its non-deterministic paths for each pA, v, V q P ORDSTRUCTrRs˚. Suppose A has domain A. If α is a
PFP-formula ϕ, then the machine checks if pA, v, V q |ù ϕ deterministically in polynomial space [29], and accepts if and
only if it holds true. If α is a constant s, it produces s branches and accepts in all of them. If α “ pβ ` γq, then it chooses
between 0 or 1, if it is 0 (1), it simulates Mβ (Mγ) on input pA, v, V q. If α “ pβ ¨ γq, it simulates Mβ on input pA, v, V q and
on each accepting path, it continues simulating Mγ on input pA, v, V q. If α “ Σx. β, it chooses a P A non-deterministically
and simulates Mβ on input pA, vra{xs, V q. If α “ Πx. β, it simulates Mβ on input pA, vra{xs, V q consecutively for each
a P A, continuing to the next A-value if the run of Mβ accepts. If α “ ΣX.β, it chooses B P AaritypXq and simulates Mβ

on input pA, v, V rB{Xsq. If α “ ΠX.β, it simulates Mβ on input pA, v, V rB{Xsq consecutively for each B P AaritypXq,
again continuing to the next A-value if the run of Mβ accepts. This covers all possible cases for α, and each of these steps
can be computed in polynomial space. Let α be a formula in QSOpPFPq over a signature R and let f be a function over
R such that fpencpAqq is equal to the accepting paths of Mα on input pA, v, V q for some pA, v, V q P ORDSTRUCTrRs˚.
We have that f is a #PSPACE function over R, which implies that f is also a FPSPACE function over R, by the fact that
#PSPACE “ FPSPACE [28], and that fpencpAqq “ JαKpAq for every A P ORDSTRUCTrRs.

For the second condition, let f P FPSPACE defined over some R. Let ` P N be such that for each A P ORDSTRUCTrRs,
rlog2 fpencpAqqs ď 2n

`

(i.e. 2n
`

is an upper bound for the output size), where A has a domain of size n. Let X be a
second-order variable of arity `. Consider a linear order over predicates of arity ` given by the formula

ϕăpX,Y q “ Dū
“

 Xpūq ^ Y pūq ^ @v̄
`

ū ă v̄ Ñ pXpūq Ø Y pv̄qq
˘‰

.

Namely, we use relations to encode numbers with at most 2n
`

-bits where the empty relation represents 0 and the total-relation
represents 22n`

´ 1. Furthermore, each relation X indexes a position in the binary output of fpencpAqq as follows. Consider a
polynomial space machine over the R that receives as input an R-structure A and a number p encoded by a relation X . Then
the machine accepts if, and only if, the p-th bit of fpencpAqq is 1. Since this procedure works in polynomial space, it can be
described in PFP [1] by a formula ΦpXq where the free variable X encodes the number p. Then, similar than the previous
proof we define:

α :“ ΣX. pΦpXq ¨ ϕpXqq,

where ϕpXq “ ΠY. pϕăpY,Xq ÞÑ 2q. Note that for each B Ď A` such that B is the m-th element in the order ϕăpX,Y q, it
holds that JϕpBqKpAq “ 2m. Therefore, α P QSOpPFPq and JαKpAq “ fpencpAqq.

Proof of Corollary IV.6

For the first condition, let α P QFOpPFPq over some signature R. Let f be a function over R defined by the following
procedure. Let encpAq be an input, where A is an ordered structure over R with domain A “ t1, . . . , nu. In the procedure we
slightly extend the grammar of QFOpPFPq to include constants. We replace each first order sum and first order product in α

by an expansion using the elements in A. This is, Σx. βpxq is replaced by pβp1q ` ¨ ¨ ¨ ` βpnqq and Πx. βpxq is replaced by
pβp1q ¨ ¨ ¨ ¨ ¨ βpnqq. Then each sub-formula ϕ P PFP in α is evaluated in polynomial space and replaced by 1 if A |ù ϕ and
by 0 otherwise. The resulting formula is an arithmetic expression of polynomial size (recall that α is fixed) which is evaluated
and lastly given as output. Note that f P FPSPACE(POLY) and fpencpAqq “ JαKpAq.

For the second condition, let f P FPSPACE defined over some signature R. Let ` P N be such that for each A P

ORDSTRUCTrRs, rlog2 fpencpAqqs ď n`, where A has a domain of size n. Let x̄ “ px1, . . . , x`q. Consider a procedure that
receives encpAq and an assignment ā to x̄. Let m be the position of ā in the lexicographic order of the tuples in A`. The
procedure then computes the m-th bit of fpencpAqq, from least to most significant. Since this procedure works in polynomial
space, it can be described by an PFP formula Φpx̄q. Then we use

α “ Σx̄.Φpx̄q ¨ ϕpx̄q,

where ϕpx̄q :“ Πȳ. pȳ ă x̄ ÞÑ 2q. Note that if ā P A` is the m-th tuple in the given order (starting from 0), then JϕpāqKpAq “
2m. Adding these values for each ā P A` gives exactly fpencpAqq. Then, α is in QFOpPFPq over R and JαKpAq “ fpencpAqq.

Proof of Theorem IV.10

Similar than the previous proofs, we construct recursively a non-deterministic polynomial time Turing machine Mα with
output tape for each MaxQSOpFOq formula α over a signature R. This machine, on input pA, v, V q, non-deterministically
produces JαKpA, v, V q (in binary) over the output tape of some run, and this value is the maximum value over all runs. Suppose
A has domain A. If α is a FO-formula ϕ, then the machine checks if pA, v, V q |ù ϕ in deterministic polynomial time, and
output 1 if, and only if, pA, v, V q satisfies ϕ. If α is a constant s, it outputs s in binary over the output tape. If α “ pβ ` γq,
then it simulates Mβ and Mγ on input pA, v, V q, adds the output of both machines and prints this value over the output tape.
If α “ pβ ¨ γq or α “ maxtβ, γu, then it does the same than the previous case but it multiplies or maximizes, respectively, the
outputs of both machines instead of adding. If α “ Σx. β, it iterates over all elements a P A simulating and adding the output
of Mβ on input pA, vra{xs, V q. Mα finally outputs the aggregated value in the output tape. If α “ Πx. β or α “ Maxx. β, then
Mα does the same idea than the previous case with the difference that the output of Mβ on input pA, vra{xs, V q is multiplied
or maximized, respectively. If α “ MaxX.β, it chooses B P AaritypXq and simulates Mβ on input pA, v, V rB{Xsq. This
covers all possible cases for α. Furthermore, it is straightforward to prove that each of these steps are correct and can be
computed with a non-deterministic polynomial time Turing machine with output tape. Let α be a formula in MaxQSO over
a signature R and let f be a function over R such that fpencpAqq is equal to the maximum run (with respect to the output
value) of Mα on input pA, v, V q for some pA, v, V q P ORDSTRUCTrRs˚. We have that f is a MAXP function over R and
that fpencpAqq “ JαKpAq for every A P ORDSTRUCTrRs. Finally, one can easily see that the same construction holds with
MinQSOpFOq by constructing a Turing machine that take the min over all runs instead of max.

The proof for the other direction is similar than in [26] extended with the ideas of Theorem IV.4. Let f P MAXP be a
function defined over some signature R and ` P N such that rlog2 fpencpAqqs ď n` for each A P ORDSTRUCTrRs of size n.
For U Ď A`, we can interpret the encoding of U (encpUq) as the binary encoding of a number with nl-bits. We denote this
value by valpencpUqq. Then, given A P ORDSTRUCTrRs and U Ď A`, consider the problem of checking whether fpencpAqq ě
valpencpUqq. Clearly, this is an NP-problem and, by Fagin’s theorem, there exists a formula of the form DX̄. ΦpX̄, Y q with
ΦpX̄, Y q in FO-logic and aritypY q “ ` such that fpencpAqq ě valpencpUqq if, and only if, pA, v, V q |ù DX̄. ΦpX̄, Y q with
V pY q “ U . Then we can describe the function f by the following MaxQSO formula:

α “ Max X̄. MaxY. ΦpX̄, Y q ¨
`

Σx̄. Y px̄q ¨Πȳ. px̄ ă ȳ ÞÑ 2q
˘

.

Note that, in contrast with previous proofs, we use x̄ ă ȳ instead of ȳ ă x̄ because the most significant bit in encpUq correspond
to the smallest tuple in U . It is easy to check that ΦpX̄, Y q simulates the NP-machine and, if ΦpX̄, Y q holds, the formula to
the right reconstructs the binary output from the relation in Y . Then, α is in MaxQSOpFOq over R and JαKpAq “ fpencpAqq.

For the case of MinQSOpFOq and a function f P MINP, one has to follow the same approach but considering the NP-
problem of checking whether fpencpAqq ď valpencpUqq. Then, the formula for describing f is the following:

α “ Min X̄. MinY. Σx̄.
`

pΦpX̄, Y q Ñ Y px̄qq ¨Πȳ. px̄ ă ȳ ÞÑ 2q
˘

.

In this case, if the formula ΦpX̄, Y q is false, then the output produced by the subformula inside the min-quantifiers will be
the biggest possible value (i.e. 2n

`

). On the other hand, if ΦpX̄, Y q holds, the subformula will produce valpencpUqq. Similar
than for max, we conclude that α is in MinQSOpFOq and JαKpAq “ fpencpAqq.

C. Proofs from Section V

Proof of Theorem V.1

Recall that a formula in ΣQSOpL q is on the following grammar:

α “ ϕ | s | pα` αq | Σx. α | ΣX.α,

where ϕ is a formula in L and s P N. We will construct a recursive function τ such that for every ΣQSOpL q formula α, it
outputs an equivalent formula τpαq which is in L -SNF. If α “ ϕ, then we define τpαq “ α which is clearly equivalent and
already in L -SNF. If α “ s, then we define pJ ` ¨ ¨ ¨ ` Jq (s times), which also satisfies the condition. We assume that for
every sub-formula β of α, τpβq is an equivalent formula in L -SNF. If α “ pα1`α2q, then we define τpαq “ pτpα1q`τpα2qq.
If α “ Σx. β, then let τpβq “

řk
i“1 βi for some k where each βi is in L -PNF. By grouping together the terms in the sum, we

define τpαq “
řm
i“1 Σx. βi which satisfies the condition and is equivalent to α. If α “ ΣX.β, then we proceed analogously

as in the previous case. This covers all possible cases for α and we conclude the proof by taking τpαq as the desired rewrite
of α.

Proof of theorem V.2

We divide the proof in three parts.

First, we prove that the formula α0 “ pΣX. 1q ` 1 with aritypXq “ 1 (i.e. the function 2n ` 1, where n is the size of the
input structure) is not equivalent to any formula in Σ0-PNF. Suppose that there exists some formula α “ ΣX̄.Σx̄. ϕpX̄, x̄q in
Σ0-PNF that is equivalent to the ΣQSOpΣ0q formula α0. In [35], it was proved that if |X̄| ą 0, then the function defined by
α, for big enough structures, is always even which is not possible in our case. On the other hand, if α is of the form Σx̄. ϕpx̄q,
then α defines a polynomially bounded function which also leads to a contradiction.

Second, we prove that the formula α1 “ 2 (i.e. the constant 2) is not equivalent to any formula in Σ1-PNF. Suppose that
there exists some formula α “ ΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳq in Σ1-PNF that is equivalent to the ΣQSOpΣ1q formula 2. First, if
|X̄| “ |x̄| “ 0, then the function defined by α is never greater than 1. Therefore, suppose that |X̄| ą 0 or |x̄| ą 0, and consider
any ordered structure A. Since JαKpAq “ 2, there exist at least two assignments pB̄1, b̄1, ā1q, pB̄2, b̄2, ā2q to pX̄, x̄, ȳq such
that for both, A |ù ϕpB̄i, b̄i, āiq. Now consider the ordered structure A1 that is obtained by duplicating A. This is, each half
of A1 is isomorphic to A. Note that A1 |ù ϕpB̄i, b̄i, āiq for i “ 1, 2 and there exists a third assignments pB̄11, b̄

1
1, ā

1
1q that is

isomorphic to pB̄1, b̄1, ā1q but in the other half to the structure such that A1 |ù ϕpB̄11, b̄
1
1, ā

1
1q. We have that JαKpAq ě 3 which

is a contradiction.

We now show that if L contains Π1 and is closed under conjunction and disjunction, then for every formula α in ΣQSOpL q

there is an equivalent formula β in L -PNF. As in Theorem V.1, we show a recursive function τ that produces such formula.
As we showed, there exists an equivalent formula in L -SNF, so we assume that α is in that form. Let α “

řn
i“1 αi where

each αi is in L -SNF. Without lost of generality, we assume that each αi “ ΣX̄.Σx̄. ϕipX̄, x̄q with |X̄| ą 0 and |x̄| ą 0. If
not, we replace each αi for the equivalent formula ΣX̄.ΣY.Σx̄.Σy. pϕipX̄, x̄q ^ @z Y pzq ^ @zpy ď zqq.

Now we begin describing the function τ . If α “ ΣX̄.Σx̄. ϕpX̄, x̄q, then the formula is already in L -PNF so we define
τpαq “ α. If α “ α1 ` α2, then we assume that τpα1q “ ΣX̄.Σx̄. ϕpX̄, x̄q and τpα2q “ ΣȲ .Σȳ. ψpȲ , ȳq. The construction
that we will provide for this function works by identifying a “first” assignment for both pX̄, x̄q and pȲ , ȳq and a “last”
assignment for both pX̄, x̄q and pȲ , ȳq. These are identified by the following formulas:

γfirstpX̄, x̄q “

|X̄|
ľ

i“1

@z̄ Xipz̄q ^ @z̄px̄ ď z̄q,

γlastpX̄, x̄q “

|X̄|
ľ

i“1

@z̄Xipz̄q ^ @z̄pz̄ ď x̄q.

Similarly, we define the formulas γfirstpȲ , ȳq and γlastpȲ , ȳq (for the sake of simplicity we reuse the names γfirst and γlast). In
other words, the “first” assignment is the one where every second-order predicate is empty and the first-order assignment is the
lexicographically smallest, and the “last” assignment is the one where every second-order predicate is full and the first-order
assignment is the lexicographically greatest. We also need to identify assignments that are not first and are not last. We do

this by negating the two formulas above and grouping together the first-order variables:

γnot firstpX̄, x̄q “ Dz̄pz̄0 ă x̄_

|X̄|
ł

i“1

Xpz̄iqq,

γnot lastpX̄, x̄q “ Dz̄px̄ ă z̄0 _

|X̄|
ł

i“1

 Xpz̄iqq,

where z̄ “ pz̄0, z̄1, . . . , z̄|X̄|q. The following formula is equivalent to α:

ΣX̄.Σx̄.ΣȲ .Σȳ. rpϕpX̄, x̄q ^ γnot firstpX̄, x̄q ^ γfirstpȲ , ȳqq_ (3)
pϕpX̄, x̄q ^ γfirstpX̄, x̄q ^ γlastpȲ , ȳqq_ (4)
pψpȲ , ȳq ^ γfirstpX̄, x̄q ^ γnot lastpȲ , ȳqq_ (5)
pψpȲ , ȳq ^ γlastpX̄, x̄q ^ γlastpȲ , ȳqqs. (6)

To show that the formula is indeed equivalent to α, note that the formulas in lines (3) and (4) form a partition over the
assignments of pX̄, x̄q, while fixing an assignment for pȲ , ȳq, and the formulas in lines (5) and (6) form a partition over the
assignments of pȲ , ȳq, while fixing an assignment for pX̄, x̄q. Altogether, the four lines define pairwise disjoint assignments
for pX̄, x̄q, pȲ , ȳq. With this, it is straightforward to show that the above formula is equivalent to α. However, the formula is
not yet in the correct form since it has existential quantifiers in the subformulas γnot first and γnot last. To solve this, first let take
a close look to the complete formula:

ΣX̄.Σx̄.ΣȲ .Σȳ. rpϕpX̄, x̄q ^ Dv̄pv̄0 ă x̄_

|X̄|
ł

i“1

Xpv̄iqq ^

|Ȳ |
ľ

i“1

@z̄ Yipz̄q ^ @z̄pȳ ď z̄q_

pϕpX̄, x̄q ^

|X̄|
ľ

i“1

@z̄ Xipz̄q ^ @z̄px̄ ď z̄q ^

|Ȳ |
ľ

i“1

@z̄Yipz̄q ^ @z̄pz̄ ď ȳqq_

pψpȲ , ȳq ^

|X̄|
ľ

i“1

@z̄ Xipz̄q ^ @z̄px̄ ď z̄q ^ Dw̄pȳ ă w̄0 _

|Ȳ |
ł

i“1

 Y pw̄iqq_

pψpȲ , ȳq ^

|X̄|
ľ

i“1

@z̄Xipz̄q ^ @z̄pz̄ ď x̄q ^

|Ȳ |
ľ

i“1

@z̄Yipz̄q ^ @z̄pz̄ ď ȳqqs.

To construct an equivalent formula that is in the correct form, we define ū “ pv̄, w̄q and we replace the first-order quantifiers
by a first-sum and count the first assignment to v̄ and w̄ that satisfies the formula. A similar construction was used in [35].
Then the final formula equivalent to α is the following:

ΣX̄.ΣȲ .Σx̄.Σȳ.Σū. rpϕpX̄, x̄q ^ pv̄0 ă x̄_

|X̄|
ł

i“1

Xpv̄iqq ^ @ū
1ppv̄10 ă x̄_

|X̄|
ł

i“1

Xpv̄1iqq Ñ ū ď ū1q^

|Ȳ |
ľ

i“1

@z̄ Yipz̄q ^ @z̄pȳ ď z̄q_

pϕpX̄, x̄q ^

|X̄|
ľ

i“1

@z̄ Xipz̄q ^ @z̄px̄ ď z̄q ^

|Ȳ |
ľ

i“1

@z̄Yipz̄q ^ @z̄pz̄ ď ȳq ^ @ū1pū ď ū1qq_

pψpȲ , ȳq ^

|X̄|
ľ

i“1

@z̄ Xipz̄q ^ @z̄px̄ ď z̄q^

pȳ ă w̄0 _

|Ȳ |
ł

i“1

 Y pw̄iqq ^ @ū
1pȳ ă w̄10 _

|Ȳ |
ł

i“1

 Y pw̄1iqq Ñ ū ď ū1q_

pψpȲ , ȳq ^

|X̄|
ľ

i“1

@z̄Xipz̄q ^ @z̄pz̄ ď x̄q ^

|Ȳ |
ľ

i“1

@z̄Yipz̄q ^ @z̄pz̄ ď ȳq ^ @ū1pū ď ū1qqs.

Finally, consider a ΣQSOpL q formula α in L -SNF. If α “
řn
i“1 αi, then by induction we can consider α “ α1`p

řn
i“2 αiq

and use τpα1 ` τp
řn
i“2 αiqq as the rewrite of α, which satisfies the condition in the hypothesis.

Proof of Theorem V.3

We give this proof in three parts.

First, we show that ΣQSOpΣ0q * #Σ1. By contradiction, suppose that there is a ΣQSOpΣ0q formula α over some signature
R such that defines the following function. For every finite R-structure with n elements, and where every predicate in R is
empty, αpencpAqq “ n´ 1. We use the following claim.

Claim A.1. Let α “ Σx̄. ϕpx̄q where ϕ is quantifier free. Then the function defined by α is either null, greater or equal to n,
or is in Ωpn2q.

Proof. Suppose that the function defined by α is not 0 and that ϕ is in DNF. Furthermore, suppose x̄ “ px1, . . . , x|x̄|q. Then
α “ Σx̄. ϕ1px̄q_ ¨ ¨ ¨ _ϕnpx̄q. Since α is not null, then some ϕi must be satisfiable. This is, the function defined by Σx̄. ϕpx̄q
is not null. We will prove by induction on |x̄| that the function defined by Σx̄. ϕpx̄q is either greater or equal to n, or in Ωpn2q.
We address the case |x̄| “ 1, then α “ Σx.

Ź

ψpxq. If any ψpxq “ px “ xq or px ă xq, then we can eliminate it and we
obtain the same function. If any ψ “ px ă xq or px “ xq, then the function becomes null. If ψpxq “ Rpx, . . . , xq for some
R P R the function becomes null for the structures we are considering. If ψpxq “ Rpx, . . . , xq, we can eliminate it and for
the structures we are considering we obtain the same function. The only possible α left is α “ Σx.J which is equal to the
function n. This covers all possible cases for |x̄| “ 1. Now suppose that it holds for |x̄| “ k and suppose α “ Σx̄.

Ź

ψpx̄q
for |x̄| “ k ` 1. If any ψpx̄q “ pxi “ xjq where i ‰ j, then α describes the same function as α where xj has been replaced
by xi. In this formula the tuple of first-order variables has k elements so the function it describes if one of the mentioned in
the hypothesis. If i “ j, then we can eliminate it and obtain the same function. If any ψpx̄q “ Rpv̄q or Rpv̄q where v̄ is a
sub-tuple of x̄ then we can either eliminate it or the function becomes null, following the same argument as in the case |x̄| “ 1.
If any ψpx̄q “ pxi “ xjq or pxi ă xjq where i “ j, then the function becomes null. If any ψpx̄q “ pxi ă xjq where
i “ j, we can eliminate it. The remaining formulas in

Ź

ψpx̄q are either pxi “ xjq, pxi ă xjq or pxi ă xjq. If the formula
violates transitivity in ă (for example, x ă y^ y ă z^ z ă x), then the function α describes is null. Therefore, there is some
order over x̄ that satisfies

Ź

ψpx̄q. Consider the formula that describes this order (like x1 ă x3 ^ x3 ă x4 ^ x4 ă x2). The
function α describes is greater or equal to the one this formula describes, which is exactly

`

n
|x̄|

˘

which is in Ωpn|x̄|q Ď Ωpn2q

if |x̄| ą 1. This concludes the proof of the claim. 2

We suppose that α is in SNF, this is, α “
řn
i“1 αi. Since α is not null, consider some αi that describes a non-null function.

Let αi “ ΣX̄.Σx̄. ϕpX̄, x̄q, where ϕ is quantifier-free. Note that if |X̄| ą 0, then the function α describes is in Ωp2nq, as it
was proven by the authors in [35]. We have that αi “ Σx̄. ϕpx̄q, as we proved in the claim, describes either some function
greater or equal to n, or in Ωpn2q, which leads to a contradiction. Lastly, note that the formula Σx. Dypx ă yq is in #Σ0 and
describes the function n´ 1, which concludes the proof.

Now we show that #Σ1 * ΣQSOpΣ0q. In Theorem V.2 we proved that there is no formula in Σ1-PNF equivalent to the
formula α “ 2. Every formula in #Σ1 can be expressed in Σ1-PNF, which implies that 2 P ΣQSOpΣ0q and 2 R #Σ1.

Lastly, we prove that ΣQSOpΣ1q (ΣQSOpΠ1q. For inclusion, let α be a formula in ΣQSOpΣ1q. Suppose that it is in
Σ1-SNF. This is, α “ c`

řn
i“1 αi. Let αi “ ΣX̄.Σx̄. Dȳ ϕipX̄, x̄, ȳq, where ϕi is quantifier-free, for each αi. We use the same

construction used in [35], and we obtain that the formula Dȳ ϕipX̄, x̄, ȳq is equivalent to Σȳ. ϕipX̄, x̄, ȳq^@ȳ
1pϕipX̄, x̄, ȳ

1q Ñ

ȳ ď ȳ1q for every assignment to pX̄, x̄q. We do this replacement for each αi and we obtain an equivalent formula in ΣQSOpΠ1q.
To prove that the inclusion is proper, consider the ΣQSOpΠ1q formula Σx.@ypy “ xq. This formula defines the following

function that takes an ordered structure A as input:

JαKpAq “

#

1 A has one element
0 otherwise.

Suppose that there exists an equivalent formula α in ΣQSOpΣ1q. Also, suppose that it is in L-PNF, so α “ c `
řn
i“1 ΣX̄.Σx̄. DȳϕipX̄, x̄, ȳq. Since α takes the value 0 for some structures, c must be 0. Consider a structure 1 with one

element. We have that for some i, there exists an assignment pB̄, b̄, āq for pX̄, x̄, ȳq such that 1 |ù ϕipB̄, b̄, āq. Consider now
the structure 2 that is obtained by duplicating 1, as we did for Theorem V.2. Note that 2 |ù ϕipB̄, b̄, āq, which implies that
JαKp2q ě 1, which leads to a contradiction.

Proof of Proposition V.4

Towards a contradiction, assume that the statement is false. This is, that #Σ1 is closed under binary sum. Consider the
formula Σx. px “ xq which is in #Σ1 over some signature R. For every finite R-structure A with n elements, and where
every predicate in R is empty, αpencpAqq “ n. From our assumption, there exists some formula in #Σ1 equivalent to the

formula α` α, which describes the function 2n. Let ΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳq be this formula, where ϕ is quantifier-free. Note
that the function defined by this formula is equal or greater than the one defined by ΣX̄.Σx̄.Σȳ. ϕpX̄, x̄, ȳq divided by a
polynomial factor. More specifically, for each ordered structure A with domain A, we have the following inequality:

JΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳqKpAq ¨ |A||ȳ| ě JΣX̄.Σx̄.Σȳ. ϕpX̄, x̄, ȳqKpAq

Note that the formula ΣX̄.Σx̄.Σȳ. ϕpX̄, x̄, ȳq defines a function in #Σ0. It was shown by the authors in [35] that every
function in #Σ0 grows exponentially over the size of the structure for large enough structures, when |X̄| ą 0. This function
divided by a polynomial factor still grows exponentially. Therefore, for ΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳq we have that |X̄| “ 0.

Now, for the formula Σx̄. Dȳ ϕpx̄, ȳq consider a structure 1 with only one element a. We have that JΣx̄. Dȳ ϕpx̄, ȳqKp1q “ 2,
but the only possible assignment to x̄ is the tuple pa, . . . , aq so JΣx̄. Dȳ ϕpx̄, ȳqKp1q ď 1, which follows to a contradiction.

Proof of Proposition V.5

The authors in [35] proved that there exists a product reduction from every function in #Σ1 to a restricted version of
#DNF. This is, if α P #Σ1 over some signature R, there exist polynomially computable functions g : ORDSTRUCTrRs Ñ
ORDSTRUCTrRDNFs and h : N Ñ N such that for every finite R-structure A with domain A, it holds that JαKpAq “
#DNFpencpgpAqqq ¨ hp|A|q. We base our proof on this fact.

ΣQSOpΣ1q is contained in TOTP. Let α be a ΣQSOpΣ1q formula and assume that it is in Σ1-SNF. This is, α “
řn
i“1 αi

where each αi is in Σ1-PNF. Consider the following nondeterministic procedure that on input encpAq generates JαKpAq
branches. For each αi “ ϕ, where ϕ is a Σ1 formula, it checks if A |ù ϕ in polynomial time and generates a new branch
if that is the case. For each αi “ ΣX̄.Σx̄. ϕ, this formula is also in #Σ1. We use the reduction to #DNF provided in [35]
and we obtain gpencpAqq, which is an instance to #DNF. Since #DNF is also in TOTP [31], we simulate the corresponding
nondeterministic procedure that generates exactly #DNFpencpgpAqqq branches. Since, FP Ď TOTP [31], each polynomially
computable function is also in TOTP, and then on each of these branches we simulate the corresponding nondeterministic
procedure to generate hp|A|q more. The number of branches for each αi is JαiKpAq “ #DNFpencpgpAqqq ¨ hp|A|q, and the
total number of branches in the procedure amounts to JαKpAq. We conclude that α P TOTP.

Every function in ΣQSOpΣ1q has an FPRAS. let α be a ΣQSOpΣ1q formula and assume that it is in Σ1-SNF. This is,
α “

řn
i“1 αi where each αi is in Σ1-PNF. Note that each αi that is equal to some Σ1 formula ϕ has an FPRAS given by the

procedure that simply checks if A |ù ϕ and returns 1 if it does and 0 otherwise. Also, each remaining αi has an FPRAS since
αi P #Σ1 [35]. If two functions have an FPRAS, then their sum also has one given by the procedure that simulates them both
and sums the results. We conclude that α has an FPRAS.

ΣQSOpΣ1q is closed under sum and multiplication. Since ΣQSOpΣ1q is closed under sum by definition, we focus only
in proving that the class is closed under multiplication. We prove this for a more general case for ΣQSOpL q where L is a
fragment of SO.

Lemma A.2. If L is a fragment closed under conjunction, then ΣQSOpL q is closed under binary multiplication.

Proof. We will define a recursive function τ that receives a formula α over the grammar of ΣQSOpL q extended by binary
product, and outputs an equivalent formula τpαq over the unextended grammar of ΣQSOpL q. In fact, the formula τpαq is
in L -SNF. First we replace each constant s in α for pJ ` ¨ ¨ ¨ ` Jq (s times). If α “ ϕ, then we define τpαq “ α. We
assume that for every β that has less algebraic operators than α, τpβq is in L -SNF. If α “ pα1 ` α2q then we define
τpαq “ τpα1q ` τpα2q. If α “ Σx. β or α “ ΣX.β, then we define τpαq as the formula in L -SNF that is equivalent to
Σx. τpβq and to τpαq “ ΣX. τpβq, respectively. If α “ pα1 ¨ α2q, we assume that each αi is in L -SNF. We identify three
cases. (1) Some αi is equal to

řn
j“1 βj for n ą 1. Suppose wlog. that it is α1. We then define τpαq “

řn
j“1 τpβj ¨α2q. In the

following cases, α1 and α2 are in L -SNF. (2) If some αi is equal to ΣX.β or Σx. β, we define τpαq as the L -SNF formula
that is equivalent to Σx. τpβ ¨α2q and ΣX. τpβ ¨α2q, respectively. The remaining case is (3) α1 “ ϕ1 and α2 “ ϕ2 where each
ϕ is an L formula. Then we define τpαq “ ϕ1 ^ ϕ2. This covers all possible cases for α. For every pair of formulas α, β
in ΣQSOpL q, we have that their multiplication pα ¨ βq is a formula in the grammar ΣQSOpL q extended by binary product,
and so, there exists an equivalent formula τpα ¨ βq which is in unextended ΣQSOpL q. 2

Since Σ1 is closed under conjunction, this also holds for ΣQSOpΣ1q. This concludes the proof.

Proof of Proposition V.6

Let L be a fragment of FO that contains Π1. Then we have that every function in #Π1 is expressible in ΣQSOpL q. In
particular, #3-CNF P ΣQSOpL q. Suppose that ΣQSOpL q is closed under subtraction by one. Then, the function #3-CNF´
1, which counts the number of satisfying assignments of a 3-CNF formula minus one, is also in ΣQSOpL q. Note that

ΣQSOpL q Ď ΣQSOpFOq “ #P. We have that #3-CNF is #P-complete under parsimonious reductions5. Now, let f be a
function in #P, and consider the nondeterministic polynomial-time procedure that on input encpAq computes the corresponding
reduction to #3-CNF, name it gpencpAqq, and simulates the #P procedure for #3-CNF´ 1 on input gpencpAqq. We have that
this is a #P procedure that computes f ´ 1, from which we conclude that #P is closed under subtraction by one.

Proof of Theorem V.7

Closed under sum and multiplication. We show here that ΣQSOpΣ1[FO]q is closed under sum and multiplication. This
can be seen because ΣQSOpL q is closed under sum for every fragment L by definition, and since Σ1[FO] is closed under
conjunction, from Lemma A.2 it follows that ΣQSOpΣ1[FO]q is closed under multiplication.

Easy decision version and FRPRAS. We show here that ΣQSOpΣ1[FO]q Ď TOTP and every function in ΣQSOpΣ1[FO]q
has an FPRAS. We do this by showing a parsimonious reduction from a function in ΣQSOpΣ1[FO]q to some function in
ΣQSOpΣ1q, and using the result of Theorem V.5. First, we define a function that converts a formula α in ΣQSOpΣ1[FO]q
over a signature R into a formula λpαq in ΣQSOpΣ1q over a signature Rα. Afterwards, we define a function gα that receives
an R-structure A and outputs an Rα-structure gαpAq.

Let α be in ΣQSOpΣ0[FO]q. The signature Rα is obtained by adding the symbol Rψ , for every FO formula ψpz̄q in α,
to R. Each symbol Rψ represents a predicate with arity |z̄|. Then, λpαq is defined as α where each FO formula ψpz̄q has
been replaced by Rψpz̄q. We now define the function gα procedurally. Let A be a R-structure with domain A. Let A1 be
an Rα-structure obtained by copying A and leaving each RA

ψ empty. For each FO-formula ψpz̄q with |z̄| open first-order
variables, we iterate for every tuple ā P A|z̄|. If A |ù ψpāq, then the tuple ā is added to RA1

ψ (this can be done in P). This
concludes the construction of A1. Note that the number of FO subformulas, arity and tuple size is fixed in α, so computing
this function takes polynomial time over the size of the structure. Moreover, the encoding of A1 has polynomial size over the
size of encpAq. We define gαpAq “ A1 and we have that for each R-structure A: JαKpAq “ JλpαqKpgαpAqq. Therefore, we
have a parsimonious reduction from α to the ΣQSOpΣ1q formula λpαq.

To show that α is in TOTP, we can convert α and encpAq into λpαq and encpgαpAqq, respectively, and run the procedure
in Proposition V.5. Similarly, to show that α has an FPRAS, we do the same as before and simulates the FPRAS for λpαq in
Proposition V.5. These procedures also takes polynomial time and satisfies the condition.

Closed under subtraction by one. We prove here that ΣQSOpΣ1[FO]q is closed under subtraction by one. For this, given
α P ΣQSOpΣ1[FO]q over a signature R, we will define a ΣQSOpΣ1[FO]q formula κpαq such that for each finite structure A
over R: JκpαqKpAq “ JαKpAq .́ 1. Without lost of generality, we assume that α is in Σ1[FO]-SNF and α “

řn
i“1 ΣX̄.Σx̄. ϕi

where each ϕi is in Σ1[FO]. Moreover, we assume that |x̄| ą 0 since, if this is not the case, we can replace ϕi for the
equivalent formula ΣX̄.Σy. ϕi ^ firstpyq.

The proof will be separated in two parts. In the first part, we suppose that α is in Σ1[FO]-PNF, namely, α “ ΣX̄.Σx̄. ϕ
for some ϕ in Σ1[FO]. Then we will show how to define a formula ϕ1 that satisfies the following condition: for each A, if
pA, V, vq |ù ϕpX̄, x̄q for some V and v over A, then there exists exactly one assignment to pX̄, x̄q that satisfies ϕ and not
ϕ1. From this, we clearly have that κpαq “ ΣX̄.Σx̄. ϕ1 is the formula. In the second part, we suppose that α is of the form
β `ΣX̄.Σx̄. ϕ with β the sum of one or more formulas in Σ1[FO]-PNF. We define a formula ϕ1 that satisfies the following
condition: if pA, V, vq |ù ϕpX̄, x̄q and JβKpAq “ 0, then there exists exactly one assignment to pX̄, x̄q that satisfies ϕ and
not ϕ1. From here, we can define κpαq recursively as κpαq “ κpβq `ΣX̄.Σx̄. ϕ1 and the property of subtraction by one will
be proven.

Part (1). Let α “ ΣX̄.Σx̄. ϕpX̄, x̄q where ϕ is an FO-formula. Note that, if α is of the form α “ Σx̄. ϕpx̄q (i.e. |X̄| “ 0), we
can define κpαq “ Σx̄. rϕpx̄q ^ Dz̄pϕpz̄q ^ z̄ ă x̄qs, which is in ΣQSOpΣ1[FO]q and fulfills the desired condition. Therefore,
for the rest of the proof we can assume that |X̄| ą 0 and |x̄| ą 0.

To simplify the analysis of ϕ, the first step is to rewrite ϕ in a DNF formula. More precisely, we rewrite ϕ into an equivalent
formula of the form

Žm
i“1 ϕi for some m P N where each ϕipX̄, x̄q “ Dȳ ϕ1ipX̄, x̄, ȳq and ϕ1ipX̄, x̄, ȳq is a conjunction of

atomic formulas or negation of atomic formulas. Furthermore, we suppose that each conjunct ϕ1ipX̄, x̄, ȳq has the form:

ϕ1ipX̄, x̄, ȳq “ ϕFO
i px̄, ȳq

loooomoooon

an FO formula

^ ϕ`i pX̄, x̄, ȳq
looooomooooon

conjunction of Xj ’s

^ ϕ´i pX̄, x̄, ȳq
looooomooooon

conjunction of Xj ’s

.

Note that atomic formulas of the form Rpz̄q where R P R will appear in the subformula ϕFO
i px̄, ȳq.

Now, we define a series of rewritings to ϕ that will make each formula ϕi satisfy the following three conditions: (a) no
variable from x̄ are mentioned in ϕ´i pX̄, x̄, ȳq ^ ϕ`i pX̄, x̄, ȳq, (b) ϕFO

i px̄, ȳq defines an ordered partition over the variables

5It can be easily verified that the standard reduction from SAT to 3-CNF (or 3-SAT) preserves the number of satisfying assignments

in px̄, ȳq (see below for the definition of ordered partition) and (c) if Xjpz̄q and Xjpw̄q are mentioned, then the ordered
partition should not satisfy z̄ “ w̄. We explain below how to rewrite ϕi in order to satisfy each condition.

(a) In order to satisfy the first condition, consider some instance of a Xjpw̄q in ϕi, where w̄ is a subtuple of px̄, ȳq. We add
|w̄| new variables z1, . . . , z|w̄| to the formula and let z̄ “ pz1, . . . , z|w̄|q. We redefine ϕ`i pX̄, x̄, ȳq by replacing Xjpw̄q
with Xjpz̄q. The formula ϕi is now defined as

ϕipX̄, x̄q “ DȳDz̄ pz̄ “ w̄ ^ ϕFO
i px̄, ȳqq ^ ϕ´i pX̄, x̄, ȳq ^ ϕ

`
i pX̄, x̄, ȳqq.

We repeat this process for each instance of a Xjpw̄q in ϕi, and we obtain a formula where none of the Xj’s acts over
any variable in x̄. We add the new first-order variables to ȳ and we redefine ϕi as

ϕipX̄, x̄q “ Dȳ ϕ
FO
i px̄, ȳq ^ ϕ´i pX̄, ȳq ^ ϕ

`
i pX̄, ȳq.

For example, if x̄ “ x, ȳ “ y and ϕi “ Dȳ Xpx, yq ^ Xpx, xq ^ x ă y, then we redefine ȳ “ py, v1, v2, v3, v4q and
ϕi :“ Dȳ Xpv1, v2q ^ Xpv3, v4q ^ x ă y ^ v1 “ x^ v2 “ y ^ v3 “ x^ v4 “ x.

(b) An ordered partition on a set S is defined by an equivalence relation „ over S, and a linear order over S{„. For example,
let x̄ “ px1, x2, x3, x4q. A possible ordered partition would be defined by the formula θpx̄q “ x2 ă x1^x1 “ x4^x4 ă x3.
On the other hand, the formula θ1px̄q “ x1 ă x2 ^ x1 ă x4 ^ x2 “ x3 does not define an ordered partition since both
tx1u ă tx2, x3u ă tx4u and tx1u ă tx2, x3, x4u satisfy θ1. For a given k, let Bk be the number of possible ordered
partitions for a set of size k. For 1 ď j ď B|px̄,ȳq| let θjpx̄, ȳq be a formula that defines an ordered partition over px̄, ȳq.
Thus, the formula ϕipX̄, x̄q is then redefined as:

m
ł

i“1

B|px̄,ȳq|
ł

j“1

Dȳ rθjpx̄, ȳq ^ ϕFO
i px̄, ȳq ^ ϕ´i pX̄, ȳq ^ ϕ

`
i pX̄, ȳqs,

Note that each θjpx̄, ȳq is an FO-formula. Then, by redefining ϕFO
i px̄, ȳq as θjpx̄, ȳq ^ ϕFO

i px̄, ȳq, we can suppose that
each ϕFO

i px̄, ȳq defines an ordered partition over the variables in px̄, ȳq.
(c) For showing that no Xjpz̄q and Xjpw̄q are mentioned in ϕi with z̄ and w̄ equivalent in the ordered partition (i.e. ϕi

is inconsistent), we do the following. If there exists an instance of Xjpz̄q in ϕ`i , an instance of Xjpw̄q in ϕ´i and the
ordered partition in ϕFO

i satisfies z̄ “ w̄, then the entire formula ϕi is removed from ϕ.

It is important to notice that the resulting ϕ is equivalent to the initial one, and it is still a formula in ΣQSOpΣ1[FO]q.
From now on, we assume that each ϕipX̄, x̄q “ Dȳ ϕ

1
ipX̄, x̄, ȳq satisfies conditions (a), (b) and (c), and ϕ1ipX̄, x̄, ȳq has the

following form:
ϕ1ipX̄, x̄, ȳq “ ϕFO

i px̄, ȳq ^ ϕ`i pX̄, ȳq ^ ϕ
´
i pX̄, ȳq

where ϕ` and ϕ´i do not depend on x̄.

Claim A.3. For a given ordered structure A and a first-order assignment v for A, pA, vq |ù ϕFO
i px̄, ȳq if, and only if, there

exists a second-order assignment V for A such that pA, V, vq |ù ϕ1ipX̄, x̄, ȳq.

Proof. Let A be an ordered structure with domain A and let v be a first-order assignment for A, such that pA, vq |ù ϕFO
i px̄, ȳq.

Define B̄ “ pB1, . . . , B|X̄|q as Bj “ tvpw̄q | Xjpw̄q is mentioned in ϕ`i pX̄, ȳqu, and let V be a second-order assignment for
which V pX̄q “ B̄. Towards a contradiction, suppose that pA, V, vq ­|ù ϕFO

i px̄, ȳq ^ϕ`i pX̄, ȳq ^ϕ
´
i pX̄, ȳq. By the choice of v,

and construction of V it is clear that pA, V, vq |ù ϕFO
i px̄, ȳq^ϕ`i pX̄, ȳq, so we necessarily have that pA, V, vq ­|ù ϕ´i pX̄, ȳq. Let

Xt be such that Xtpw̄q is mentioned in ϕ´i pX̄, ȳq and pA, V, vq ­|ù Xtpw̄q, namely, vpw̄q P Bt. However, by the construction
of Bt, there exists a subtuple z̄ of ȳ such that Xtpz̄q appears in ϕ`i pX̄, ȳq and vpz̄q “ vpw̄q. Since pA, vq |ù ϕFO

i px̄, ȳq and
vpz̄q “ vpw̄q, then the ordered partition in ϕFO

i satisfies z̄ “ w̄. This violates condition (c) since Xtpw̄q appears in ϕ´i and
Xtpz̄q appears in ϕ`i , which leads to a contradiction.

For the other direction, if pA, V, vq |ù ϕ1ipX̄, x̄, ȳq for a second order assignment V for A, then it is easy to check pA, vq |ù
ϕFO
i px̄, ȳq since ϕFO

i px̄, ȳq is a subformula of ϕ1i. 2

The previous claim and proof motivates the following definitions. For a structure A and a first-order assignment v for A,
define B̄v “ pBv1 , . . . , B

v
|X̄|
q where each Bvj “ tvpw̄q | Xjpw̄q is mentioned in ϕ`i pX̄, ȳqu. One can easily check that for

every assignments pV, vq such that pA, V, vq |ù ϕ1ipX̄, x̄, ȳq, it holds that pA, B̄v, vq |ù ϕ1ipX̄, x̄, ȳq and B̄v Ď V pX̄q, namely,
B̄v is a valid candidate for X̄ and, furthermore, it is contained in all assignments of X̄ when v is fixed. Therefore, by choosing
one particular v the plan is to remove B̄v as an assignment over X̄ in ϕi. For this, the idea is to choose the minimal v that
satisfies ϕFO

i px̄, ȳq which can be defined with the following formula:

min-ϕFO
i px̄, ȳq “ ϕFO

i px̄, ȳq ^ @x̄1@ȳ1pϕFO
i px̄1, ȳ1q Ñ px̄ ď x̄1 ^ ȳ ď ȳ1qq.

If ϕFO
i is satisfiable, let v be the only assignment such that pA, vq |ù min-ϕFO

i px̄, ȳq. Furthermore, let V ˚ the second order
assignment and v˚ the first order assignment that satisfy V ˚pX̄q “ B̄v and v˚px̄q “ vpx̄q. By the previous discussion, we
have that pA, V ˚, v˚q |ù ϕipX̄, x̄q.

Now, we have all the tools to introduce one of the main formulas in order to define κpαq. Intuitively, we want to exclude
the assignment pV ˚, v˚q from the satisfying assignments of ϕipX̄, x̄q. Towards this goal, we can define a formula ψipX̄, x̄q
such that pA, V, vq |ù ψipX̄, x̄q if, and only if, V ‰ V ˚ or v ‰ v˚ whenever ϕipX̄, x̄q is satisfiable. This property can be
defined as follows:

ψipX̄, x̄q “
`

Dx̄Dȳ ϕFO
i px̄, ȳq

˘

Ñ (7)
´

Dȳ min-ϕFO
i px̄, ȳq ^

`

ϕ1ipX̄, x̄, ȳq Ñ
ł

XPX̄

Dz̄ pXpz̄q ^
ľ

Xpw̄q Pϕ`i pX̄,v̄q

w̄ ‰ z̄ q
˘

_ (8)

p Dx̄1Dȳ ϕ1ipX̄, x̄
1, ȳq ^ x̄1 ă x̄ q

¯

(9)

To understand the formula, first notice that the premise of the implication at (7) is true if, and only if, ϕipX̄, x̄q is satisfiable.
Indeed, by Claim A.3 we know that if Dx̄Dȳ ϕFO

i px̄, ȳq is true, then there exists assignments V and v such that pA, V, vq |ù
ϕ1ipX̄, x̄, ȳq. Then, the conclusion of the implication (divided into (8) and (9)), take care that V pX̄q ‰ V ˚pX̄q or vpx̄q ‰ v˚px̄q.
Here, the first disjunct (8) checks that V pX̄q ‰ V ˚pX̄q by defining that if ϕ1ipX̄, x̄, ȳq is satisfied then V ˚pX̄q (V pX̄q. The
second disjunct (9) is satisfied when vpx̄q is not the lexicographically smallest tuple that satisfies ϕi (i.e. vpx̄q ‰ v˚px̄q).
Finally, from the previous discussion one can easily check that ψipX̄, x̄q satisfies the desire property.

We are ready to define the formula κpαq as ΣX̄.Σx̄.
Žm
i“1 ϕ

˚
i pX̄, x̄q where each modified disjunct ϕ˚i pX̄, x̄q is constructed

as follows. For the sake of simplification, define the auxiliary formula χi “ Dx̄Dȳ ϕFO
i px̄, ȳq. This formula basically checks

if ϕi is not satisfiable (recall Claim A.3). Define the first formula ϕ˚1 as:

ϕ˚1 pX̄, x̄q “ ϕ1pX̄, x̄q ^ ψ1pX̄, x̄q.

This formula accepts all the assignments that satisfy ϕ1, except for the assignment pV ˚, v˚q of ϕ1. The second formula ϕ˚2 is
defined as:

ϕ˚2 pX̄, x̄q “ ϕ2pX̄, x̄q ^ ψ1pX̄, x̄q ^ pχ1 Ñ ψ2pX̄, x̄qq.

This models all the assignments that satisfy ϕ2, except for the assignment pV ˚, v˚q of ϕ1. Moreover, if ϕ1 is not satisfiable,
then ψ1pX̄, x̄q and χ1 will hold, and the formula ψ2pX̄, x̄q will forbid the assignment pV ˚, v˚q of ϕ2. One can easily generalize
this construction for each ϕi as follows:

ϕ˚i pX̄, x̄q “ ϕipX̄, x̄q ^ ψ1pX̄, x̄q ^ pχ1 Ñ ψ2pX̄, x̄qq ^ ppχ1 ^ χ2q Ñ ψ3pX̄, x̄qq ^ ¨ ¨ ¨ ^ p
j“i´1
ľ

j“1

χj Ñ ψipX̄, x̄qq,

From the construction of κpαq, one can easily check that JκpαqKpAq “ JαKpAq ´ 1 for each A.

Part (2). Let α “ pβ ` ΣX̄.Σx̄. ϕpX̄, x̄q for some ΣQSOpΣ1[FO]q formula β. We define κpαq as follows. First, rewrite
ϕpX̄, x̄q as in the previous section. Let ϕ “

Žm
i“1 ϕipX̄, x̄q where each ϕi satisfies conditions (a), (b) and (c). Also, consider

the previously defined formulas χi and ψi, for each i.
We construct a function λ that receives a quantitative formula β and produces a logic formula λpβq that satisfies A |ù λpβq

if, and only if, JβKpAq “ 0. If β “ Σx̄. ϕpx̄q, then λpβq “ Dx̄1ϕpx̄1q. If β “ ΣX̄.Σx̄. ϕpX̄, x̄q, then let ϕ “
Žm
i“1 ϕi where

each ϕi satisfies conditions (a), (b) and (c) of the previous section, and define λpβq “ χ1 ^ ¨ ¨ ¨ ^ χm. If β “ pβ1 ` β2q, then
λpβq “ λpβ1q ^ λpβ2q. Now, for each ϕi we define:

ϕ˚i pX̄, x̄q “ ϕipX̄, x̄q^
´

λpβq Ñ
´

ψ1pX̄, x̄q^pχ1 Ñ ψ2pX̄, x̄qq^ppχ1^χ2q Ñ ψ3pX̄, x̄qq^¨ ¨ ¨^p
j“i´1
ľ

j“1

χj Ñ ψipX̄, x̄qq
¯¯

.

Finally, κpαq is defined as κpαq “ κpβq ` ΣX̄.Σx̄.
Žm
i“1 ϕ

˚
i pX̄, x̄q, which is in ΣQSOpΣ1[FO]q and satisfies the desired

condition.

Proof of Proposition V.9

Pagourtzis and Zachos mention a TOTP procedure that computes the number of satisfying assignments of a DNF formula
[31]. This procedure can be easily extended to receive Horn formulas, and furthermore, a disjunction of Horn formulas. Hence
#DISJHORNSAT is in TOTP.

As we show in Proposition V.11, #DISJHORNSAT is complete for ΣQSOpΣ2-HORNq under parsimonious reductions. Let
α be a formula in ΣQSOpΣ2-HORNq and let gα be the reduction to #DISJHORNSAT. The TOTP procedure we construct, for

each input encpAq, is simply to compute gαpencpAqq, and then simulate the TOTP procedure for #DISJHORNSAT on input
gαpencpAqq. We conclude that α is in TOTP.

Proof of Proposition V.10

We use a similar proof to the one provided by the authors in [35] to separate the classes #Σ2 and #Π2. Suppose that the
statement is false, this is, #HORNSAT P ΣQSOpΣ2q. We consider the signature R that we used as the encoding for a Horn
formula (Example V.8) and that the formula α P ΣQSOpΣ2q follows the encoding in the same way. From what we proved in
Theorem V.1, we have that every formula in ΣQSOpΣ2q can be rewritten in Σ2-PNF, so we assume that α is in this form.
Let α “ ΣX̄.Σx̄. Dȳ @z̄ ϕpX̄, x̄, ȳ, z̄q. Consider the following Horn formula Φ:

Φ “ p^
n
ľ

i“1

pti ^ pÑ qq ^ q,

where n “ |x̄|`|ȳ|`1. Let A be the encoding of this formula. In the encoding, each variable appears as an element in the domain
of A. This formula is satisfiable, so JαKpAq ě 1. Let pB̄, b̄, āq be an assignment to pX̄, x̄, ȳq such that A |ù @z̄ ϕpB̄, b̄, ā, z̄q.
Let t` be such that it does not appear in b̄ or ā. Consider the induced substructure A1 that is obtained by removing t` from
A and B̄1 as the subset of B̄ obtained by deleting each appearance of t` in B̄. We have that A1 |ù @z̄ ϕpB̄, b̄, ā, z̄q. This is
because each subformula of the form Dy Bi is still true, and universal formulas are monotone over induced substructures. It
follows that JαKpA1q ě 1 which is not possible since A1 encodes the formula

Φ1 “ p^
`´1
ľ

i“1

pti ^ pÑ qq ^ ppÑ qq ^
n
ľ

i“``1

pti ^ pÑ qq ^ q,

which is unsatisfiable. We arrive to a contradiction and we conclude that #HORNSAT is not in ΣQSOpΣ2-HORNq.

Proof of Theorem V.11

First we prove that #DISJHORNSAT is in ΣQSOpΣ2-HORNq. Recall that each instance of #DISJHORNSAT is a disjunction
of Horn formulas. Let R “ tPp¨, ¨q,Np¨, ¨q,Vp¨q,NCp¨q,Dp¨, ¨qu. Each symbol in this vocabulary is used to indicate the same
as in Example V.8, with the addition of Dpd, cq which indicates that c is a clause in the formula d. Recall that the formula

@x p Tpxq _ Vpxqq ^

@c p NCpcq _ Dx Apc, xqq ^

@c@x p Ppc, xq _ Dy Apc, yq _ Tpxqq ^

@c@x p Npc, xq _ Tpxq _ Apc, xqq ^

@c@x pApc, xq _ Npc, xqq ^

@c@x pApc, xq _ Tpxqq.

defines #HORNSAT. We obtain the following formula ψpT,Aq in Σ2-HORN:

Ddr@x p Tpxq _ Vpxqq ^

@c p Dpc, dq _ NCpcq _ Dx Apc, xqq ^

@c@x p Dpc, dq _ Ppc, xq _ Dy Apc, yq _ Tpxqq ^

@c@x p Dpc, dq _ Npc, xq _ Tpxq _ Apc, xqq ^

@c@x p Dpc, dq _ Apc, xq _ Npc, xqq ^

@c@x p Dpc, dq _ Apc, xq _ Tpxqqs

effectively defines #HORNSAT as for every disjunction of Horn formulas θ “ θ1 _ ¨ ¨ ¨ _ θm encoded by an R-structure A,
the number of satisfying assignments of θ is equal to JΣT.ΣA. ψpT,AqKpAq. Therefore, we conclude that #DISJHORNSAT P
ΣQSOpΣ2-HORNq.

We will now prove that #DISJHORNSAT is hard for ΣQSO over a signature R under parsimonious reductions. For each
ΣQSOpΣ2-HORNq formula α over R, we will define a polynomial-time procedure that computes a function gα. This function
receives a finite R-structure A and outputs an instance of #DISJHORNSAT such that JαKpAq “ #DISJHORNSATpgαpAqq. We
suppose that α is in sum normal form and:

α “
#clauses
ÿ

i“1

ΣX̄.Σx̄. Dȳ
n
ľ

j“1

@z̄ ϕijpX̄, x̄, ȳ, z̄q,

where each ϕij is a Horn clause.
Consider a finite R-structure A with domain A. To simplify the proof, we extend our grammar to allow first-order constants.

Consider each tuple ā P A|x̄|, each b̄ P A|ȳ| and each c̄ P A|z̄| as a tuple of first-order constants. The following formula defines
the same function as α:

#clauses
ÿ

i“1

ÿ

āPA|x̄|

ΣX̄.
ł

b̄PA|ȳ|

n
ľ

j“1

ľ

c̄PA|z̄|

ϕijpX̄, ā, b̄, c̄q.

Note that each FO formula over px̄, ȳ, z̄q in each ϕij has no free variables. Therefore, we can evaluate each of these in
polynomial time and replace them by K and J where it corresponds. Each ϕij will be of the form K _χijpX̄q or J_ χijpX̄q
where χij is a disjunction of X`’s and at most one X`. The formulas of the form J_ χijpX̄q can be removed entirely, and
the formulas of the form K _χijpX̄q can be replaced by χijpX̄q. We obtain the formula

m
ÿ

i“1

ΣX̄.
#d
ł

j“1

#c
ľ

k“1

ψij,kpX̄q

where every ψij,kpX̄q is a disjunction of X`’s and zero or one X`.
Our idea for the rest of the proof is to define gα for each α “ ΣX̄.

Ž#d
j“1

Ź#c
k“1 ψ

i
j,kpX̄q, for α “ c and for α “ β1`¨ ¨ ¨`βm

where each βi is in one of the two previous cases.
If α is equal to ΣX̄.

Ž#d
j“1

Ź#c
k“1 ψj,kpX̄q where ψj,kpX̄q is a disjunction of X`’s and zero or one X`, then we obtain

the propositional formula gαpAq “
Ž#d
j“1

Ź#c
k“1 ψj,kpX̄q over the propositional alphabet tXpēq | X P X̄ and ē P AaritypXqu

which has exactly JαKpAq satisfying assignments and is precisely a disjunction of Horn formulas.
If α is equal to a constant c, then we define gαpAq as the following formula that has exactly c satisfying assignments:

gαpAq “
c
ł

i“1

 t1 ^ ¨ ¨ ¨ ^ ti´1 ^ ti ^ ti`1 ^ ¨ ¨ ¨ ^ pc.

If α “ β1 ` ¨ ¨ ¨ ` βm, let gβi
pAq “

Ž#d
j“1

Ź#c
k“1 θ

i
j,k for each βi where each θij,k is a Horn clause. Let Θi “ gβi

pAq. We
rename the variables in each Θi so none of them are mentioned in any other Θj . We add m new variables t1, . . . , tm and we
define:

gαpAq “
#d
ł

i“1

p

#c
ľ

j“1

θ1
i,j ^ p

ľ

each t
mentioned in
Θ2,...,Θm

tq ^ pt1 ^
m
ľ

`“2

 t`qq_

#d
ł

i“1

p

#c
ľ

j“1

θ2
i,j ^ p

ľ

each t
mentioned in

Θ1,Θ3,...,Θm

tq ^ pt2 ^
m
ľ

`“1
`‰2

 t`qq _ ¨ ¨ ¨ _

#d
ł

i“1

p

#c
ľ

j“1

θmi,j ^ p
ľ

each t
mentioned in

Θ2,...,Θm´1

tq ^ ptm ^
m´1
ľ

`“1

 t`qq.

The formula is a disjunction of Horn formulas, and the number of satisfying assignments for this formula is exactly the sum
of satisfying assignments for each gβipAq. This, at the same time, is equal to JαKpAq. This covers all possible cases for α, and
the entire procedure takes polynomial time.

D. Proofs from Section VI

Proof of Theorem VI.1

For FQFOpFOq. Let R be a signature. We prove the statement for FQFOpFOq over R.
We prove inductively that for each formula βpx̄, hq in FQFOpFOq over R, for a given pair of functions f, g such that

supppfq Ď supppgq, it holds that supppTβpfqq Ď supppTβpgqq. Let |x̄| “ `.
We separate the proof in each case determined by the FQFO grammar. For each of the following cases.

1. β is either equal to a constant s or an FO formula ϕ. Then h does not appear. Then, for each structure A, each first-order
assignment v and functional assignments F,G over A, we have that Jβpx̄, hqKpA, v, F q “ Jβpx̄, hqKpA, v,Gq. As a result,
supppTβpfqq “ supppTβpgqq for every pair of functions f, g.

2. β is equal to hpȳq for some subtuple ȳ of x̄. Then Tβpfq “ f and Tβpgq “ g and the condition holds trivially.

Suppose that the statement holds for each formula smaller than β.
3. β “ pβ1 ` β2q. It is easy to see that for each ā P A` and function f : A` Ñ N: Tβpfqpāq “ Tβ1pfqpāq ` Tβ2pfqpāq.

Suppose supppfq Ď supppgq and let ā P supppTβpfqq, or in other words, Tβpfqpāq ą 0. Then, for some βi it holds that
Tβi
pfqpāq ą 0. From the supposition we have that Tβi

pgqpāq ą 0 from which the statement follows.
4. β “ pβ1 ¨ β2q. It is easy to see that for each ā in A` and function f : A` Ñ N: Tβpfqpāq “ Tβ1

pfqpāq ¨ Tβ2
pfqpāq.

Suppose supppfq Ď supppgq and let ā be such that Tβpfqpāq ą 0. Then Tβi
pfqpāq ą 0 for both βi. From the supposition

we have that Tβipgqpāq ą 0 for both βi and the statement holds.
5. β “ Σy. δpy, x̄, hq. Here we extend the grammar slightly to allow constants, and we use the notation δra{ys to denote the

formula obtained by replacing each instance of y by the constant a. It can be seen that Tβpfqpāq “
ř

aPA Tδra{yspfqpāq.
Suppose supppfq Ď supppgq and let ā be such that Tβpfqpāq ą 0. Then for some a P A we have Tδry{aspfqpāq ą 0. The
statement now follows as in the case 3.

6. β “ Πy. δpy, x̄, hq. It can be seen that Tβpfqpāq “
ś

aPA Tδra{yspfqpāq. The statement follows using the same argument
from cases 4 and 5.

This covers all possible cases for β and we finish the proof of the statement for FQFOpFOq.

For RQFOpFOq. The only additional case is where β “ rlsfp δpȳ, h1qs for some subtuple ȳ of x̄. We have that β does
not mention h, and so, the statement follows directly as we showed in the previous part of the proof.

Proof of Theorem VI.3

Given the definition of the semantics of RQFOpFOq, it is clear that a fixed formula rlsfpβpx̄, hqs can be evaluated in
polynomial time, from which it is possible to conclude that each fixed formula in RQFOpFOq can be evaluated in polynomial
time. Thus, to prove that RQFOpFOq captures FP, we only need to prove the second condition in Definition IV.1.

Let f be a function in FP. We address the case when f is defined for the encodings of the structures of a relational signature
R “ tEp¨, ¨qu, as the proof for an arbitrary signature is analogous. Let M be a deterministic polynomial-time TM with a
working tape and an output tape, such that the output of M on input encpAq is fpencpAqq for each R-structure A. We assume
that M “ pQ, t0, 1u, q0, δq, where Q “ tq0, . . . , q`u, and δ : Q ˆ t0, 1, B,$u Ñ Q ˆ t0, 1, B,$u ˆ tÐ,Ñu ˆ t0, 1,Hu is a
partial function. In particular, the tapes of M are infinite to the right so the symbol $ is used to indicate the first position in
each tape, and M does not have any final states, as it produces an output for each input. Moreover, the only allowed operations
in the output tape are: (1) writing 0 and moving the head one cell to the right, (2) writing 1 and moving the head one cell to
the right, or (3) doing nothing. These operations are represented by the set t0, 1,Hu. Finally, assume that M , on input encpAq
with domain A “ t1, . . . , nu, executes exactly nk steps for some k ě 1.

We construct a formula α in an extension of the grammar of RQFOpFOq such that JαKpAq “ fpencpAqq for each R-
structure A. This extension allows defining the operator lsfp for multiple functions, analogously to the notion of simultaneous
LFP [29]. Let x̄ “ px1, . . . , xkq and t̄ “ pt1, . . . , tkq. Then α is defined as:

α “ Σt̄. rlsfp outpt̄q :αT0
pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αT1
pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αTB
pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αT$pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αhpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αĥpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αsq0
pt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

...

αsq` pt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αoutpt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outqs ¨ lastpt̄q.

Function T0 is used to indicate whether the content of a cell of the working tape is 0 at some point of time, that is, T0pt̄, x̄q ą 0
if the cell at position x̄ of the working tape contains the symbol 0 at step t̄, and T0pt̄, x̄q “ 0 otherwise. Functions T1, TB
and T$ are defined analogously. Function h is used to indicate whether the head of the working tape is in some position at
some point of time, that is, hpt̄, x̄q ą 0 if the head of the working tape is at position x̄ at step t̄, and hpt̄, x̄q “ 0 otherwise.
Function ĥ is used to indicate whether the head of the working tape is not in some position at some point of time, that is,
ĥpt̄, x̄q ą 0 if the head of the working tape is not at position x̄ at step t̄, and hpt̄, x̄q “ 0 otherwise. For each i P t0, . . . , `u,
function sqi is used to indicate whether the TM M is in state qi at some point of time, that is, sqipt̄q ą 0 if the TM M is in

state qi at step t̄, and sqipt̄, x̄q “ 0 otherwise. Finally, function out stores the output of the TM M ; in particular, outpt̄q is the
value returned by M when t̄ is the last step (that is, when lastpt̄q holds).

Formulas αT0
, αT1

, αTB
and αT$ are defined as follows, assuming that ȳ “ py1, . . . , ykq:

αT0
pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “ pfirstpt̄q ^ Dȳpfirstpy1, . . . , yk´2q ^ Epyk´1, ykq ^ succpȳ, x̄qqq`

Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ T0pt̄
1, x̄qq`

ă

δpq,aq“pq1,0,op,vq

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄1, x̄q ¨ sqpt̄1qq,

αT1
pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “ pfirstpt̄q ^ Dȳpfirstpy1, . . . , yk´2q ^ Epyk´1, ykq ^ succpȳ, x̄qqq`

Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ T1pt̄
1, x̄qq`

ă

δpq,aq“pq1,1,op,vq

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄1, x̄q ¨ sqpt̄1qq,

αTB
pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “ pfirstpt̄q ^ DȳDȳ1pfirstpy1, . . . , yk´2q ^ lastpyk´1, ykq ^ succpȳ, ȳ1q ^ ȳ1 ă x̄qq`

Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ TBpt̄1, x̄qq`
ă

δpq,aq“pq1,B,op,vq

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄1, x̄q ¨ sqpt̄1qq,

αT$pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “ pfirstpt̄q ^ firstpx̄qq`

Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ T$pt̄1, x̄qq`
ă

δpq,aq“pq1,$,op,vq

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄1, x̄q ¨ sqpt̄1qq.

Formulas αh and αĥ are defined as:

αhpt̄, x̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ succpt̄, x̄qq`
ă

δpq,aq“pq1,b,Ð,vq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ succpx̄, x̄1q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1qq`

ă

δpq,aq“pq1,b,Ñ,vq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ succpx̄1, x̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1qq,

αĥpt̄, x̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ succpt̄, x̄qq`
ă

δpq,aq“pq1,b,Ð,vq

Σt̄1.Σx̄1.Σx̄2. psuccpt̄1, t̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1q ¨ succpx̄2, x̄1q ¨ px̄ ‰ x̄2qq`

ă

δpq,aq“pq1,b,Ñ,vq

Σt̄1.Σx̄1.Σx̄2. psuccpt̄1, t̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1q ¨ succpx̄1, x̄2q ¨ px̄ ‰ x̄2qq.

Formula αq0 is defined as:

αq0pt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “ firstpt̄q`
ă

δpq,aq“pq0,b,op,vq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1qq.

Moreover, for every i P t1, . . . , `u, formula αqi is defined as:

αqipt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “
ă

δpq,aq“pqi,b,op,vq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1qq.

Finally, formula αout is defined as:

αoutpt̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “
ă

δpq,aq“pq1,b,op,0q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄1, x̄1q ¨ sqpt̄1q ¨ 2 ¨ outpt̄1qq`

ă

δpq,aq“pq1,b,op,1q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄1, x̄1q ¨ sqpt̄1q ¨ p2 ¨ outpt̄1q ` 1qq`

ă

δpq,aq“pq1,b,op,Hq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄1, x̄1q ¨ sqpt̄1q ¨ outpt̄1qq.

Clearly, at each iteration of the LSFP operator, the tuple t̄ represents the step the machine is currently in. From the construction
of the formula, and since the machine is deterministic, it can be seen that in each function g P tT0, T1, TB, T$, h, ĥu, at the
ā-th iteration of the LSFP operator, it holds that gpā, b̄q ď 1 for each b̄ P Ak, that gpā ` 1, b̄q “ 0 for each b̄ P Ak. Also, at
the ā-th iteration, gpāq ď 1 and gpā ` 1q “ 0 for each g P tsq1 , . . . , sq`u. From this, we have that at each iteration ā of the
operator, outpāq is equal to either 2 ¨ outpā´ 1q, 2 ¨ outpā´ 1q ` 1, or outpā´ 1q, which represents precisely the value in the
output tape at each step of M running on input encpAq. From this argument, it can be seen that JαKpAq “ fpencpAqq.

To conclude the proof, we show that for each formula α in the previously defined extension of RQFOpFOq, there exists
an equivalent formula confirming to the grammar of RQFOpFOq defined in Section VI. It suffices to consider a formula α of
the form

αpx̄1q “ rlsfp f1px̄1q : α1px̄1, f1, . . . , fnq, α2px̄2, f1, . . . , fnq, . . . , αnpx̄n, f1, . . . , fnqs,

and show an equivalent formula defined by a LSFP operator which uses one formula less in its definition.
We construct the equivalent formula as follows. We use a new function symbol f with arity |x̄1| ` |x̄2|. For every i P

t1, . . . , nu, let α1i be the formula obtained by performing the following replacements in αi:

f1pȳ1q is replaced by Σȳ2. fpȳ1, ȳ2q ¨ rfirstpȳ1q ¨ lastpȳ2q ` p firstpȳ1qq ¨ firstpȳ2qs,

f2pȳ2q is replaced by Σȳ1. fpȳ1, ȳ2q ¨ rfirstpȳ1q ¨ firstpȳ2q ` lastpȳ1q ¨ p firstpȳ2qqs.

Moreover, let β be a formula defined as:

βpx̄1, x̄2q “α
1
1px̄1q ¨ pfirstpx̄1q ¨ lastpx̄2q ` p firstpx̄1qq ¨ firstpx̄2qq`

α12px̄2q ¨ pfirstpx̄1q ¨ firstpx̄2q ` lastpx̄1q ¨ p firstpx̄2qqq.

It can be seen that all values of f1, besides the first one, are stored in the first assignment of x̄2, while the first value of f1 is
stored in the last assignment of x̄2. Moreover, all values of f2, besides the first one, are stored in the last assignment of x̄1,
while the first value of f2 is stored in the first assignment of x̄1. We use formula β to define the following formula:

α1px̄1q “Σx̄2. rlsfp fpx̄1, x̄2q : βpx̄1, x̄2, f, f3, . . . , fnq,

α13px̄3, f, f3, . . . , fnq, . . . , α
1
npx̄n, f, f3, . . . , fnqs ¨ pfirstpx̄1q ¨ lastpx̄2q ` p firstpx̄1qq ¨ firstpx̄2qq

It is not difficult to see that α1px̄1q is equivalent to αpx̄1q, which concludes the proof.

Proof of Theorem VI.4

TQFOpFOq can be computed in #L. Let R be some relational signature. Let α be a formula in TQFOpFOq. We will
construct a nondeterministic logspace algorithm Mα that on input encpAq, where a first-order assignment v is being stored
in memory, accepts in JαKpA, vq paths. Suppose the domain of A is A “ t1, . . . , nu. The algorithm needs c ¨ log2pnq bits
of memory to store v, where c is the total number of first-order variables in α. If α “ ϕ, we check if pA, vq |ù ϕ in
deterministic logarithmic space, and accept if and only if it does. If α “ s, we generate s branches and accept in all of them.
If α “ pα1`α2q, we simulate Mα1

and Mα2
on separate branches. If α “ pα1 ¨α2q, we simulate α1 and if it accepts, instead

of doing so, we simulate α2. If α “ Σx. β, for each a P A we generate a different branch where we simulate Mβ while storing
vra{xs. If α “ Πx. β, we simulate Mβ while storing vr1{ns, and on each accepting branch, instead of accepting we replace
the assignment on x to 2, to simulate Mβ while storing vr2{xs, and so on. If α “ rpath ϕpx̄, ȳqs where ϕ is an FO formula,
we simulate the #L procedure that counts the number of paths for a graph of a given size. This procedure starts by setting
ā “ vpx̄q. On each iteration, nondeterministically chooses an assignment ā for x̄, continues if pA, vq |ù ϕpā1, āq where ā1 is
the previously chosen value for ā, and rejects otherwise. If at any point we obtain that ā “ vpȳq, we generate an accepting
branch, and continue simulating the procedure in the current branch. We simulate n|x̄| iterations of the procedure, and this
generates exactly Jrpath ϕpx̄, ȳqsKpA, vq accepting branches. This ends the construction of the algorithm. Consider f as the
#L function associated to this procedure and we have that for each finite R-structure A: fpencpAqq “ JαKpAq.

#L can be modelled in TQFOpFOq. Let f be a function in #L and let M be a nondeterministic logspace machine such
that accM pencpAqq “ fpencpAqq. We assume that M has only one accepting state and upon accepting it immediately stops.
Moreover, we assume that there exists only one accepting configuration altogether. We make use of transitive closure logic
(TC) to simplify our proof [16]. We have that TC captures NL [19], so there exists a formula such that A |ù ϕ if and only
if M accepts encpAq. This formula can be expressed as:

ϕ “ DūDz̄pfirstpūq ^ ψaccpz̄q ^ rtcx̄,ȳ ψnextpx̄, ȳqspū, z̄qq,

where ψaccpz̄q is an FO formula that expresses that z̄ is an accepting configuration, and ψnextpx̄, ȳq is an FO formula that
expresses that ȳ is the next configuration from x̄ [16]. Here, there is a 1-1 correspondence between configurations of M
and assignments to z̄. As a consequence, given a structure A, and a first-order assignment v to A where vpx̄q is the starting
configuration and vpȳq is the sole accepting configuration, the value of Jrpath ψnextpx̄, ȳqsKpA, vq is equal to accM pencpAqq.
Finally, we define the TQFOpFOq formula

α “ Σū.Σz̄. pfirstpūq ¨ ψaccpz̄q ¨ rpath ψnextpū, z̄qsq,

which satisfies JαKpAq “ fpencpAqq for each structure A. This concludes the proof.

