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ABSTRACT

A schema mapping is a specification that describes how data from
a source schema is to be mapped to a target schema. Once the data
has been transferred from the source to the target, a natural question
is whether one can undo the process and recover the initial data, or
at least part of it. In fact, it would be desirable to find a reverse

schema mapping from target to source that specifies how to bring the
exchanged data back.

In this paper, we introduce the notion of a recovery of a schema
mapping: it is a reverse mapping M′ for a mapping M that re-
covers sound data with respect to M. We further introduce an or-
der relation on recoveries. This allows us to choose mappings that
recover the maximum amount of sound information. We call such
mappings maximum recoveries. We study maximum recoveries in
detail, providing a necessary and sufficient condition for their ex-
istence. In particular, we prove that maximum recoveries exist for
the class of mappings specified by FO-TO-CQ source-to-target de-
pendencies. This class subsumes the class of source-to-target tuple-
generating dependencies used in previous work on data exchange.
For the class of mappings specified by FO-TO-CQ dependencies, we
provide an exponential-time algorithm for computing maximum re-
coveries, and a simplified version for full dependencies that works in
quadratic time. We also characterize the language needed to express
maximum recoveries, and we include a detailed comparison with the
notion of inverse (and quasi-inverse) mapping previously proposed
in the data exchange literature. In particular, we show that maximum
recoveries strictly generalize inverses. We study the complexity of
some decision problems related to the notions of recovery and max-
imum recovery. Finally, we report our initial results about a relaxed
notion of maximal recovery, showing that it strictly generalizes the
notion of maximum recovery.
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1. INTRODUCTION
A schema mapping is a specification that describes how data from a
source schema is to be mapped to a target schema. In the last years, a
lot of attention has been paid to the development of solid foundations
for the problem of exchanging data using schema mappings [8, 14,
11]. These developments are a first step towards providing a general
framework for exchanging information, but they are definitely not the
last one. As pointed out by Bernstein [3], many information system
problems involve not only the design and integration of complex ap-
plication artifacts, but also their subsequent manipulation. This has
motivated the need for the development of a general infrastructure for
managing schema mappings.

A framework for managing schema mappings, called model man-
agement, was proposed by Bernstein in [3]. In this framework, op-
erators like match, merge and compose are used to manipulate map-
pings [3, 15, 16]. Another important operator that naturally arises in
this context is the inverse, which plays an important role in schema
evolution [4]. Once the data has been transferred from the source to
the target, the goal of the inverse is to recover the initial source data.

If a mapping M′ is an inverse of a mapping M, then M′ is an
ideal mapping to bring the data exchanged through M back to the
source. Unfortunately, the process of inverting schema mappings
turned out to be a nontrivial task [7, 10]. In [7], Fagin proposes a
first formal definition for what it means for a schema mapping M′

to be an inverse of a schema mapping M. Roughly speaking, Fa-
gin’s definition is based on the idea that a mapping composed with
its inverse should be equal to the identity schema mapping. More for-
mally, Fagin introduces in [7] an identity schema mapping Id, suit-
ably adapted for the case of mappings specified by source-to-target
tuple-generating dependencies (st-tgds). Then he says that M′ is an
inverse of M if M◦M′ = Id. This notion turns out to be rather re-
strictive, as it is rare that a schema mapping possesses an inverse. In
view of this limitation, in a subsequent work [10], Fagin et al. intro-
duce the notion of a quasi-inverse of a schema mapping. The idea of
the quasi-inverse is to relax the notion of inverse by not differentiating
between source instances that are equivalent for data exchange pur-
poses. Although numerous non-invertible schema mappings possess
natural and useful quasi-inverses [10], there are still simple mappings
specified by st-tgds that have no quasi-inverse. Moreover, the notions
of inverse and quasi-inverse are defined by considering identity map-
ping Id, that is only appropriate for mappings that are closed down
on the left [7] and, in particular, for mappings specified by st-tgds.
This leaves out numerous mappings of practical interest.

In this paper, we revisit the problem of inverting schema mappings.
Although our motivation is similar to that of previous work, we fol-
low a different approach. In fact, our main goal is not to define a
notion of inverse mapping, but instead to give a formal definition for
what it means for a schema mapping M′ to recover sound informa-
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tion with respect to a schema mapping M. We call such an M′ a
recovery of M. In this paper, we use a general definition of schema
mapping, where mappings are simply defined as binary relations with
pairs (I, J), where I is a source instance and J is a target instance.
Our notion of recovery is applicable to this general definition of map-
ping. Given that, in general, there may exist many possible recover-
ies for a mapping, we introduce an order relation on recoveries. This
naturally gives rise to the notion of maximum recovery, which is a
mapping that brings back the maximum amount of sound informa-
tion.

As a motivating example, consider a database with relations
Emp(name, works_in, lives_in) and DrivesWork(name), the former
to store names of employees and the places where they work and
live, and the latter to store the names of employees that drive to work.
Assume that the information about employees has to be transferred
to an independent database that contains relation Shuttle(name), that
stores the names of employees that take a shuttle bus to go to work.
A schema mapping ME-S between these two databases is defined by
the following dependency:

Emp(x, y, z) ∧ y 6= z ∧ ¬DrivesWork(x) → Shuttle(x). (1)

An example of a reverse mapping M1 that recovers sound informa-
tion w.r.t. ME-S is Shuttle(x) → ∃u∃v Emp(x, u, v); it is correct to
bring back to relation Emp every employee in relation Shuttle, but
since Shuttle does not store information about the places where em-
ployees work and live, variables u and v are existentially quantified.
Furthermore, it is also correct to assume that if an employee name
has been brought back from relation Shuttle, then the places where
this employee works and lives are different. Thus, mapping M2 de-
fined by Shuttle(x) → ∃u∃v (Emp(x, u, v)∧u 6= v) is also a correct
way of recovering information w.r.t. ME-S. On the other hand, it is
clear that mapping M3 defined by Shuttle(x) → ∃u Emp(x, u, u),
is not a correct way of recovering information w.r.t. ME-S, since M3

assumes that in every recovered instance, every employee in relation
Shuttle works and lives in the same place.

Formally, if M is a mapping from a source schema to a target
schema and M′ is a reverse mapping from target to source, then we
say that M′ is a recovery of M if for every source instance I , the
space of solutions for I under the composition of mappings M and
M′ contains I itself. That is, I must be a possible solution for it-
self under mapping M ◦ M′. Under this definition, mappings M1

and M2 above are recoveries of ME-S, while mapping M3 is not a
recovery of ME-S.

Being a recovery is a sound but mild requirement. Then it would
be desirable to have some criteria to compare alternative recoveries.
In our motivating example, if one has to choose between M1 and
M2 as a recovery of M, then one would probably choose M2, since
this mapping says not only that every employee that takes a shuttle
bus works and lives in some place, but also that those places must
be different. Intuitively, M2 is more informative than M1 w.r.t. M.
Furthermore, if M4 is a mapping defined by dependency:

Shuttle(x) → ∃u∃v (Emp(x, u, v) ∧ u 6= v ∧ ¬DrivesWork(x)),

then M4 is a recovery of ME-S that is more informative than M2;
M4 additionally states that if an employee is brought back from re-
lation Shuttle, then it is known that she/he does not drive to work. In
general, if M′ is a recovery of M, then the smaller the space of so-
lutions generated by the composition M◦M′, the more informative
M′ is about the initial source instances. We formalize this notion by
saying that M′ is at least as informative as M′′ w.r.t. M, if for every
source instance I , the space of solutions for I under M◦M′ is con-
tained in the space of solutions for I under M◦M′′. This order on
recoveries gives rise to a notion of maximum recovery. Going back

to our example, it can be shown that mapping M4 is a maximum
recovery of ME-S.

In this paper, we study the notions of recovery and maximum re-
covery. The following are our main technical contributions:

• For the general notion of schema mapping considered in this pa-
per, we provide a necessary and sufficient condition for the exis-
tence of a maximum recovery. We use this condition to show that
maximum recoveries are guaranteed to exist for a large class of
schema mappings, namely for mappings specified by FO-TO-CQ
source-to-target dependencies. An FO-TO-CQ dependency is a
formula of the form ∀x̄(ϕS(x̄) → ∃ȳ ψT(x̄, ȳ)), where ϕS(x̄)
is a first-order formula over the source schema and ψT(x̄, ȳ) is
a conjunction of relational atoms over the target schema. No-
tice that every st-tgd is an FO-TO-CQ dependency. We further
show that maximum recoveries exist even if we enrich the class
of FO-TO-CQ dependencies with arbitrary source dependencies,
equality-generating target dependencies and weakly acyclic sets of
tuple-generating target dependencies.

• We provide a detailed comparison between the notions of inverse,
quasi-inverse, and maximum recovery. Most notably, we show
that for the class of mappings considered in [7, 10], if a mapping
M is invertible, then M′ is an inverse of M if and only if M′

is a maximum recovery of M. For this class of mappings, we
also show that, if a mapping M is quasi-invertible, then M has
a maximum recovery, and, furthermore, every maximum recovery
of M is a quasi-inverse of M.

• In the above example, a maximum recovery for mapping ME-S is
obtained just by “reversing the arrow” of dependency (1). How-
ever, in general the process of computing maximum recoveries
is more involved. For mappings specified by FO-TO-CQ depen-
dencies, we provide an exponential-time algorithm for computing
maximum recoveries. For the case of full FO-TO-CQ dependen-
cies, that is, dependencies that do not use existential quantifiers
in their consequents, we provide a quadratic-time algorithm for
computing maximum recoveries. It is worth mentioning that these
algorithms can also be used for computing inverses and quasi-
inverses. We also investigate the language needed to express maxi-
mum recoveries for mappings specified by FO-TO-CQ dependen-
cies, providing justification for the dependency language used in
the output of these algorithms.

• We study the complexity of some problems related to the notions
of recovery and maximum recovery. We show that even for the
case of st-tgds, testing whether a mapping M′ is a recovery of a
mapping M is undecidable. As a corollary, we obtain the same
undecidability result for the notions of inverse, quasi-inverse, and
maximum recovery. When restricted to full st-tgds, we prove
lower complexity bounds for this problem.

• We also consider a relaxed notion of maximal recovery, and we
present our initial results about this notion. In particular, we pro-
vide a necessary and sufficient condition for the existence of a
maximal recovery, and we use this condition to prove that max-
imal recoveries are guaranteed to exist for the class of map-
pings specified by FO-TO-UCQ 6= dependencies (the extension of
FO-TO-CQ with disjunctions and inequalities in the consequents).

Organization of the paper. In Section 2, we introduce the terminol-
ogy used in the paper. In Section 3, we define the notions of recovery
and maximum recovery. In Section 4, we study the problem of the
existence of maximum recoveries. In Section 5, we compare the no-
tions of maximum recovery, inverse and quasi-inverse. In Section 6,
we provide algorithms for computing maximum recoveries. In Sec-
tion 7, we study the language needed to express maximum recoveries.
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In Section 8, we study the complexity of some decision problems re-
lated to the notions of recovery and maximum recovery. In Section
9, we study the notion of maximal recovery. Concluding remarks are
in Section 10.

2. PRELIMINARIES
A schema R is a finite set {R1, . . . , Rk} of relation symbols, with
each Ri having a fixed arity ni. Let D be a countably infinite domain.
An instance I of R assigns to each relation symbol Ri of R a finite
ni-ary relation RI

i ⊆ D
ni . The domain dom(I) of instance I is the

set of all elements that occur in any of the relations RI
i . Inst(R) is

defined to be the set of all instances of R. Given instances I, J ∈
Inst(R), we write I ⊆ J to denote that, for every relation symbol
Ri of R, it holds that RI

i ⊆ RJ
i .

As is customary in the data exchange literature, we consider in-
stances with two types of values: constants and nulls [8, 7, 10]. More
precisely, let C and N be infinite and disjoint sets of constants and
nulls, respectively, and assume that D = C ∪ N. If we refer to a
schema S as a source schema, then Inst(S) is defined to be the set
of all instances of S that are constructed by using only elements from
C, and if we refer to a schema T as a target schema, then Inst(T)
is defined as usual (instances of T are constructed by using elements
from both C and N). In this paper, we use S to refer to a source
schema and T to refer to a target schema.

Given schemas R1 and R2, a schema mapping (or just mapping)
from R1 to R2 is a nonempty subset of Inst(R1) × Inst(R2). As
is customary in the data exchange literature, if S is a source schema
and T is a target schema, a mapping from S to T is called source-to-

target mapping (st-mapping), and a mapping from T to S is called
target-to-source mapping (ts-mapping) [10].

If M is a schema mapping from R1 to R2 and I is an instance of
R1, then we say that an instance J of R2 is a solution for I under

M, if (I, J) ∈ M. The set of solutions for I under M is denoted
by SolM(I). The domain of M, denoted by dom(M), is defined
as the set of instances I such that SolM(I) 6= ∅. Furthermore, given
schema mappings M12 from R1 to R2 and M23 from R2 to R3, the
composition of M12 and M23 is defined as the usual composition of
binary relations, that is, M12 ◦M23 = {(I1, I3) | ∃I2 : (I1, I2) ∈
M12 and (I2, I3) ∈ M23}. If M12 ◦M23 is nonempty, then there
exists a unique mapping M13 from R1 to R3 such that M13 =
M12 ◦M23.

2.1 Dependencies and definability of mappings
In this paper, CQ is the class of conjunctive queries and UCQ is the
class of unions of conjunctive queries. If we extend these classes by
allowing equalities, inequalities or negation (of atoms), then we use
superscripts =, 6= and ¬, respectively. Thus, for example, CQ= is the
class of conjunctive queries with equalities and UCQ¬ is the class of
unions of conjunctive queries with negation. FO is the class of all
first-order formulas with equality. Slightly abusing notation, we use
C(·) to denote a built-in unary predicate such that C(a) holds if and
only if a is a constant, that is, a ∈ C. If L is any of the previous
query languages, then LC is the extension of L allowing predicate
C(·). For example, CQ 6=,C is the class of conjunctive queries with
inequalities and predicate C(·).

Dependencies: Let L1, L2 be query languages and R1, R2 be
schemas with no relation symbols in common. A sentence Φ over
R1 ∪ R2 ∪ {C(·)} is an L1-TO-L2 dependency from R1 to R2 if
Φ is of the form ∀x̄ (ϕ(x̄) → ψ(x̄)), where (1) x̄ is the tuple of free
variables in both ϕ(x̄) and ψ(x̄); (2) ϕ(x̄) is an L1-formula over
R1 ∪ {C(·)} if C(·) is allowed in L1, and over R1 otherwise; and
(3) ψ(x̄) is an L2-formula over R2∪{C(·)} if C(·) is allowed in L2,
and over R2 otherwise. We call ϕ(x̄) the premise of Φ, and ψ(x̄) the

consequent of Φ. If S is a source schema and T is a target schema, an
L1-TO-L2 dependency from S to T is called an L1-TO-L2 source-

to-target dependency (L1-TO-L2 st-dependency), and an L1-TO-L2

dependency from T to S is called an L1-TO-L2 target-to-source de-

pendency (L1-TO-L2 ts-dependency).
Three fundamental classes of dependencies for data exchange,

and in particular for inverting schema mappings, are source-to-target
tuple-generating dependencies (st-tgds), full source-to-target tuple-
generating dependencies (full st-tgds) and target-to-source disjunc-
tive tuple-generating dependencies with inequalities and predicate
C(·) [8, 10]. The former corresponds to the class of CQ-TO-CQ
st-dependencies, and the latter is an extension of the class of
CQ 6=,C-TO-UCQ ts-dependencies. An FO-TO-CQ dependency is
full if its consequent does not include existential quantifiers and, thus,
the class of full st-tgds corresponds to the class of full CQ-TO-CQ
st-dependencies.

Semantics of dependencies, safeness: Assume that I is an in-
stance of a schema R = {R1, . . . , Rm}. Instance I can be repre-
sented as an (R ∪ {C(·)})-structure AI = 〈A, RA

1 , . . . , RA
m,CA〉,

where A = dom(I) is the universe of AI , RA
i = RI

i for i ∈ [1, m]
and C

A = A∩C. This representation is used to define the semantics
of FO over source and target instances (here we assume familiarity
with some basic notions of first-order logic).

Let R1 = {S1, . . . , Sm} be a schema and I an instance of
R1. If ϕ(x̄) is an FO-formula over R1 ∪ {C(·)} and ā is a tu-
ple of elements from dom(I), then we say that I satisfies ϕ(ā), de-
noted by I |= ϕ(ā), if and only if AI |= ϕ(ā). Furthermore, let
R2 = {T1, . . . , Tn} be a schema with no relation symbols in com-
mon with R1, and J an instance of R2. Then K = (I, J) is an in-
stance of R1∪R2 defined as SK

i = SI
i and T K

j = T J
j , for i ∈ [1, m]

and j ∈ [1, n]. Notice that dom(K) = dom(I) ∪ dom(J). If ϕ(x̄)
is an FO-formula over R1∪R2∪{C(·)} and ā is a tuple of elements
from dom(I) ∪ dom(J), then we say that (I, J) satisfies ϕ(ā), de-
noted by (I, J) |= ϕ(ā), if and only if AK |= ϕ(ā). As usual, we
say that an instance satisfies a set Σ of dependencies if the instance
satisfies each dependency in Σ.

We impose the following safety condition on L1-TO-L2 dependen-
cies. Recall that an FO-formula ϕ(x̄) is domain-independent if its an-
swer depends only on the database instance but not on the underlying
domain (see [6] for a formal definition). Let R1 and R2 be schemas
with no relation symbols in common and Φ = ∀x̄ (ϕ(x̄) → ψ(x̄))
an L1-TO-L2 dependency from R1 to R2. Then we say that Φ is
domain-independent if both ϕ(x̄) and ψ(x̄) are domain-independent.
The following strategy can be used to evaluate Φ: Given instances
I , J of R1 and R2, respectively, we have that (I, J) |= Φ if and
only if for every tuple ā of elements from dom(I), if I |= ϕ(ā), then
every component of ā is in dom(J) and J |= ψ(ā). We note that
this strategy cannot be used for non domain-independent L1-TO-L2

dependencies.
Definability of mappings: Let R1 and R2 be schemas with

no relation symbols in common and Σ a set of FO-sentences over
R1 ∪ R2 ∪ {C(·)}. We say that a mapping M from R1 to R2

is specified by Σ, denoted by M = (R1,R2, Σ), if for every
(I, J) ∈ Inst(R1) × Inst(R2), we have that (I, J) ∈ M if and
only if (I, J) |= Σ.

Proviso: In this paper, every set Σ of dependencies is finite,
and if Σ is a set of L1-TO-L2 dependencies, then we assume
that every dependency in Σ is domain-independent (as defined
above). Furthermore, we omit the outermost universal quantifiers
from L1-TO-L2 dependencies and, thus, we write ϕ(x̄) → ψ(x̄)
instead of ∀x̄ (ϕ(x̄) → ψ(x̄)). Finally, for the sake of readability,
we write ϕ(x̄, ȳ) → ψ(x̄) instead of (∃ȳ ϕ(x̄, ȳ)) → ψ(x̄) in some
examples, as these two formulas are equivalent.
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3. RECOVERIES AND THEIR MAXIMA
Let M be a mapping from a schema R1 to a schema R2, and Id
the identity schema mapping over R1, that is, Id = {(I, I) | I ∈
Inst(R1)}. When trying to invert M, the ideal would be to find a
mapping M′ from R2 to R1 such that, M ◦ M′ = Id. If such
a mapping exists, we know that if we use M to exchange data, the
application of M′ gives as result exactly the initial source instance.
Unfortunately, in most cases this ideal is impossible to reach. For
example, it is impossible to obtain such an inverse if M is specified
by a set of st-tgds [7]. The main problem with such an ideal definition
of inverse is that, in general, no matter what M′ we choose, we will
have not one but many solutions for a source instance under M◦M′.

If for a mapping M, there is no mapping M1 such that M◦M1 =
Id, at least we would like to find a schema mapping M2 that does

not forbid the possibility of recovering the initial source data. That
is, we would like that for every instance I ∈ dom(M), the space
of solutions for I under M ◦ M2 contains I itself. Such a schema
mapping M2 is called a recovery of M.

DEFINITION 3.1. Let R1 and R2 be two schemas, M a mapping

from R1 to R2 and M′ a mapping from R2 to R1. Then M′ is a

recovery of M iff (I, I) ∈ M◦M′ for every instance I ∈ dom(M).

Being a recovery is a sound but mild requirement. Indeed, a
schema mapping M from R1 to R2 always has as recoveries, for ex-
ample, mappings M1 = Inst(R2)× Inst(R1) and M2 = M−1 =
{(J, I) | (I, J) ∈ M}. If one has to choose between M1 and M2

as a recovery of M, then one would probably choose M2 since the
space of possible solutions for a source instance I under M◦M2 is
smaller than under M ◦ M1. In fact, if there exists a mapping M3

such that M◦M3 = Id, then one would definitely prefer M3 over
M1 and M2. In general, if M′ is a recovery of M, then the smaller
the space of solutions generated by M ◦ M′, the more informative
M′ is about the initial source instances. This notion induces an order

among recoveries:

DEFINITION 3.2. Let M be a mapping and M′, M′′ recoveries

of M. We say that M′ is at least as informative as M′′ for M, and

write M′′ ¹M M′, iff M◦M′ ⊆ M◦M′′.

Moreover, we say that M′ and M′′ are equally informative for M,
denoted by M′ ≡M M′′, if M′′ ¹M M′ and M′ ¹M M′′.

If for a mapping M, there exists a recovery M′ that is at least
as informative as any other recovery of M, then M′ is the best
alternative to bring exchanged data back, among all the recoveries.
Intuitively, such a mapping M′ recovers the maximum amount of
sound information. Such a mapping M′ is called a maximum recov-
ery of M.

DEFINITION 3.3. Let M′ be a recovery of a mapping M. We say

that M′ is a maximum recovery of M if for every recovery M′′ of

M, it is the case that M′′ ¹M M′.

Notice that, if M1 and M2 are maximum recoveries of a mapping
M, then they are equally informative for M, that is, M1 ≡M M2.

A first important issue about the notion of recovery is whether for
every mapping M, there always exists a maximum recovery. To an-
swer this question, we introduce the notion of witness, and use it to
provide a necessary and sufficient condition for the existence of a
maximum recovery for a mapping M.

DEFINITION 3.4. Let M be a mapping from a schema R1 to a

schema R2 and I ∈ Inst(R1). Then J ∈ Inst(R2) is a witness
for I under M if for every I ′ ∈ Inst(R1), if J ∈ SolM(I ′), then

SolM(I) ⊆ SolM(I ′).

Notice that a witness for an instance I is not necessarily a solution
for I under M. We say that J is a witness solution for I if J is both a
witness and a solution for I . A witness solution can be considered as
an identifier for a space of solutions; if J is a witness solution for in-
stances I1 and I2, then SolM(I1) = SolM(I2). Other identifiers for
spaces of solutions have been proposed in the data exchange litera-
ture. For example, for the specific case of st-tgds, we prove in Section
4.1 that the notion of universal solution introduced in [8] is stronger
than the notion of witness solution, in the sense that every univer-
sal solution is a witness solution but the opposite does not hold. For
other classes of st-dependencies, the notions of universal and witness
solution are incomparable (see Section 4.2 for some examples).

THEOREM 3.5. A mapping M has a maximum recovery iff for

every I ∈ dom(M), there exists a witness solution for I under M.

The previous theorem shows that the notion of witness can be used
to provide a necessary and sufficient condition for the existence of a
maximum recovery for a mapping M. This notion can also be used
to characterize when a mapping M′ is a maximum recovery of M.
In fact, the following theorem shows that witness instances are the
building blocks of maximum recoveries.

THEOREM 3.6. M′ is a maximum recovery of M if and only if,

M′ is a recovery of M and for every (I1, J) ∈ M and (J, I2) ∈
M′, it holds that I2 ∈ dom(M) and J is a witness for I2 under M.

4. ON THE EXISTENCE OF MAXIMUM

RECOVERIES
In this section, we focus on source-to-target mappings, that is, map-
pings from a source schema S to a target schema T. Recall that
instances of S are constructed by using only elements from C (con-
stants), while instances of T are constructed by using elements from
both C and N (constants and nulls). This is the most common class
of mappings in the data exchange literature [8, 2, 9, 1], and specifi-
cally in the literature on inverting schema mappings [7, 10]. We note
that the recovery of an st-mapping is a target-to-source mapping.

On the positive side, we prove our main results regarding classes
of st-mappings that admit maximum recoveries. Namely, we show
that if M is an st-mapping specified by a set of FO-TO-CQ de-
pendencies, then M has a maximum recovery. Furthermore, we
also show that the extension of this class with source dependencies,
equality-generating target dependencies and weakly acyclic sets of
tuple-generating target dependencies [5, 8] also admits maximum re-
coveries (these classes of dependencies are defined in Section 4.1).
These results are in sharp contrast with the results of [7, 10] , where
it was shown that even for full st-tgds, inverses and quasi-inverses are
not guaranteed to exist.

On the negative side, we show that if we enrich the consequent of
FO-TO-CQ dependencies by adding inequalities, or disjunction, or
negation, the existence of maximum recoveries is not guaranteed.

4.1 Positive results
In [8], the class of universal solutions for st-mappings was identified
as a class of solutions that has good properties for data exchange.
These solutions play an important role in this section. To formally in-
troduce this concept, we review the necessary terminology from [8].

Let J1 and J2 be instances of the same schema R. A homomor-

phism h from J1 to J2 is a function h : dom(J1) → dom(J2) such
that, for every R ∈ R and every tuple (a1, . . . , ak) ∈ RJ1 , it holds
(h(a1), . . . , h(ak)) ∈ RJ2 . Given a set A ⊆ D, we say that a
homomorphism h from J1 to J2 is the identity on A, if h(a) = a
for every a ∈ A ∩ dom(J1). Let M be an st-mapping, I a source
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instance and J a solution for I under M. Then J is a universal so-

lution for I under M, if for every solution J ′ for I under M, there
exists a homomorphism from J to J ′ that is the identity on C. The
next lemma shows an important relationship between universal and
witness solutions.

LEMMA 4.1.

(1) Let M be an st-mapping specified by a set of FO-TO-CQ de-

pendencies and I a source instance. Then every universal so-

lution for I under M is a witness solution for I under M.

(2) There exists an st-mapping M specified by a set of st-tgds and

a source instance I such that, I has a witness solution under

M that is not a universal solution for I under M.

It is known that, for st-mappings specified by FO-TO-CQ dependen-
cies, universal solutions exist for every source instance [8, 2]. Then
from Theorem 3.5 and Lemma 4.1, we obtain the following theorem.

THEOREM 4.2. If M is an st-mapping specified by a set of

FO-TO-CQ st-dependencies, then M has a maximum recovery.

EXAMPLE 4.3. In [10], it was shown that the schema mapping M
specified by full st-tgd E(x, z) ∧ E(z, y) → F (x, y) ∧ M(z) has
neither a quasi-inverse nor an inverse. It is possible to show that the
schema mapping M′ specified by:

F (x, y) → ∃u(E(x, u) ∧ E(u, y)),

M(z) → ∃v∃w(E(v, z) ∧ E(z, w)),

is a maximum recovery of M.

Source and target dependencies. Fix source and target schemas S

and T. If α is an FO-sentence over S, then we say that α is a source
FO-dependency, and if β is an FO-sentence over T ∪ {C(·)}, then
we say that β is a target FO-dependency. We assume that both source
and target FO-dependencies are domain independent.

Let Σst, Γs, Γt be sets of source-to-target, source, and target FO-
dependencies, respectively. We say that an st-mapping M is speci-
fied by Σst, Γs, and Γt, and we write M = (S,T, Σst, Γs, Γt), if
M is specified by Σst∪Γs∪Γt. Given that both Γs and Γt are sets of
domain-independent sentences, we have that (I, J) |= Σst∪Γs∪Γt

if and only if (I, J) |= Σst, I |= Γs and J |= Γt. Thus, source con-
straints affect the domain of an st-mapping, while target constraints
affect its set of possible solutions. Notice that these roles switch when
considering ts-mappings. Our next results show that maximum re-
coveries have good properties regarding source constraints.

LEMMA 4.4. Let M1 be an st-mapping and M⋆
1 a maximum re-

covery of M1. If Γs is a set of source FO-dependencies and M2 =
{(I, J) ∈ M1 | I |= Γs}, then M⋆

2 = {(J, I) ∈ M⋆
1 | I |= Γs} is

a maximum recovery of M2.

Notice that M1 in the above lemma is an arbitrary st-mapping.
Thus, we obtain the following corollary from Theorem 4.2.

PROPOSITION 4.5. If M is an st-mapping specified by a set

of FO-TO-CQ st-dependencies together with a set of source FO-

dependencies, then M has a maximum recovery.

EXAMPLE 4.6. Let M2 = (S,T, Σst, Γs) be an st-mapping,
where S = {A(·, ·, ·)}, T = {B(·, ·), C(·, ·)} and

Σst = {A(x, y, z) → B(x, y) ∧ C(y, z)},

Γs = {A(x, y, z) ∧ A(x′
, y, z

′) → z = z
′}.

Notice that Γs is a set of functional dependencies. Consider st-
mapping M1 = (S,T, Σst). Then ts-mapping specified by Σts =
{B(x, y) ∧ C(y, z) → ∃u A(x, y, u) ∧ ∃w A(w, y, z)} is a maxi-
mum recovery of M1. Thus, we have by Lemma 4.4 that ts-mapping
M⋆

2 specified by Σts and Γs is a maximum recovery of M2. We
observe that Σts ∪ Γs is logically equivalent to:

B(x, y) ∧ C(y, z) → A(x, y, z), (2)

A(x, y, z) ∧ A(x′
, y, z

′) → z = z
′
. (3)

In this case, we obtained what was expected; since Σst is a lossless
decomposition of relation A according to Γs, dependency (2) joins
relations B and C to reconstruct the source instances.

We show in Section 4.2 that, if the full power of FO is allowed in
target dependencies, then maximum recoveries are not guaranteed to
exist. For this reason, we focus here on equality- and tuple-generating
dependencies. Let R be a schema. An equality-generating depen-

dency (egd) over R is an FO-sentence ∀x̄(ϕ(x̄) → (xi = xj)),
where ϕ(x̄) is a conjunctive query over R, and xi, xj are among
the variables in x̄. A tuple-generating dependency (tgd) over R is an
FO-sentence ∀x̄(ϕ(x̄) → ψ(x̄)), where both ϕ(x̄) and ψ(x̄) are con-
junctive queries over R. In the following theorem, we show that max-
imum recoveries are guaranteed to exist in the general setting where
target egds and weakly acyclic sets of target tgds are allowed. Due
to the lack of space, we omit the formal definition of weak acyclic-
ity (see [8] for a formal definition). We just mention that over the
past few years, weak acyclicity has shown to be indispensable for
the tractability of some important data exchange problems [8, 13, 12]
and, thus, it is a common assumption in the area.

THEOREM 4.7. Let M = (S,T, Σst, Γs, Γt) be an st-mapping,

where Σst is a set of FO-TO-CQ st-dependencies, Γs is a set of

source FO-dependencies and Γt is the union of a set of target egds

and a weakly acyclic set of target tgds. Then M has a maximum

recovery.

Notice that the positive results of this section do not say anything
about the language needed to express maximum recoveries. In Sec-
tions 6 and 7, we study this problem.

4.2 Negative results
In Section 4.1, we prove that FO-TO-CQ st-mappings have maxi-
mum recoveries using the relationship between universal and witness
solutions shown in Lemma 4.1. If we go beyond CQ in the con-
sequents of dependencies, these notions become incomparable. For
example, consider an st-mapping M1 specified by CQ-TO-CQ 6= de-
pendencies P (x) → ∃y R(x, y) and S(x) → ∃y (R(x, y)∧x 6= y),
and let I be a source instance such that P I = {a}. Target instance
J1 such that RJ1 = {(a, n)}, with n ∈ N, is a universal solution but
not a witness for I , while target instance J2 such that RJ2 = {(a, a)}
is a witness but not a universal solution for I . In this example, every
source instance has a witness solution, and, thus, M1 has a max-
imum recovery. In fact, dependencies R(x, y) → P (x) ∨ S(x)
and R(x, y) ∧ x 6= y → S(x) specify a maximum recovery of
M1. As a second example, consider st-mapping M2 specified by
CQ-TO-UCQ dependency P (x) → R(x)∨S(x). In this case, every
source instance has a witness solution, and only the empty source in-
stance has a universal solution. In fact, dependencies R(x) → P (x)
and S(x) → P (x) specify a maximum recovery of M2.

We have shown examples of mappings that have maximum recov-
eries and are specified by dependencies with inequalities and disjunc-
tions in the consequents. However, the following proposition shows
that this is not a general phenomenon. If we slightly enrich the lan-
guage used in the consequents of FO-TO-CQ dependencies, then the
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existence of maximum recoveries is not guaranteed, even if premises
are restricted to be conjunctive queries.

PROPOSITION 4.8. There exist st-mappings specified by (1)

CQ-TO-CQ 6=, (2) CQ-TO-UCQ, and (3) CQ-TO-CQ¬ dependen-

cies, that have no maximum recoveries.

We conclude this section by showing that, if the full power of FO
is allowed in target dependencies, then maximum recoveries are not
guaranteed to exist.

PROPOSITION 4.9. There exists an st-mapping specified by a set

of st-tgds plus a set of target FO-dependencies that has no maximum

recovery.

5. COMPARISON WITH THE NOTIONS OF

INVERSE AND QUASI-INVERSE
In this section, we study the relationship between the notion of max-
imum recovery and the notions of inverse and quasi-inverse [7, 10].

We start by recalling the definition of inverse proposed in [7]. A
mapping M is closed-down on the left if whenever (I, J) ∈ M and
I ′ ⊆ I , it holds that (I ′, J) ∈ M. In [7], Fagin defines a notion of
inverse focusing on mappings that satisfy this condition. More pre-
cisely, let S be a source schema. Fagin first defines an identity map-
ping Id as {(I1, I2) | I1, I2 ∈ Inst(S) and I1 ⊆ I2}, which is ap-
propriate for closed-down on the left mappings [7]. Then he says that
a ts-mapping M′ is an inverse of an st-mapping M if M◦M′ = Id.

Since it is rare that a schema mapping possesses an inverse [10],
Fagin et al. introduce the notion of a quasi-inverse of a schema map-
ping in [10]. The idea behind quasi-inverses is to relax the notion
of inverse of a mapping by not differentiating between source in-
stances that are data-exchange equivalent. Let M be a mapping from
a source schema S to a target schema T. Instances I1 and I2 of S

are data-exchange equivalent w.r.t. M, denoted by I1 ∼M I2, if
SolM(I1) = SolM(I2). Furthermore, given a mapping M1 from S

to S, mapping M1[∼M,∼M] is defined as {(I1, I2) ∈ Inst(S) ×
Inst(S) | ∃(I ′

1, I
′
2) : I1 ∼M I ′

1, I2 ∼M I ′
2 and (I ′

1, I
′
2) ∈ M1}.

Then a ts-mapping M′ is a quasi-inverse of an st-mapping M if
(M◦M′)[∼M,∼M] = Id[∼M,∼M].

The definitions of inverse and quasi-inverse are appropriate for
closed-down on the left mappings. In fact, some counterintuitive
results are obtained if one removes this restriction. For example,
let S = {P (·)}, T = {R(·)} and M be a mapping from S to T

specified by dependency ∀x (P (x) ↔ R(x)). In this case, mapping
M′ specified by ∀x (R(x) ↔ P (x)) is an ideal inverse of M since
M◦M′ = Id = {(I, I) | I ∈ Inst(S)}. However, M′ is neither an
inverse nor a quasi-inverse of M (although it is a maximum recov-
ery of M). Moreover, the definitions of inverse and quasi-inverse are
only appropriate for total mappings, that is, mappings M such that
dom(M) is the set of all source instances. According to the defini-
tions of inverse and quasi-inverse in [10], if an st-mapping M is not
total, then M is neither invertible nor quasi-invertible.

From the discussion in the previous paragraph, to compare the no-
tions of maximum recovery, inverse and quasi-inverse, we need to
focus on the class of total st-mappings that are closed-down on the
left. This class includes, for example, total st-mappings specified
by UCQ 6=-TO-FO st-dependencies. Our first result is a corollary of
Propositions 3.9 and 3.12 in [10] and Theorem 4.2.

PROPOSITION 5.1. There exists an st-mapping M specified by a

set of full st-tgds that is neither invertible nor quasi-invertible, but

has a maximum recovery.

This result combined with the following theorem, shows that the no-
tion of maximum recovery strictly generalizes the notion of inverse.

THEOREM 5.2. Let M be a total st-mapping that is closed-down

on the left, and assume that M is invertible. Then M′ is an inverse

of M iff M′ is a maximum recovery of M.

The exact relationship between the notions of quasi-inverse and
maximum recovery is shown in the following theorem. It is worth
emphasizing that if an st-mapping M is quasi-invertible, then it ad-
mits a maximum recovery and, furthermore, every maximum recov-
ery of M is also a quasi-inverse of M.

THEOREM 5.3.

(1) Let M be a total st-mapping that is closed-down on the left,

and assume that M is quasi-invertible. Then M has a max-

imum recovery and, furthermore, M′ is a maximum recovery

of M iff M′ is a quasi-inverse and a recovery of M.

(2) There exists an st-mapping M specified by a set of st-tgds and

a ts-mapping M′ specified by a set of ts-tgds such that, M′ is

a quasi-inverse of M but not a maximum recovery of M.

On necessary and sufficient conditions for the existence of in-

verses and quasi-inverses. In Section 3, we identify a necessary and
sufficient condition for the existence of maximum recoveries. For the
case of the inverse (quasi-inverse), a condition called subset property

((∼M,∼M)-subset property) was identified in [10] as necessary and
sufficient for testing invertibility (quasi-invertibility), for the case of
st-mappings specified by st-tgds. In this section, we first show that the
subset property ((∼M,∼M)-subset property) is not a sufficient con-
dition for testing invertibility (quasi-invertibility) if one goes beyond
st-tgds. Then we show that these conditions can be extended to the
class of total and closed-down on the left st-mappings, by combining
them with any necessary and sufficient condition for the existence of
maximum recoveries.

An st-mapping has the subset property if for every pair of instances
I1, I2 such that SolM(I2) ⊆ SolM(I1), it holds that I1 ⊆ I2. An
st-mapping M has the (∼M,∼M)-subset property if for every pair
of instances I1, I2 such that SolM(I2) ⊆ SolM(I1), there exist in-
stances I ′

1 and I ′
2 such that I1 ∼M I ′

1, I2 ∼M I ′
2 and I ′

1 ⊆ I ′
2.

PROPOSITION 5.4. There exist total and closed-down on the left

st-mappings specified by (1) CQ-TO-CQ 6=, and (2) CQ-TO-UCQ de-

pendencies, that satisfy both the subset and (∼M,∼M)-subset prop-

erty and are neither invertible nor quasi-invertible.

It turns out that by using the machinery developed for maximum re-
coveries, it is possible to provide necessary and sufficient conditions
for the existence of inverses and quasi-inverses.

PROPOSITION 5.5. Let M be a total st-mapping that is closed-

down on the left.

(1) M is invertible iff M has a maximum recovery and satisfies

the subset property.

(2) M is quasi-invertible iff M has a maximum recovery and sat-

isfies the (∼M,∼M)-subset property.

As a corollary of Proposition 5.5, we obtain that an extension of
the notion of witness solution can be used to provide a necessary and
sufficient condition for invertibility. Given an st-mapping M, we say
that a target instance J is a strong witness for a source instance I
under M, if for every source instance I ′ such that J ∈ SolM(I ′), it
holds that I ′ ⊆ I . Notice that if a mapping M is closed-down on the
left and J is a strong witness for I , then J is a witness for I .

COROLLARY 5.6. A total and closed-down on the left st-mapping

M is invertible iff every source instance has a strong witness solution

under M.
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6. COMPUTING MAXIMUM RECOVERIES
In Section 4.1, we show that every st-mapping specified by a set of
FO-TO-CQ dependencies has a maximum recovery. In this section,
we provide an exponential-time algorithm that computes maximum
recoveries for st-mappings specified by FO-TO-CQ dependencies,
and a quadratic-time algorithm for the case of full FO-TO-CQ de-
pendencies. Moreover, we show how to extend these algorithms to
handle st-mappings with arbitrary source constraints.

It is known that the simple process of “reversing the arrows” of
source-to-target dependencies does not necessarily produce inverses
as consequents of different dependencies may be related [7]; a con-
sequent of a dependency may be implied by the consequents of other
dependencies. In this section, we present an algorithm that searches
for relations among consequents of dependencies, suitably composes

the premises of related dependencies, and then “reverses the arrows”
to obtain a maximum recovery.

We start by focusing on full FO-TO-CQ dependencies. Recall that
a full FO-TO-CQ dependency does not include any existential quan-
tifiers in its consequent. We illustrate the intuition behind our algo-
rithm with some examples. Consider an st-mapping M1 specified by
dependencies ϕ1(x) → P (x) and ϕ2(y) → R(y). The consequents
of these dependencies are not related since they mention different re-
lation names. In this case, the algorithm simply reverses the arrows
to obtain dependencies P (x) → ϕ1(x) and R(y) → ϕ2(y), which
specify a maximum recovery of M1. As a more involved example,
consider an st-mapping M2 specified by (1) ϕ1(x, y) → P (x, y)
and (2) ϕ2(z) → P (z, z). Clearly the consequents of these depen-
dencies are related; the consequent of (1) implies the consequent of
(2) when x is equal to y. In fact, this set of dependencies is logically
equivalent to (3) ϕ1(u1, u2) ∨ (ϕ2(u1) ∧ u1 = u2) → P (u1, u2).
The algorithm replaces the original set of dependencies by a slight
variation of (3), and then simply reverses the arrow to obtain a maxi-
mum recovery for M2.

Next we give a detailed description of the algorithm for full
FO-TO-CQ dependencies. In this description, given tuples x̄ =
(x1, . . . , xk) and ū = (u1, . . . , uk), we use formula x̄ = ū as a
shorthand for x1 = u1 ∧ · · · ∧ xk = uk.

Algorithm MAXIMUMRECOVERYFULL(M)
Input: An st-mapping M = (S,T, Σ) where Σ is a set of full
FO-TO-CQ dependencies, and every dependency has a single atom
in its consequent.
Output: A ts-mapping M′ = (T,S, Σ′) where Σ′ is a set of
CQ-TO-FO dependencies, and M′ is a maximum recovery of M.

Step 1: (Create the premises of Σ′) Without loss of generality, as-
sume that the sets of variables of the dependencies of Σ are pair-
wise disjoint. Let P be the set of atoms R(x̄) such that, R(x̄) is
the consequent of a dependency in Σ.

Step 2: (Create the consequents of Σ′) For every formula R(x̄) in
P , create a set CR(x̄) as follows. Initially CR(x̄) = ∅. Then for
every dependency ϕ(ū) → R(ū) ∈ Σ do the following. If ū and x̄
are equal, then add ϕ(ū) to CR(x̄). Otherwise, x̄ and ū are disjoint,
and formula ∃ū (ϕ(ū) ∧ ū = x̄) is added to CR(x̄).

Step 3: (Construct Σ′) For every formula R(x̄) in P , add to Σ′ de-
pendency R(x̄) → α(x̄), where α(x̄) is the disjunction of all the
formulas in CR(x̄). Return M′ = (T,S, Σ′).

From Theorems 5.2 and 5.3, we know that the above algorithm
computes an inverse (quasi-inverse) if Σ is an invertible (quasi-
invertible) set of full st-tgds. In [10], algorithms for computing in-
verses and quasi-inverses are proposed. Let ‖Σ‖ denote the size of
Σ. The algorithm in [10] for computing an inverse of a set Σ of full

st-tgds returns a set Σ′ of CQ 6=-TO-CQ dependencies of exponential
size in ‖Σ‖. The algorithm in [10] for computing a quasi-inverse of a
set Σ of full st-tgds returns a set Σ′ of CQ 6=-TO-UCQ dependencies
which is also of exponential size in ‖Σ‖. In both cases, our algo-
rithm works in quadratic time and returns a set Σ′ of CQ-TO-UCQ=

dependencies which is of quadratic size in ‖Σ‖.

THEOREM 6.1. Let M be an st-mapping specified by a set Σ
of full FO-TO-CQ st-dependencies, each dependency with a single

atom in its consequent. Then MAXIMUMRECOVERYFULL(M) com-

putes a maximum recovery of M in time O(‖Σ‖2), which is specified

by a set of CQ-TO-FO dependencies.

The algorithm is much more involved for the case of non-full
FO-TO-CQ dependencies. As an example, consider a mapping
M3 specified by: (1) ϕ1(x1, x2) → ∃v(P (x1, v) ∧ R(v, x2)),
(2) ϕ2(y1, y2) → P (y1, y2), and (3) ϕ3(z1, z2) → R(z1, z2). In
this case, the conjunction of the consequents of (2) and (3) implies
the consequent of (1) when y2 is equal to z1 and both are existen-
tially quantified. The algorithm replaces (1) by a slight variation of
(4) β(u1, u2) → ∃v(P (u1, v)∧R(v, u2)), where β(u1, u2) is equal
to ϕ1(u1, u2) ∨ ∃y2∃z1(ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1), and
then it reverses the arrows of (2), (3) and (4) to generate a maxi-
mum recovery of M3. Given that (1) is a non-full dependency, in
this case we also need to impose an additional constraint. When re-
versing (2), the algorithm needs to force variable y2 in P (y1, y2) to
take values only from the set C, that is, the algorithm uses depen-
dency P (y1, y2) ∧ C(y2) → ϕ2(y1, y2) instead of P (y1, y2) →
ϕ2(y1, y2). This is because, given a source instance I such that
I |= ϕ1(a, b), dependency (1) could be satisfied by including a tuple
of the form P (a, n) in a target instance, where n ∈ N, and value n
should not be passed to a source instance by a recovery (see Proposi-
tion 7.1 for a formal justification for the use of predicate C(·)).

We now introduce the terminology used in the algorithm for the
case of non-full FO-TO-CQ dependencies. The basic notion used
in the algorithm is that of existential replacement. In an existential
replacement of a formula β, we are allowed to existentially quan-
tify some of the positions of the free variables of β. For example, if
β(x1, x2, x3) = P (x1, x2)∧R(x2, x3), then two existential replace-
ments of β(x1, x2, x3) are γ1(x2) = ∃u∃v (P (u, x2) ∧ R(x2, v))
and γ2(x1, x2, x3) = ∃z (P (x1, z) ∧ R(x2, x3)). We note that
both γ1 and γ2 are implied by β. In an existential replacement, we
are also allowed to use the same quantifier for different positions.
For example, γ3(x2) = ∃w (P (w, x2) ∧ R(x2, w)) is also an ex-
istential replacement of β. We note that γ3 is implied by β if x1

and x3 have the same value, that is, β(x1, x2, x3) ∧ x1 = x3 im-
plies γ3. In an existential replacement, these equalities are also in-
cluded. Formally, given a formula β(x̄) where x̄ = (x1, . . . , xk)
is a tuple of distinct variables, an existential replacement of β(x̄)
is a pair of formulas (∃z̄ γ(x̄′, z̄), θ(x̄′′)), where: (1) ∃z̄ γ(x̄′, z̄) is
obtained from β(x̄) by existentially quantifying some of the posi-
tion of the free variables of β(x̄), and z̄ is the tuple of fresh vari-
ables used in these quantifications, (2) θ(x̄′′) is a conjunction of
equalities such that, xi = xj is in θ (1 ≤ i, j ≤ k and i 6= j)
if we replace a position with variable xi and a position with vari-
able xj by the same variable z from z̄, and (3) x̄′ and x̄′′ are the
tuples of free variables of ∃z̄ γ(x̄′, z̄) and θ, respectively. Notice
that ∃z̄ γ(x̄′, z̄) is a logical consequence of β(x̄) ∧ θ(x̄′′). For ex-
ample, the followings are existential replacements of the formula
β(x1, x2, x3) = ∃y1 (R(x1, x2, y1) ∧ T (y1, x3, x2)):

`

∃z1∃z2∃y1 (R(z1, x2, y1) ∧ T (y1, x3, z2)), true
´

,
`

∃z1∃z2∃y1 (R(z1, z1, y1) ∧ T (y1, z2, z2)), x1 = x2 ∧ x3 = x2

´

.

In the first existential replacement above, we include sentence true
since no distinct variables are replaced by the same variable from
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(z1, z2). In the algorithm, we use the following terminology for tu-
ples of variables: x̄ ⊆ ȳ indicates that every variable in x̄ is also
mentioned in ȳ, (x̄, ȳ) is a tuple of variables obtained by placing
the variables of x̄ followed by the variables of ȳ, f : x̄ → ȳ is a
substitution that replaces every variable of x̄ by a variable of ȳ (f
is not necessarily a 1-1 function), and f(x̄) is a tuple of variables
obtained by replacing every variable x in x̄ by f(x). Furthermore, if
x̄ = (x1, . . . , xk), then C(x̄) is a shorthand for C(x1)∧· · ·∧C(xk).

Algorithm MAXIMUMRECOVERY(M)
Input: An st-mapping M = (S,T, Σ) where Σ is a set of
FO-TO-CQ dependencies.
Output: A ts-mapping M′ = (T,S, Σ′) where Σ′ is a set of
CQC-TO-FO dependencies and M′ is a maximum recovery of M.

Step 1: (Create the premises of Σ′) Let P = ∅. Then for every
dependency ϕ(x̄) → ∃ȳ ψ(x̄, ȳ) in Σ, add ∃ȳ ψ(x̄, ȳ) to P .

Step 2: (Create the consequents of Σ′) For every formula ∃ȳ ψ(x̄, ȳ)
in P , create a set C∃ȳ ψ(x̄,ȳ) as follows. Let C∃ȳ ψ(x̄,ȳ) = ∅ and m
be the number of atoms in ψ(x̄, ȳ). Then for every p ∈ {1, . . . , m}
and tuple (σ1, . . . , σp) ∈ Σp do the following.

Let (ξ1, . . . , ξp) be a tuple obtained from (σ1, . . . , σp) by renam-
ing the variables of the formulas σ1, . . ., σp in such a way that
the sets of variables of the formulas ξ1, . . ., ξp are pairwise dis-
joint. Assume that ξi is equal to ϕi(ūi) → ∃v̄i ψi(ūi, v̄i), where
ūi and v̄i are tuples of distinct variables. Then do the following for
every tuple (χ1(w̄1, z̄1), . . . , χp(w̄p, z̄p)), where χi(w̄i, z̄i) is a
nonempty conjunction of atoms from ψi(ūi, v̄i), w̄i ⊆ ūi, z̄i ⊆ v̄i

and both w̄i and z̄i are tuples of distinct variables. Let ∃z̄ χ(w̄, z̄)
be the formula ∃z̄1 · · · ∃z̄p(χ1(w̄1, z̄1) ∧ · · · ∧ χp(w̄p, z̄p)) with
w̄ = (w̄1, . . . , w̄p) and z̄ = (z̄1, . . . , z̄p). Then for every ex-
istential replacement (∃s̄∃z̄ γ(w̄′, z̄, s̄), θ(w̄′′)) of ∃z̄ χ(w̄, z̄) (up
to renaming of variables in s̄), and for every pair of variable sub-
stitutions f : x̄ → x̄ and g : w̄′ → x̄, check whether there exists
a variable substitution h : ȳ → (z̄, s̄) such that ψ(f(x̄), h(ȳ)) and
γ(g(w̄′), z̄, s̄) are syntactically equal (up to reordering of atoms).
If this is the case, then add to C∃ȳ ψ(x̄,ȳ) the following formula:

∃ū1 · · · ∃ūp (

p
^

i=1

ϕi(ūi) ∧ θ(w̄′′) ∧ x̄ = f(x̄) ∧ w̄
′ = g(w̄′)) (5)

Step 3: (Construct Σ′) For every formula ∃ȳ ψ(x̄, ȳ) in P , add
to Σ′ dependency ∃ȳ ψ(x̄, ȳ) ∧ C(x̄) → α(x̄), where α(x̄) is
the disjunction of all the formulas in C∃ȳ ψ(x̄,ȳ). Return M′ =
(T,S, Σ′).

Notice that x̄ is the set of free variables of formula (5) since
both w̄′ and w̄′′ are subsets of (ū1, . . . , ūp). Also notice that
since ψ(f(x̄), h(ȳ)) and γ(g(w̄′), z̄, s̄) are identical, f : x̄ → x̄,
g : w̄′ → x̄ and h : ȳ → (z̄, s̄), we can infer that every variable x
in x̄ is equal to some variable u in (ū1, . . . , ūp) from the subformula
x̄ = f(x̄) ∧ w̄′ = g(w̄′). This implies that formula (5) is domain
independent since each formula ϕi(ūi) is domain independent.

EXAMPLE 6.2. Assume that Σ contains dependencies:

ϕ1(x1, x2, x3) → ∃y1 (R(x1, x2, y1) ∧ R(y1, x3, x3)), (6)

ϕ2(x1, x2) → R(x1, x1, x2). (7)

In Step 1 of the algorithm, ∃y1(R(x1, x2, y1) ∧ R(y1, x3, x3)) and
R(x1, x1, x2) are added to the set P . Let ψ(x1, x2, x3, y1) =
R(x1, x2, y1) ∧ R(y1, x3, x3). Given that ψ(x1, x2, x3, y1) has two
atoms, the algorithm considers the two tuples in Σ1 and the four tu-
ples in Σ2 = Σ×Σ to construct the set C∃y1ψ(x1,x2,x3,y1). We show

here how tuple (σ1, σ2) ∈ Σ2 is processed, where both σ1 and σ2

are equal to formula (7).
First, the algorithm generates a tuple (ξ1, ξ2) from (σ1, σ2) by

renaming the variables of σ1 and σ2. Assume that ξ1 is equal to
ϕ2(u1, u2) → R(u1, u1, u2) and ξ2 is equal to ϕ2(u3, u4) →
R(u3, u3, u4). The algorithm continues by considering all the tu-
ples (χ1(u1, u2), χ2(u3, u4)) such that χ1(u1, u2) and χ2(u3, u4)
are nonempty conjunctions of atoms from the consequents of ξ1

and ξ2, respectively. In this case, the algorithm only needs to con-
sider tuple (R(u1, u1, u2), R(u3, u3, u4)). The algorithm uses this
tuple to construct formula χ(u1, u2, u3, u4) = R(u1, u1, u2) ∧
R(u3, u3, u4), and then looks for all the existential replacements of
χ(u1, u2, u3, u4) that can be made identical to ∃y1 ψ(x1, x2, x3, y1)
by substituting some variables. For instance, (∃s1 (R(u1, u1, s1) ∧
R(s1, u3, u4)), u2 = u3) is one of these existential replacements:
R(g(u1), g(u1), s1) ∧ R(s1, g(u3), g(u4)) is syntactically equal to
ψ(f(x1), f(x2), f(x3), h(y1)), where f(x1) = f(x2) = x1, f(x3)
= x3, g(u1) = x1, g(u3) = g(u4) = x3 and h(y1) = s1. The al-
gorithm uses functions f , g and condition u2 = u3 from the exis-
tential replacement to generate the following formula β(x1, x2, x3)
(omitting trivial equalities like x1 = x1):

∃u1∃u2∃u3∃u4 (ϕ2(u1, u2) ∧ ϕ2(u3, u4) ∧

u2 = u3 ∧ x2 = x1 ∧ u1 = x1 ∧ u3 = x3 ∧ u4 = x3).

Formula β(x1, x2, x3) is added to C∃y1 ψ(x1,x2,x3,y1). It is
important to notice that β(x1, x2, x3) represents a way to de-
duce ∃y1 ψ(x1, x2, x3, y1) from ϕ2, that is, β(x1, x2, x3) →
∃y1 ψ(x1, x2, x3, y1) is a logical consequence of formula (7). In
the last step of the algorithm, a ts-dependency is generated for ev-
ery formula in P . Formula β(x1, x2, x3) is one of the disjuncts in
the consequent of the ts-dependency for ∃y1 ψ(x1, x2, x3, y1).

THEOREM 6.3. Let M be an st-mapping specified by a set Σ of

FO-TO-CQ dependencies. Then MAXIMUMRECOVERY(M) com-

putes a maximum recovery of M in exponential time, which is speci-

fied by a set of CQC-TO-FO dependencies.

As for the case of full st-tgds, from Theorems 5.2 and 5.3, we
have that if Σ is an invertible (quasi-invertible) set of st-tgds, then
MAXIMUMRECOVERY computes an inverse (quasi-inverse) of Σ.
In fact, if Σ is a set of st-tgds, then the algorithm returns a set of
CQC-TO-UCQ= dependencies. It is important to notice that our al-
gorithm works not only for st-tgds but also for the larger class of
FO-TO-CQ dependencies. For the latter class, it is not clear how
to extend the algorithms from [10] to produce inverses and quasi-
inverses, as the notion of generator used in these algorithms (Defini-
tion 4.2 in [10]) becomes undecidable for FO-TO-CQ dependencies.

Computing maximum recoveries for mappings with source de-

pendencies. By using Lemma 4.4, we can extend algorithm
MAXIMUMRECOVERY to handle source constraints. Given an st-
mapping M = (S,T, Σst, Γs), where Σst is a set of FO-TO-CQ st-
dependencies and Γs is a set of source FO-dependencies, algorithm
MAXIMUMRECOVERY can be used to produce a maximum recovery
M⋆

1 = (T,S, Σts) for st-mapping M1 = (S,T, Σst), and then
M⋆ = (T,S, Σts, Γs) is output as a maximum recovery of M.

7. THE LANGUAGE OF MAXIMUM

RECOVERIES
Given a mapping M specified by a set of FO-TO-CQ dependencies,
algorithm MAXIMUMRECOVERY produces a maximum recovery of
M that is specified by a set of CQC-TO-FO dependencies. In this
section, we study some properties of the language needed to express
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maximum recoveries, which provide justification for the language
used in the output of algorithm MAXIMUMRECOVERY. Moreover,
we also show that the extension of this algorithm to handle target
constraints is not immediate, as there exists a mapping specified by a
set of FO-TO-CQ dependencies plus a set of target egds that has no
maximum recovery specified by a set of FO-sentences, and the same
holds for a weakly acyclic set of target tgds.

A first question about the output of MAXIMUMRECOVERY is
whether predicate C(·) is really needed. In [10], it is proved that
C(·) is needed when computing quasi-inverses of st-mappings spec-
ified by st-tgds, if quasi-inverses are expressed using st-tgds with in-
equalities in the premises and disjunction in the consequents. Here
we show that C(·) is needed when computing maximum recoveries
for st-mappings specified by st-tgds, even if we allow the full power
of FO to express maximum recoveries.

PROPOSITION 7.1. There exists an st-mapping M = (S,T, Σ)
specified by a set Σ of st-tgds that has no maximum recovery specified

by a set of FO-sentences over S ∪ T not using predicate C(·).

In Section 4, it is proved that adding disjunction, inequalities
or negation to the consequents of FO-TO-CQ dependencies gener-
ates st-mappings that do not necessarily have maximum recoveries.
Hence, it would be desirable to stay in the class of FO-TO-CQ de-
pendencies when dealing with maximum recoveries. In particular, it
would be desirable to have an algorithm that takes as input a set Σ of
FO-TO-CQ st-dependencies, and produces a set Σ′ of FOC-TO-CQ
ts-dependencies which is a maximum recovery of Σ. Thus, a sec-
ond important question about the algorithm MAXIMUMRECOVERY

is whether it could be modified to produce a set of FOC-TO-CQ
ts-dependencies as output. Unfortunately, the following proposition
shows that this could not be the case, even if we allow disjunction in
the consequents of the output dependencies.

PROPOSITION 7.2. There exists an st-mapping specified by a set

of FO-TO-CQ st-dependencies that has no maximum recovery spec-

ified by a set of FOC-TO-UCQ ts-dependencies.

In fact, from the proof of Proposition 7.2 , we obtain that there ex-
ists an st-mapping specified by a set of CQ 6=-TO-CQ dependencies
that has no maximum recovery specified by a set of FOC-TO-UCQ
dependencies.

A third question about the output of MAXIMUMRECOVERY is
whether the full power of FO is really needed in the consequents
of the dependencies returned by the algorithm. For example, could it
be the case that CQC-TO-UCQ=,¬ dependencies suffice to specify
maximum recoveries for st-mappings specified by FO-TO-CQ de-
pendencies? Theorem 7.3 below shows that this could not be the
case. In fact, we show that for L and L′ fragments of FO (satisfying
some regularity conditions), if CQC-TO-L′ dependencies suffice to
specify maximum recoveries for mappings given by L-TO-CQ de-
pendencies, then L′ must be at least as expressive as L.

In Theorem 7.3, we use the following terminology. We say that a
fragment L of FO is closed under conjunction and existential quan-
tification, if for every pair of formulas ϕ and ψ in L, there exist for-
mulas α and β in L such that, α is equivalent to ϕ ∧ ψ and β is
equivalent to ∃x ϕ. Furthermore, we say that L is closed under free-
variable substitution, if for every formula ϕ(x̄) in L and substitution
µ for x̄, there exists a formula α(µ(x̄)) in L that is equivalent to
ϕ(µ(x̄)). Notice that all the fragments of FO used in this paper are
closed under conjunction, existential quantification and free-variable
substitution. Finally, we say that an FO-sentence Φ is nontrivial if Φ
is neither a contradiction nor a valid sentence.

THEOREM 7.3. Let L and L′ be fragments of FO that are closed

under conjunction, existential quantification and free-variable sub-

stitution. If there exists a nontrivial sentence Φ in L that is not equiv-

alent to any sentence in L′, then there exists an st-mapping specified

by a set of L-TO-CQ st-dependencies that has no maximum recovery

specified by a set of CQC-TO-L′ ts-dependencies.

In Section 6, we show that algorithm MAXIMUMRECOVERY can
be extended to handle arbitrary source constraints. In Theorem 4.7,
we show that if an st-mapping M is specified by a set of FO-TO-CQ
dependencies, a set of target egds and a weakly acyclic set of tar-
get tgds, then M has a maximum recovery. Thus, a natural ques-
tion is whether MAXIMUMRECOVERY can be extended to this class
of mappings with target dependencies. Unfortunately, the following
proposition shows that the extension of the algorithm to handle target
constraints is by no means immediate.

PROPOSITION 7.4.

(1) There exists an st-mapping M specified by a set of st-tgds plus

a set of target egds that has no maximum recovery specified by

a set of FO-sentences.

(2) There exists an st-mapping M specified by a set of st-tgds plus

a weakly acyclic set of target tgds that has no maximum recov-

ery specified by a set of FO-sentences.

8. COMPLEXITY RESULTS
In [7], two problems are identified as important decision problems for
the notion of inverse: (1) to check whether a mapping M is invertible,
and (2) to check whether a mapping M2 is an inverse of a mapping
M1. These questions are considered in the context of st-tgds in [7].
In this context, the problem of verifying whether a mapping M has
a maximum recovery becomes trivial, as every mapping specified by
this type of dependencies admits a maximum recovery. In fact, this
question is also trivial for the larger class of mappings specified by
FO-TO-CQ dependencies. The goal of this section is to show that
the problem of verifying, given mappings M and M′, whether M′

is a maximum recovery of M is undecidable. To this end, we prove
a stronger result, namely that undecidability still holds if maximum
recovery is replaced by the weaker notion of recovery in the previous
problem. We start by considering mappings specified by full st-tgds.

PROPOSITION 8.1. The problem of verifying, given mappings

M = (S,T, Σ) and M′ = (T,S, Σ′), where Σ is a set of full

st-tgds and Σ′ is a set of ts-tgds, whether M′ is a recovery of M is

ΠP
2 -complete. Moreover, if Σ′ is a set of full ts-tgds, then this prob-

lem is coNP-complete.

Proposition 8.1 is in sharp contrast with the results of [7], where it is
shown that the problem of verifying, given schema mappings M =
(S,T, Σ) and M′ = (T,S, Σ′), with Σ a set of full st-tgds and Σ′

a set of full ts-tgds, whether M′ is an inverse of M is DP-complete.
The lower complexity for the case of the recovery is not surprising
as the notion of recovery is much weaker than the notion of inverse.
However, the situation is different for non-full st-tgds.

THEOREM 8.2. The problem of verifying, given mappings M =
(S,T, Σ) and M′ = (T,S, Σ′), where Σ is a set of st-tgds and Σ′

is a set of ts-tgds, whether M′ is a recovery of M is undecidable.

As a corollary of Theorem 8.2 and the results in Section 5, we ob-
tain the following undecidability results for maximum recoveries, in-
verses and quasi-inverses.

COROLLARY 8.3. The problems of verifying, given mappings

M = (S,T, Σ) and M′ = (T,S, Σ′), where Σ is a set of st-tgds

and Σ′ is a set of ts-tgds, whether (1) M′ is a maximum recovery of

M, (2) M′ is an inverse of M, and (3) M′ is a quasi-inverse of M,

are all undecidable.
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9. MAXIMAL RECOVERY
Although maximum recoveries exist for a large class of mappings,
there are classes of practical interest for which the existence of max-
imum recoveries is not guaranteed. To overcome this limitation, one
has to look for a weaker notion. A straightforward relaxation is to
consider not maximum but maximal recoveries. In this section, we
report our initial results about maximal recoveries, providing a neces-
sary and sufficient condition for the existence of maximal recoveries,
and showing that the notion of maximal recovery strictly general-
izes the notion of maximum recovery. In fact, we show that maxi-
mal recoveries exist for the larger class of st-mappings specified by
FO-TO-UCQ 6= dependencies. This result shows that the notion of
maximal recovery is a promising direction for further research.

Recall that for two recoveries M′ and M′′ of a mapping M, we
say that M′ is at least as informative as M′′ for M, and write
M′′ ¹M M′, if M ◦ M′ ⊆ M ◦ M′′. If M′′ ¹M M′ and
M′ ±M M′′, then we say that M′ is more informative than M′′

for M, and we write M′′ ≺M M′.

DEFINITION 9.1. Let M′ be a recovery of a mapping M. We say

that M′ is a maximal recovery of M, if there is no recovery M′′ of

M such that M′ ≺M M′′.

That is, M′ is a maximal recovery of M if there is no other recovery
that is more informative for M than M′. In Section 3, we show
that the notion of witness can be used to characterize the existence
of maximum recoveries. In the following definition, we introduce a
relaxation of this notion that can be used to provide a necessary and
sufficient condition for the existence of maximal recoveries. In this
definition, M−1 denotes mapping {(J, I) | (I, J) ∈ M}.

DEFINITION 9.2. Let M be a mapping. Instance J is a partial-
witness for I under M iff for every J ′ ∈ SolM(I), it is not the case

that SolM−1(J ′) Ã SolM−1(J).

It is not difficult to prove that an instance J is a witness for an in-
stance I under a mapping M if and only if for every J ′ ∈ SolM(I),
it is the case that SolM−1(J) ⊆ SolM−1(J ′). Thus, the notion of
partial-witness is a relaxation of the notion of witness. Notice that a
partial-witness for an instance I is not necessarily a solution for I . If
J is both a partial-witness and a solution for I under M, then we say
that J is a partial-witness solution for I under M.

THEOREM 9.3. M has a maximal recovery iff for every I ∈
dom(M), there exists a partial-witness solution for I under M.

The following theorem identifies an important class of st-mappings
for which the existence of maximal recoveries is guaranteed, and also
shows that the notion of maximal recovery strictly generalizes the
notion of maximum recovery (see Proposition 4.8).

THEOREM 9.4. If M is an st-mapping specified by a set of

FO-TO-UCQ 6= st-dependencies, then M has a maximal recovery.

Our last result shows that there exist mappings that do not have
maximal recoveries.

PROPOSITION 9.5. There exists an st-mapping M specified by

an FO-sentence that has no maximal recovery.

In the proof of the above proposition, we use an st-mapping M
specified by FO-sentence ∀x(P (x) → ¬R(x)). Notice that for-
mula ∀x(P (x) → ¬R(x)) does not satisfy the safety condition
imposed on FO-TO-FO dependencies since ¬R(x) is not domain-
independent. In particular, formula ∀x(P (x) → ¬R(x)) is not
a CQ-TO-CQ¬ dependency since ¬R(x) is not a CQ¬-query. It
is open whether for every st-mapping M specified by a set of
CQ-TO-CQ¬ st-dependencies, M has a maximal recovery.

10. CONCLUDING REMARKS
In this paper, we introduce the notion of a recovery of a mapping:
a reverse mapping that recovers sound information. We introduce
an order relation on recoveries, from which the notion of maximum
recovery naturally arises. As our results show, maximum recoveries
possess good properties that justify their usage in data exchange and
metadata management. Most notably, maximum recoveries exist for
the large class of mappings specified by FO-TO-CQ dependencies.
For mappings that do not have maximum recoveries, the notion of
maximal recovery is a promising direction to further explore.

An important open problem is the decidability of the exis-
tence of maximum recoveries for classes of dependencies be-
yond FO-TO-CQ, for example, the classes of FO-TO-UCQ and
FO-TO-CQ 6= dependencies. Regarding maximal recoveries, the de-
velopment of algorithms for computing them is an interesting area for
future work. Although we have concentrated on the relational case,
a characteristic of the notions of recovery and maximum recovery is
that, they are bounded neither to a specific data model nor to a spe-
cific language for expressing schema mappings. As part of our future
work, we plan to study these notions for other semantics, e.g. closed
world semantics [14], and for other data models, e.g. XML.
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