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ABSTRACT
Rule-based information extraction has lately received a fair
amount of attention from the database community, with sev-
eral languages appearing in the last few years. Although
information extraction systems are intended to deal with
semistructured data, all language proposals introduced so
far are designed to output relations, thus making them in-
capable of handling incomplete information. To remedy the
situation, we propose a theoretical framework which sup-
ports the use of mappings, thus allowing us to work with
documents which have missing or optional parts. Using this
approach, we simplify the semantics of regex formulas and
extraction rules, two previously defined methods for extract-
ing information, extend them with the ability to handle in-
complete data, and study how they compare in terms of
expressive power. We also study computational properties
of the two languages, focusing on the query enumeration
problem, as well as satisfiability and containment.

1. INTRODUCTION
With the abundance of different formats arising in

practice these days, there is a great need for methods ex-
tracting singular pieces of data from a variety of distinct
files. This process, known as information extraction, or
IE for short, is particularly prevalent in big corporations
that manage systems of increasing complexity which
need to incorporate data coming from different sources.
As a result, a number of systems supporting the extrac-
tion of information from text-like data have appeared
throughout the years [18, 5, 23], and the topic received
a substantial coverage in research literature (see [17] for
a good survey).

Historically, there have been two main approaches to
information extraction: the statistical approach util-
ising machine-learning methods, and the rule-based
approach utilising traditional finite-language methods.
The latter approach has lately enjoyed a great amount
of coverage in the database literature [8, 7, 11, 2] show-
ing interesting connections with logic, automata, or
datalog-based languages. Furthermore, as argued by
[17, 4], due to their simplicity and ease of use, rule-
based systems also seem to be more prevalent in the
industrial solutions.

Generally, most rule-based information extraction
frameworks view documents as strings, which is a nat-
ural assumption for a wide variety of formats in use to-

day (e.g. plain text, CSV files, JSON documents, etc).
The pieces of information we want to extract are then
represented by spans, which are simply intervals inside
the string representing our document; that is, a span
specifies a substring (i.e. the data) plus its starting and
ending position inside the document. The process of ex-
tracting information can then be captured by the notion
of document spanners, which are simply operators that
transforms an arbitrary string, i.e. a document, into a
relation containing spans over this string.

In order to declare basic document spanners, most
rule-based IE frameworks use some form of regular-like
expressions [3, 8, 2]. Perhaps the best example of this
are the regular expressions with capture variables in-
troduced in [8], called regex formulas, which form the
basis of IBM’s commercial IE tool SystemT [18]. The
main idea behind these expressions is quite natural: to
use regular expressions in order to locate the span that
is to be extracted, and then use variables to store this
span. Similarly, the extraction rules of [2] and the Xlog
language of [23] use expressions with variables to cap-
ture spans, and later combine them into datalog-like
programs to define more general relations.

As already mentioned, the majority of methods for
defining document spanners view information extrac-
tion as a process that defines a relation over spans. For
example, in regex formulas of [8], all variables must be
assigned in order to produce an output tuple, and a
similar thing happens with extraction rules of [2]. How-
ever, in practice we are often working with documents
which have missing information or optional parts, and
would therefore like to maximise the amount of infor-
mation we extract. To illustrate this, consider a CSV
file1 containing land registry records about buying and
selling property. In Table 1 we give a few rows of such
a document, where represents space and éthe new
line symbol. Some sellers in this file have an additional
field which contains the amount of tax they paid when
selling the property. If we are extracting information
about sellers (for instance their names) from such a file,
we would then like to also include the tax information
when the latter is available. Unfortunately, if we follow
the traditional approach of extracting relations [8, 2],
this will not be possible, since all variables need to be

1CSV, or comma separated values, is a simple table-like for-
mat storing information separated by commas and new lines.



Seller: John, ID75

é

Buyer: Marcelo, ID832, P78

é

Seller: Mark, ID7, $35,000

é

...

Table 1: Part of a CSV document containing informa-
tion about buying and selling property.

assigned in order to produce an output, thus causing us
to miss some of the desired data.

Apart from the inability to capture incomplete in-
formation, some further shortcomings of previous ap-
proaches are that defining the semantics of extraction
expressions can not be done in a fully declarative way
[8, 10], or that they assign arbitrary spans to variables
when these are not matched against the document [2].
Furthermore, not much is known how these approaches
compare in terms of expressive power, and apart from
some preliminary studies on their computational prop-
erties [11, 2, 10, 12], we do not have a good understand-
ing of how difficult is it to evaluate these languages, nor
of the complexity of their main static tasks.

In this paper, we propose a theoretical framework
that extends both regex formulas [8] and extraction
rules [2] in order to support incomplete information ex-
traction when defining document spanners. To achieve
this, we take regex formulas of [8] as our core extrac-
tion mechanism, and redefine their semantics in such
a way that they output mappings in place of relations,
similarly as it is done in the SPARQL query language
for the Semantic Web [22]. This allows us to capture
optional parts of documents, such as in the example
from Table 1, since our expression will output a map-
ping that binds an extra variable to the tax data only
when the latter is present in the document. Using this
framework we then compare the IE approaches of [8]
and [2] in terms of expressive power, study the problem
of efficiently query enumeration for the two languages,
and determine the complexity of their main static tasks
such as satisfiability and containment.

Contributions. The specific contributions of this work
can be summarised as follows:

- Declarative semantics for document spanners. Us-
ing mappings allows us to have a simple induc-
tive semantics of regex formulas as opposed to the
parse trees of [8], or the automata-based approach
of [10]. We show that this semantics subsumes
the previous proposals2 of [8] and [2], while at
the same time allowing for simple inductive proofs
based on the expression syntax. We also extend
the automata models of [8] to support mappings,
and show that the connections between automata
and regex formulas established in [8] are preserved
under the new semantics.

2Note that in this paper we do not consider the content
operator of [2], nor the string selection of [8], since these
do not directly extract information, but rather compare two
pieces of existing data.

- Comparison of different IE languages. Since not
much is known about how different ways of rep-
resenting spanners compare in terms of expres-
sive power, we study this problem focusing on two
previous approaches: spanners [8] and extraction
rules [2]. We start with regex formulas of [8] and
span regular expressions of [2], showing that the
latter is less expressive. We then analyse extrac-
tion rules of [2] which combine span regular ex-
pressions into datalog-like programs, extend their
semantics to work with mappings, show how they
can be simplified while retaining expressive power,
and show when they capture regex formulas.

- Evaluation of spanners. We also study the com-
bined complexity of evaluating extraction expres-
sions over documents. Here we isolate a decision
problem which, once solved efficiently, would al-
low us to enumerate all mappings an expression
outputs when matched to a document. Since the
size of the answer is potentially exponential here,
our objective is to obtain a polynomial delay algo-
rithm [16]; an enumeration algorithm that takes
polynomial time between each output. As we
show, this is generally not possible, but we do
isolate a well-behaved fragment, called sequential
regex, which properly includes functional regex
introduced in [8]. We also analyse the evalua-
tion problem parametrised by the number of vari-
ables and show that the problem is fixed parameter
tractable [9] for all expressions and automata mod-
els we consider.

- Static properties of spanners. Finally, we study
static analysis of IE languages, focusing on satis-
fiability and containment. While satisfiability is
NP-hard for unrestricted languages, the sequen-
tiality restriction introduced when studying eval-
uation allows us to solve the problem efficiently.
On the other hand, containment is bound to be
PSPACE-hard, since all of our IE formalisms con-
tain regular expressions, with a matching upper
bound giving us completeness for the class. Since
one way to lower this bound for regular languages
is to consider deterministic models, we show how
determinism can be introduced to IE languages
and study how it affects the complexity.

Organisation. We define documents, spans and map-
pings in Section 2. Expressions and automata for ex-
tracting incomplete information are introduced in Sec-
tion 3. Expressiveness of our languages is studied in
Section 4, and the complexity of their evaluation in Sec-
tion 5. We then tackle static analysis in Section 6 and
conclude in Section 7. Due to space limitations most of
the proofs are deferred to the appendix.

2. PRELIMINARIES
Documents and spans. Let Σ be a finite alphabet.
A document d, from which we will extract information,
is a string over Σ. We define the length of d, denoted
by |d|, as the length of this string. As done in previous



approaches [8, 2], we use the notion of a span to capture
the part of a document d that we wish to extract. For-
mally, a span p of a document d is a pair pi, jq such that
1 ď i ď j ď |d| ` 1, where |d| is the length of the string
d. Intuitively, p represents a continuous region of the
document d, whose content is the infix of d between po-
sitions i and j ´ 1. The set of all spans associated with
a document d, denoted spanpdq, is then defined as the
set tpi, jq | i, j P t1, . . . , |d| ` 1u and i ď ju. Every span
p “ pi, jq of d has an associated content, which is de-
noted by dppq or dpi, jq, and is defined as the substring
of d from position i to position j´1. Notice that if i “ j,
then dppq “ dpi, jq “ ε. Given two spans s1 “ pi1, j1q
and s2 “ pi2, j2q, if j1 “ i2 then their concatenation is
equal to pi1, j2q and it is denoted s1 ¨ s2.

As an example, consider the following document d0,
where the positions are enumerated and denotes the
white space character:

I n f o r m a t i o n  e x t r a c t i o n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Here the length of d0 is 22 and the span p0 “ p1, 23q
corresponds to the entire document. On the other hand,
the span p1 “ p1, 12q corresponds to the first word of
our document and its content dpp1q “ dp1, 12q equals
the string Information. Similarly, for the span p2 “
p13, 23q we have that dpp2q “ extraction, i.e. it spans
the second word of our document.

Mappings. In the introduction we argued that the tra-
ditional approaches to information extraction that store
spans into relations might be somewhat limited when
we are processing documents which contain incomplete
information. Therefore to overcome these issues, we
define the process of extracting information from a doc-
ument d as if we were defining a partial function from
a set of variables to the spans of d. The use of partial
functions for managing optional information has been
considered before, for example, in the context of the
Semantic Web [22]. Formally, let V be a set of variables
disjoint from Σ. For a document d, a mapping is a par-
tial function from the set of variables V to spanpdq. The
domain dompµq of a mapping µ is the set of variables for
which µ is defined. For instance, if we consider the doc-
ument d0 above, then the mapping µ0 which assigns the
span p1 to the variable x and leaves all other variables
undefined, extracts the first word from d0.

Two mappings µ1 and µ2 are said to be compatible
(denoted µ1 „ µ2) if µ1pxq “ µ2pxq for every x in
dompµ1qXdompµ2q. If µ1 „ µ2, then µ1Yµ2 denotes the
mapping that results from extending µ1 with the values
from µ2 on all the variables in dompµ2qzdompµ1q. The
empty mapping, denoted byH, is the mapping such that
dompHq “ H. Similarly, rx Ñ ss denotes the mapping
that only defines the value of variable x and assigns it
to be the span s. The join of two set of mappings M1

and M2 is defined as follows:

M1 ’ M2 “ tµ1 Y µ2 | µ1 PM1 and µ2 PM2

such that µ1 „ µ2u.

Finally, we say that a mapping µ is hierarchical if for
every x, y P dompµq, either: µpxq is contained in µpyq,
µpyq is contained in µpxq, or µpxq and µpyq are disjoint.
Similarly, a set of mappings is said to be hierarchical if
it only contains hierarchical mappings.

3. EXTRACTING INCOMPLETE INFOR-
MATION

In this section, we introduce a theoretical framework
for information extraction that allows us to manipulate
partial and/or incomplete information often arising in
practical applications. The idea here is quite simple,
namely, when defining document spanners, we will not
require them to output a relation over spans, but merely
a set of mappings. For this, we borrow the syntax of
variable regex and variable automata [8], and redefine
(and simplify) their semantics to output mappings. We
start by defining regular expressions with capture vari-
ables and show how our proposal subsumes extraction
languages from [8] and [2]. We then define variable stack
and variable set automata for extracting mappings of
spans and discuss their connection with extraction ex-
pressions under the new semantics.

3.1 Extracting information using RGX
Previous approaches to IE [8, 23, 24, 2] use some

form of regular expressions with capture variables in
order to obtain the desired spans. Intuitively, in such
expressions we use ordinary regular languages to move
through our document, thus jumping to the start of a
span that we want to capture. The variables are then
used to store the desired span, with further subexpres-
sions controlling the shape of the span. Borrowing the
syntax from [8], we define a class of regular expressions
with variables, called variable regex, as follows.

Let Σ be a finite alphabet and V a set of variables
disjoint with Σ. A variable regex (RGX) is defined by
the following grammar:

γ :“ ε | a | xtγu | γ ¨ γ | γ _ γ | γ˚

where a P Σ is a letter of the alphabet and x P V is a
variable. For a RGX γ we define varpγq as the set of all
variables occurring in γ. In what follows we will often
refer to variable regex (RGX, resp.) as a regex formula
(RGX formula, resp.).

Just as in the previously introduced IE languages,
RGX use regular expressions to navigate the document,
while a subexpression of the form xtγu stores a span
starting at the current position and matching γ into
the variable x. For example, if we wanted to extract
the name of each seller from the document in Table 1,
we could use the following RGX

Σ˚ ¨ Seller: ¨ xtpΣ´ t,uq˚u¨, ¨Σ˚

where Σ stands for the disjunction of all the letters of
the alphabet, and where we do not use the concate-
nation ¨ inside words (formally, the string Seller:
should be written as the concatenation of each of its
symbols). Here the subexpression Σ˚ ¨ Seller: navi-
gates to the position in our document, where the name



JγKd “ tµ | pp1, |d| ` 1q, µq P rγsdu

rεsd “ tps,Hq | s P spanpdq and dpsq “ εu

rasd “ tps,Hq | s P spanpdq and dpsq “ au

rxtRusd “ tps, µq | Dps, µ
1q P rRsd :

x R dompµ1q and µ “ rxÑ ss Y µ1u

rR1 ¨R2sd “ tps, µq | Dps1, µ1q P rR1sd,

Dps2, µ2q P rR2sd : s “ s1 ¨ s2,

dompµ1q X dompµ2q “ H, and

µ “ µ1 Y µ2u

rR1 _R2sd “ rR1sd Y rR2sd

rR˚sd “ rεsd Y rRsd Y rR
2sd Y rR

3sd Y ¨ ¨ ¨

Table 2: The semantics JγKd of a RGX γ over a docu-
ment d. Here R2 is a shorthand for R ¨R, similarly R3

for R ¨R ¨R, etc.

of some seller starts. The variable x then stores a string
not containing a comma until it reaches the first comma
– that is, the full name of our seller. The rest of the ex-
pression then simply matches the rest of the document.

Note that syntactically, our expressions are the same
as the ones introduced in [8]. The only explicit differ-
ence from [8] (apart from the semantics – see below) is
that we do not allow the empty language H in order to
make some of the constructions more elegant. Adding
this variant would not affect any of the results though.

In contrast to previous approaches, our semantics
views RGX formulas as expressions defining mappings
and not only relations. To illustrate how this works,
consider again the document in Table 1, but now sup-
pose that we want to extract the names of the sellers,
and when available, also the amount of tax they paid
(recall from the Introduction that not all rows have this
information). For this, consider the following RGX

Σ˚ ¨Seller: ¨xtR1u¨,¨R1 ¨p , ytpΣ´t é

uq˚u_εq¨ é

¨Σ˚,

where R1 “ pΣ ´ t,, é

uq˚. Note that this expression
extracts the information about the amount of tax paid
into the variable y only when this data is present in the
document (otherwise it matches ε). This now defines
two types of mappings: the first kind will contain only
the names of sellers (stored in x), while the second kind
will contain both the name and the amount of tax paid
(stored in y) when the latter information is available.

The full semantics of RGX expressions is defined in
Table 2. As explained above, we view our expression
γ as a way of defining a partial mapping µ : varpγq á
spanpdq. Our semantics has two layers, the first layer
rγsd defines which part of a document d a subexpression
of γ parses, and what is the mapping defined thus far.
For instance, the alphabet letter a must match a part
of the document equal to a and it defines no mapping.
On the other hand, a subexpression of the form xtRu
assigns to x the span captured by R (and preserves the
previous variable assignments). Similarly, in the case of

concatenation R1 ¨ R2 we join the mapping defined on
the left with the one defined on the right, while imposing
that the same variable is not used in both parts (as this
would lead to inconsistencies). The second layer of our
semantics, JγKd then simply gives us the mappings that
γ defines when matching the entire document.

Note that in the case of an ordinary regular expression
we output the empty mapping (representing TRUE) when
the expression matches the entire document and empty
set (representing FALSE) when not, thus making RGX
a natural generalisation of ordinary regular expressions
with the ability to extract spans.

As the semantics of some operators might seem some-
what counter intuitive at first, we now explain how the
recursive definition works by means of an example.

Example 3.1. To keep the presentation concise, we
will consider the following document d:

a a a b b b
1 2 3 4 5 6

If we consider the expression consisting of a single let-
ter a, then the set rasd contains precisely three pairs:
pp1, 2q,Hq, pp2, 3q,Hq, and pp3, 4q,Hq, since the word
spelled by each of these spans equals to the letter a.

On the other hand, if we consider the expression xtau,
then rxtausd contains the above spans, but it also assigns
the span to the variable. Namely, rxtausd consists of
the pairs ppi, i ` 1q, µiq, where µipxq “ pi, i ` 1q and
is undefined otherwise, and where 1 ď i ď 3. Notice,
however, that JxtauKd is empty, since none of the pairs
ppi, i ` 1q, µiq contains a span representing the entire
document d.

To illustrate how concatenation works, consider now
the expression xta˚u ¨ ytb˚u. Here ra˚sd contains any
span that spells zero or more as, such as for example
pp1, 4q,Hq, or pp5, 5q,Hq. Note that the latter matches
a˚, as it spells the empty string. Similarly, rb˚sd
will contain, amongst others, the pairs pp4, 5q,Hq, or
pp4, 7q,Hq. Because of this we have that rxta˚usd con-
tains the pair pp1, 4q, µ1q, with µ1pxq “ p1, 4q, while
rytb˚usd contains the pair pp4, 7q, µ2q, where µ2pyq “
p4, 7q. The latter two allow us to “concatenate” the
two pairs in rxta˚usd and rytb˚usd to obtain a pair
pp1, 7q, µq, with µpxq “ p1, 4q, and µpyq “ p4, 7q. Note
that this also implies that µ P Jxta˚u ¨ ytb˚uKd, since its
corresponding span equals the entire document.

Notice that “concatenating” µ1 and µ2 above is pos-
sible, since they share no variables. If we were dealing
with an expression of the form xta˚u ¨xtb˚u, this would
no longer be the case, and no mapping would be produced
as the output of the expression. Some other “pathologi-
cal” cases such as xtxtRuu, which wants to bind x inside
itself, are also limited by our semantics, as this formula
can never output any mappings.

On the other hand, some formulas that intuitively can
make sense, but were not covered by the definition of
functional regex in [8], have a clearly defined semantics
in our setting. One such example would be the expres-
sion e “ pxtpa _ bq˚u _ ytpa _ bq˚uq˚, which uses a
Kleene star over a subexpression containing variables.



If evaluated over the document d, this expression can
output several mappings. For instance, we have that
pp1, 4q, µ1q P rytpa _ bq˚usd, with µ1pyq “ p1, 4q and
that pp4, 7q, µ2q P rxtpa _ bq˚usd, with µ2pxq “ p4, 7q.
From this we can conclude that µ P JeKd, where µ “
µ1 Y µ2.

It is worthwhile mentioning that the denotational se-
mantics introduced here is much simpler than the se-
mantics of variable regex defined in [8]. In Table 2, we
give the semantics of our framework directly in terms of
spans and mappings. On the other hand, the semantics
of variable regex in [8] is given through the so-called
parse trees: syntactical structures that represent the
evaluation of an expression over a document, while in
[10], the semantics uses reference words and projection
functions. We believe that one important contribution
of our work is the simplification of the semantics by us-
ing mappings, which could help in the future to better
understand variable regex and other IE languages.

Of course, there are ways to allow adding partial in-
formation in regex formulas without using mappings.
For instance, one could simply map each variable that
does not get assigned to the empty span ε. That is,
an expression of the form xtRu could be replaced with
xtR _ εu, with ε signifying that the variable is not as-
signed. One problem with this approach is that the term
ε already has a meaning in regex that is reserved for the
empty word, which one would sometimes like to assign
(e.g. to specify a landmark, or in the Kleene closure).
Similarly, one could introduce a special NULL value to
denote a variable that is not assigned, and add a NULL
expression into regex formulas to signify that a subex-
pression was not matched to any span. The main draw-
back of this approach is that it would change the syn-
tactic structure of regex, making them somewhat more
cumbersome and less intuitive. On the other hand, none
of these problems are present when we use mappings,
as they both preserve the syntax of regex formulas, do
not overwrite the previously defined semantics in border
cases, and offer an elegant general definition encompass-
ing other approaches and simplifying the definitions of
[8, 10], while at the same time being fully declarative.

3.2 Connection with previous approaches
Having the general definition of formulas which define

mappings, we can now show how this framework sub-
sumes regex formulas introduced in [8] and span regular
expressions from [2].

We start with regex formulas of [8]. Although the
expressions from [8] use the same syntax as our RGX
formulas, the setting of [8] dictates that document span-
ners always define relations. This automatically ex-
cludes expressions such as R1 _ R2 from Section 3.1
which allows mappings with different domains. What
[8] proposes instead is that each mapping defined by
an expression assigns precisely the same variables every
time (and also all of them); that is, we want our expres-
sions to act as functions. As shown in [8] there is a very
easy syntactic criteria for this, resulting in functional
RGX formulas.

A RGX γ is called functional with respect to the set
of variables X (abbreviated as functional wrt X) if one
of the following syntactic restrictions holds:

‚ γ P ΣY tεu and X “ H.

‚ γ “ ϕ1 _ ϕ2, where ϕ1, ϕ2 are functional wrt X.

‚ γ “ ϕ1 ¨ ϕ2, where ϕ1 is functional wrt X 1 Ď X
and ϕ2 is functional wrt XzX 1.

‚ γ “ pϕq
˚
, where varpϕq “ H and X “ H.

‚ γ “ xtγ1u where x P X and γ1 is functional with
respect to Xztxu.

A RGX γ is called functional if it is functional with
respect to varpγq.

This condition ensures that each variable mentioned
in γ will appear exactly once in every word that can be
derived from γ, when we treat γ as a classical regular
expression with variables as part of the alphabet. We
refer to the class of functional RGXs as funcRGX. Note
that this corresponds to the original definition of regex
formulas given by [8], even when we consider the new
semantics. Thus, we have:

Theorem 3.2. Regex formulas of [8] are equivalent
to the class funcRGX defined above.

Next, we show how RGX formulas subsume span reg-
ular expressions of [2]. To do this, note that span regu-
lar expressions of [2] can be seen as RGX formulas de-
fined above, but where the subexpressions of the form
xtγu allow only for γ “ Σ˚. That is, when we have no
control over the shape of the span we are capturing, and
where we cannot nest variables. We call such formu-
las span RGX formulas and denote them by spanRGX.
For simplicity, we omit Σ˚ after variables when showing
these formulas.

To compare spanRGX with span regular expressions,
we also need to take note of the semantics proposed in
[2]. One problem with that semantics is that when a
variable is not matched by the expression, the resulting
mapping is assigned an arbitrary span, which can be
rather misleading (e.g. in the sales example above we
could not determine if the tax data is real or assigned
arbitrarily). Of course, this type of behaviour can eas-
ily be simulated by “joining” the results obtained by a
spanRGX with the set of all total mappings. Another,
more subtle problem, is that the formalism of [2] allows
expressions of the form xtΣ˚u ¨ xtΣ˚u (forcing x to be
assigned the empty string at the same position multi-
ple times), while this RGX is not satisfiable. We call
span regular expressions which prohibit such behaviour
proper. We now obtain the following.

Theorem 3.3. Let d be a document, γ be a RGX, M
be the set of all total functions from varpγq to spanpdq,
and let JγK1d “ M ’ JγKd. Under these semantics,
spanRGX and proper span regular expressions of [2] are
equivalent.

We can therefore conclude that the proposed framework
indeed generalizes the two previously proposed classes
of document spanners for information extraction.



3.3 Automata that extract information
In this subsection, we define automata models that

support incomplete information extraction. Just as
with RGX, the definitions of the automata models come
from [8], however, we need to redefine the semantics to
support mappings. Towards the end, we show that this
extension with mappings does not change the results
presented in [8] regarding the connection between RGX
and automata.

A variable-set automata (VA) is an automata model
extended with captures variables in a way analogous to
RGX; that is, it behaves as a usual finite state automa-
ton, except that it can also open and close variables.
Formally, a VA automaton A is a tuple pQ, q0, qf , δq,
where Q is a finite set of states, q0 and qf are the ini-
tial and the final state, respectively, and δ is a tran-
sition relation consisting of letter transitions pq, a, q1q,
and variable transitions pq, x$, q1q or pq,%x , q1q, where
q, q1 P Q, a P Σ and x P V. The $ and % are special
symbols to denote the opening or closing of a variable
x. We define the set varpAq as the set of all variables x
such that x$ appears in some transition of A.

A configuration of a VA automaton over a document
d is a tuple pq, iq where q P Q is the current state and
i P r1, |d| ` 1s is the current position in d. A run ρ over
a document d “ a1a2 ¨ ¨ ¨ an is a sequence of the form:

ρ “ pq0, i0q
o1ÝÑ pq1, i1q

o2ÝÑ ¨ ¨ ¨ omÝÑ pqm, imq

where oj P Σ Y tx$,% x | x P Vu, pqj , oj`1, qj`1q P δ
and i0, . . . , in is an increasing sequence such that i0 “ 1,
im “ |d| ` 1, and ij`1 “ ij ` 1 if oj`1 P Σ (i.e. the
automata moves one position in the word only when
reading a letter) and ij`1 “ ij otherwise. Furthermore,
ρ must satisfy that variables are opened and closed in
a correct manner, that is, each x is opened or closed at
most once and, if x is closed at some position, then there
must exists a previous position in ρ where x was opened.
Note that we allowed A to open x without closing it,
assuming that x was never used in this case. We say
that ρ is accepting if qm “ qf in which case we define
the mapping µρ that maps x into pij , ikq P spanpdq if,
and only if, oij “ x$ and oik “% x in ρ. Finally, the
semantics of A over d, denoted by JAKd is defined as the
set of all µρ where ρ is an accepting run of A over D.

Following [8] we also redefine the semantics of the
so-called variable-stack automata (VAstk), a restricted
class of VA which only allow defining mappings that are
hierarchical as in the case of RGX. The new version of
variable-stack automata is almost identical to the one
of VA automata above, but we now restrict to runs ρ
where variables are open and closed following a stack
policy. To avoid repeating the same definition we refer
the reader to either [8] or the appendix of this paper for
more details. Lastly, we say that a VA is hierarchical if
every mapping it produces is hierarchical.

3.4 Comparing expressions to automata
One of the main problems studied in [8] was to de-

termine the relationship between the automata models
introduced in the previous subsection (restricted to al-

ways output relations) with the class of functional RGX
formulas. As our framework is an extension (in terms
of expressiveness) and a simplification (in terms of se-
mantics) of [8] that allows mappings instead of simple
relations, here we show how the main results on fVA
and funcRGX can be generalised to our setting. We
start by showing that the class of RGX formulas is also
captured by VAstk automata in our new setting.

Theorem 3.4 ([8]). Every VAstk automaton has
an equivalent RGX formula and vice versa. That is
VAstk ” RGX.

Just as in the proof for the relational case [8], the
main step is to show that VAstk automata can be simpli-
fied by decomposing them into an (exponential) union
of disjoint paths known as PUstk (path union VAstk).
In PUstk automata each path is essentially a functional
RGX formula, thus making the transformation straight-
forward. The only difference to the proof of [8] is that
when transforming VAstk automaton into a union of
paths, we need to consider all paths of length at most
2 ¨ k ` 1 in order to accommodate partial mappings,
where k is the number of variables. The notion of a
consistent path also changes, since we are allowed to
open a variable, but never close it. As a corollary we
get that every RGX is equivalent to (a potentially ex-
ponential) union of functional RGX formulas (with this
union being empty when the RGX is not satisfiable).

Similarly as in the functional case, it is also straight-
forward to prove that the mappings defined by VAstk

and RGX are hierarchical. Furthermore, just as in [8],
one can show that the class of VA automata which pro-
duce only hierarchical mappings is equivalent to RGX
in the general case.

Theorem 3.5 ([8]). Every VA automaton that is
hierarchical has an equivalent RGX formula and vice
versa.

Both VA and VAstk automata, as well as RGX, pro-
vide a simple way of extracting information. To permit
a more complex way of defining extracted relations, [8]
allows combining them using basic algebraic operations
of union, projection and join. While defining a union or
projection of two automata or RGX is straightforward,
in the case of join we now use joins of mappings instead
of the natural join (as used in [8]). Formally, for two VA
automatons A1 and A2, we define the “join automaton”
A1 ’ A2 using the following semantics: for a document
d, we have JA1 ’ A2Kd “ JA1Kd ’ JA2Kd. We denote
the class of extraction expressions obtained by closing

VA under union, projection and join with VAtY,π,’u,
and similarly for VAstk and RGX.

To establish a relationship between algebras based on
VAstk and VA automata, [8] shows that VA is closed
under union, projection and join. We can show that
the same holds true when dealing with mappings, but
now the proofs change quite a bit. That is, while clo-
sure under projection is much easier to prove in our
setting, closure under join now requires an exponen-
tial blowup, since to join mappings, we need to keep



track of variables opened by each mapping in our au-
tomaton. Similarly, [8] shows that each VA automaton
can be expressed using the expressions in the algebra

VAstk
tY,π,’u; as this proof holds verbatim in the case

of mappings we obtain the following.

Theorem 3.6 ([8]). VAtY,π,’u ” VA ”

VAstk
tY,π,’u.

As we showed here, the main results from [8] can be
lifted to hold in the more general setting of mappings,
thus suggesting that the added generality does not im-
pact the intuition behind the extraction process.

4. RULES FOR EXTRACTING INCOM-
PLETE DATA

In Section 3 we defined a theoretical framework for
extracting incomplete information. As shown there,
RGX formulas of [8] strictly subsume spanRGX of [2].
However, the approach of [2] also allows combining
spanRGX formulas into Datalog-like rules. Therefore,
in this section we study the exact connection between
the two formalisms in the setting of incomplete infor-
mation. We start by redefining the rules of [2] to allow
incomplete data, and then show that, in general, rules
are incomparable to RGX. We also study how a sub-
class of rules, called simple rules, can be simplified by
removing cycles to then show that RGX formulas are
equivalent to unions of simple rules.

4.1 The semantics of rules
Regex formulas allow the user to specify the shape of

the span captured by some variable using an expression
of the form xtγu. For example, if we wanted to say that
the string corresponding to the span captured by the
variable x belongs to the regular language R, we would
write xtRu. As we have seen in the previous section,
this immediately makes RGX formulas more expressive
than spanRGX formulas, since the latter cannot con-
strain the shape of the span captured by a variable. So,
how can one specify that a span captured by a variable
inside a spanRGX formula has a specific shape?

A natural approach to solve this issue allows joining
spanRGX formulas using a rule-like syntax as proposed
in [2]. To do this, we propose a rule-based language for
extracting incomplete information from documents that
is based on spanRGX formulas. Specifically, in our lan-
guage we will allow two types of formulas: R and x.R,
where R is a spanRGX formula and x a variable. The
former is meant to be evaluated over the entire docu-
ment, while the latter applies to the span captured by
the variable x. The semantics of the extraction formula
R over a document d is defined as above, and for x.R
as follows:

Jx.RKd “ tµ | Ds.ps, µq P rxtRusdu.

We can now define rules for extracting information from
a document as conjunctions of extraction formulas. For-
mally, an extraction rule is an expression of the form:

ϕ “ ϕ0 ^ x1.ϕ1 ^ ¨ ¨ ¨ ^ xm.ϕm (†)

where m ě 0, all ϕi are spanRGX formulas, and xi are
variables3. Extraction rules typically have an implica-
tion symbol and a head predicate, which we will omit
because it does not affect the analysis performed in this
paper.

While [2] has a simple definition of the semantics of
extraction rules, lifting this definition to the domain of
mappings requires us to account for nondeterminism of
our expressions. What we mean by this is perhaps best
captured by the rule px_ yq ^ x.pab˚q ^ y.pba˚q, where
we first choose which variable is going to be mapped
to the entire document, and then we need to satisfy
its respective constraint. For instance, if x is matched
to the document, we want it to conform to the regular
expression ab˚; however, in this case we do not really
care about the content of y, so we should leave our
mapping undefined on this variable.

Formally, we define when a rule of the form (†) is sat-
isfied by a tuple of mappings µ “ pµ0, µ1, . . . , µmq. To
avoid the problem mentioned above, we need the con-
cept of instantiated variables in our tuple of mappings.
For a rule ϕ of the form (†) and a tuple of mappings
µ “ pµ0, µ1, . . . , µmq we define the set of instantiated
variables, denoted by ivarpϕ, µq as the minimum set
such that dompµ0q Ď ivarpϕ, µq and if xi P ivarpϕ, µq,
then dompµiq Ď ivarpϕ, µq. Intuitively, we want to put
in ivarpϕ, µq only the variables which are used in non-
deterministic choices made by ϕ and µ. For instance,
in the rule px_ yq^x.pab˚q^ y.pba˚q, if we decide that
x should be matched to our document, then we will not
assign a value to the variable y and vice versa. We now
define that a tuple of mappings µ “ pµ0, µ1, . . . , µmq
satisfies ϕ over a document d, denoted by µ |ùd ϕ, if
the following three conditions hold: (1) µ0 P Jϕ0Kd; (2)
µi P Jxi.ϕiKd whenever xi P ivarpϕ, µq and µi “ H oth-
erwise; and (3) µi „ µj for all i, j. Here the last condi-
tion will allow us to “join” all the mappings capturing
each subformula ϕi into one. The problem with non-
determinism is handled by condition (2), since we force
all instantiated variables to take a value, and the non-
instantiated ones to be undefined. Finally, condition (1)
starts from ϕ0 which refers to the entire document and
serves as a “root” for our mappings.

We can now define the semantics of an extraction rule
ϕ over a document d as follows:

JϕKd “ tµ | Dµ such that µ |ùd ϕ and µ “
ď

i

µiu,

where
Ť

i µi denotes the mapping defined as the union
of all µi.

Extraction rules allow us to define complex conditions
about the spans we wish to extract. For instance, if we
wanted to extract all spans whose content is a word
belonging to (ordinary) regular expressions R1 and R2

at the same time, we could use the rule Σ˚¨x¨Σ˚^x.R1^

x.R2. More importantly, using extraction rules, we can

3For simplicity we assume that there is only one formula
applying to the entire document; namely ϕ0. It is straight-
forward to extend the definitions below to include multiple
formulas of this form.



now define valuations which cannot be defined using
RGX, since they can define mappings which are not
hierarchical. For instance, the rule x^x.ayaa^x.aaza
is one such rule, since it makes y and z overlap on the
document aaaaa. In some sense, the ability of rules to
use conjunctions of variables makes them more powerful
than RGX formulas. On the other hand, the ability
of RGX formulas to use disjunction of variables poses
similar problems for spanRGX. Here one separating
example is the RGX formula pa ¨ xtbuq _ pb ¨ xtauq.

Theorem 4.1. Extraction rules and RGX are in-
comparable in terms of the expressive power.

In light of this result, we study next which fragments of
the two languages are equivalent.

4.2 Eliminating cycles from rules
In order to capture RGX formulas, we first need to

prune the class of rules we allow, since already a single
rule can express properties beyond the reach of RGX.
As we have seen, the capability of an extraction rule
to use conjunctions of the same variable multiple times
already takes them outside of the reach of RGX. There-
fore, the most general class of rules we will consider dis-
allows that type of behaviour. We call such rules simple
rules. Formally, an extraction rule ϕ of the form (†) is
simple, if all xi are pairwise distinct. From now on, we
assume that all classes of rules considered in this section
are simple.

Another feature that makes rules different from RGX
is their ability to enforce cyclic behaviour through ex-
pressions of the form x.y ^ y.ax. A natural way to cir-
cumvent this shortcoming is to force the rules to have
an acyclic structure. In fact, this kind of restriction was
already considered in [2], as it allows faster evaluation
than general rules. Therefore, a natural question at this
point is if the capability of rules to define cycles is really
useful, or if they can be removed. We answer now the
question whether cycles can be eliminated from rules,
and somewhat surprisingly show that, while generally
not possible, in the case of rules defined by functional
spanRGX this is indeed true.

In order to study the cyclic behaviour of rules, we
first need to explain how each rule can be viewed as a
graph. To each extraction rule ϕ “ ϕ0 ^ x1.ϕ1 ^ ¨ ¨ ¨ ^

xm.ϕm we associate a graph Gϕ defined as follows. The
set of nodes of Gϕ contains all the variables x1, . . . , xm
plus one special node labelled doc corresponding to the
formula ϕ0. There exists an edge px, yq between two
variables in Gϕ if, and only if, there is an extraction
formula x.R in ϕ such that y occurs in R. Furthermore,
if the variable x occurs in the formula ϕ0, we add an
edge pdoc, xq to Gϕ. Then we say that a simple rule
ϕ is dag-like, if the graph Gϕ contains no cycles, and
tree-like if Gϕ is a tree rooted at doc.

To answer the question whether cycles can be elim-
inated from rules, let us consider most general case;
namely, simple rules over full RGX. It is straightfor-
ward to see that in a rule of the form px _ yq ^ x.py _
Σ˚q ^ y.px _ Σ˚q, the cycle formed by x and y cannot

be broken and the rule cannot be rewritten as a single
dag-like rule. The main obstacle here is the fact that in
each part of the rule we make a nondeterministic choice
which can then affect the value of all the variables. How-
ever, there is one important class of expressions, which
would prohibit our rules to define properties such as the
one above; that is, functional spanRGX. In the next re-
sult, we show that in the case of functional rules (i.e.
rules defined by functional spanRGX) cycles can always
be removed, and in fact, converting a simple functional
rule into a dag-like rule takes only polynomial time.

Theorem 4.2. For every simple rule that is func-
tional there is an equivalent (functional) dag-like rule.
Moreover, we can obtain the equivalent rule in polyno-
mial time.

It is remarkable that the algorithm for removing cy-
cles runs in polynomial time and, furthermore, it pro-
duces a single rule. We think that this result is inter-
esting in its own right and potentially useful in other
contexts regarding the use of rules in information ex-
traction.

4.3 Unions of simple rules capture RGX
We now know that cycles can be eliminated from

functional rules, but is there any way to removes cy-
cles from rules that are non-functional? Moreover, can
we go even further from dag-like rules, and convert each
rule into a tree-like rule? Unfortunately, one can easy
show that all these questions have a negative answer
since non-functional cyclic rules, and even functional
dag-like rules, have the ability to express some sort of
disjunction. For this reason, we introduce here the class
of unions of simple rules and compare its expressive
power with RGX. Formally, union of simple rules is a
set of simple rules A. The semantics JAKd over a doc-
ument d is defined as all mapping µ over d such that
µ P JϕKd for some ϕ P A.

We start by extending our results for removing cy-
cles from functional to non-functional rules. As it turns
out, although functional and non-functional rules are
not equivalent, every non-functional simple rule can in
fact be expressed as a union of functional rules. Then,
by combining this fact with Theorem 4.2 one can show
that each non-functional rule can be made acyclic by
transforming it to a union of dag-like rules.

Proposition 4.3. Every simple rule is equivalent to
a union of functional dag-like rules.

Now that the connection with union of acyclic rules
is settled, our next step is to understand when dag-like
rules can be defined by RGX formulas and, moreover,
when can they be converted into tree-like rules. First,
observe that a functional RGX formula is always satisfi-
able; namely, there is always a document on which there
is an assignment satisfying this formula. Similarly, ev-
ery functional tree-like rule is also satisfiable. On the
other hand, the functional simple rule x^ x.y^ y.ax is
clearly not satisfiable, since it forces x and y to be equal



and different at the same time. Therefore, to link rules
with RGX, we should consider only the satisfiable ones.

Proposition 4.4. Every dag-like rule that is satisfi-
able is equivalent to a union of functional tree-like rules.

The idea of the proof here is similar to the cycle elim-
ination procedure of Theorem 4.2, but this time consid-
ering undirected cycles. One can show that eliminating
undirected cycles results in a double exponential num-
ber of tree-like rules. In case that the rule was not
satisfiable, our algorithm will simply abort.

With this at hand, we can now describe the relation-
ship between unions of simple rules and RGX. Indeed, a
union of simple rules is equivalent to a union of dag-like
rules by Proposition 4.3 and this union is equivalent to
a union of functional tree-like rules by Proposition 4.4
(if some dag-like rule is not satisfiable, we just output
an unsatisfiable non-fuctional RGX formula in our al-
gorithm from Proposition 4.4). Then one can easily see
that any functional tree-like rule ϕ is equivalent to a
RGX formula given that each (singleton) formula x.R
in ϕ can be removed by composing the tree structure
recursively with formulas of the form xtRu. Conversely,
one can show that each RGX formula can be defined as
a union of simple rules.

Theorem 4.5. RGX formulas and unions of simple
rules are equivalent. Moreover, every RGX formula is
equivalent to a union of tree-like rules.

5. EVALUATION OF LANGUAGES FOR
EXTRACTING INCOMPLETE DATA

In this section, we study the computational complex-
ity of evaluating an extraction expression γ over a doc-
ument d, namely, the complexity of enumerating all
mappings µ P JγKd. Given that we are dealing with
an enumeration problem, our objective is to obtain a
polynomial delay algorithm [16], i.e., an algorithm that
enumerates all the mappings in JγKd by taking time
polynomial in the size of γ and d between outputting
two consecutive results. For this analysis, we model
our problem as a decision problem and relate it to the
enumeration problem. Formally, let K be a new symbol.
An extended mapping µ over d is a partial function from
V to spanpdq Y tKu. Intuitively, in our decision prob-
lem µpxq “ K will represent that the variable x will not
be mapped to any span. Furthermore, we usually treat
µ as a normal mapping by assuming that x is not in
dompµq for all variables x that are mapped to K. Given
two extended mappings µ and µ1, we say that µ Ď µ1 if,
and only if, µpxq “ µ1pxq for every x P dompµq. Then
for any language L for information extraction we define
the main decision problem for evaluating expressions
from L, called EvalrLs, as follows:

Problem: EvalrLs
Input: An expression γ P L, a document d,

and an extended mapping µ.
Question: Does there exist µ1 such that

µ Ď µ1 and µ1 P JγKd?

In other words, in EvalrLs we want to check whether
µ can be extended to a mapping µ1 that satisfies γ in d.
Note that in our analysis we will consider the combined
complexity of EvalrLs.

We claim that EvalrLs correctly models the problem
of enumerating all mappings in JγKd. Indeed, if we can
find a polynomial time algorithm for deciding EvalrLs,
one can have a polynomial delay algorithm for enumer-
ating the mappings in JγKd as given in Algorithm 1.

Algorithm 1 Enumerate all spans in JγKd
1: procedure Enumerate(γ, d, µ, V )
2: if V “ H then
3: output µ and return

4: Let x be some element from V
5: for s P spanpdq Y tKu do
6: if EvalrLspγ, d, µrxÑ ssq then
7: Enumerate(γ, d, µrxÑ ss, V z txu)

The procedure starts with the empty mapping µ “
H and the set V of variables yet to be assigned equal
to varpγq. For a variable x R dompµq we iterate over
all s P spanpdq (or the symbol K signalling that x is
not assigned) and check if EvalrLspγ, d, µrx Ñ ssq is
true where µrx Ñ ss is an extended mapping where x
is assigned to s (lines 4 through 6). If the answer is
positive, then in line 7 we recursively continue with the
mapping µrxÑ ss (i.e. we know that the set of answers
is non-empty). Finally, we print the mapping µ when
all variables in varpγq are assigned a span or the symbol
K (i.e. V “ H in line 2).

We can therefore obtain the following.

Theorem 5.1. If EvalrLs is in PTIME, then enu-
merating all mappings in JγKd can be done with polyno-
mial delay.

Notice that Theorem 5.1 is a general result allowing us
to reason about efficient enumeration of IE languages.
That is, when we want to show that any IE language L
can be enumerated efficiently, we simply need to show
that EvalrLs is in PTIME. This is in contrast with
approaches such as [12], which, while providing a faster
algorithm than the ones we derive below, are applicable
to a single fixed language L.

Before continuing we would like to stress the impor-
tance of selecting the correct decision problem to model
query enumeration. Indeed, while EvalrLs might seem
somewhat counter intuitive at a first glance, as Theo-
rem 5.1 shows, efficiently solving EvalrLs gives an ef-
ficient enumeration procedure. A more common vari-
ation of the evaluation problem, would ask if, given a
mapping µ, an expression γ P L, and a document d, it
holds that µ P JγKd. We call this version of evaluation
model checking and denote it with ModelCheckrLs.
Model checking problem for subclasses of variable set
automata that output relations was studied in [10] (un-
der the name evaluation), where a PTIME algorithm is
given for a subclass of VA automata. Unfortunately,
solving model checking efficiently does not help us with



the enumeration problem, since we would have to check
each mapping one by one – a task that can produce an
exponential gap between two consecutive outputs. On
the other hand, it is straightforward to see that model
checking is a special case of Eval.

Notice, however, that showing EvalrLs to be hard
does not necessarily rule out the existence of a poly-
nomial delay enumeration procedure for L. For this,
we need to consider a related problem of checking
non-emptiness. Formally, the non-emptiness prob-
lem, denoted NonEmprLs, asks, given a document d
and an expression γ, whether JγKd “ H. One can
easily see that non-emptiness is actually a restricted
instance of EvalrLs, namely: NonEmprLspγ, dq “
EvalrLspγ, d,Hq. This implies that if we find an ef-
ficient algorithm for EvalrLs then the same holds for
NonEmprLs, and that showing NonEmprLs to be NP-
hard implies the same for EvalrLs. More importantly,
if we can show that NonEmprLs is difficult, then no
polynomial delay algorithm for L can exist (under stan-
dard complexity assumptions), as we could simply run
the enumeration procedure until the first output is pro-
duced. Note on the other hand that showing e.g. NP-
hardness of ModelCheckrLs does also not necessarily
imply that efficient enumeration is not possible. As we
are interested in query enumeration, we will therefore
not consider the model checking problem in the remain-
der of this paper.

We would like to note that [2] and [10] already consid-
ered the non-emptiness problem and the model checking
problem. In the following results we will point out when
a (weaker) version of our result was proved in one of the
two works. Generally, we can use [2, 10] to derive some
lower bounds, while we need to show the matching up-
per bound (when possible) separately. It is important
to stress that what [10] calls evaluation is our model
checking problem, and, as discussed above, can not be
used to obtain an efficient algorithm for enumeration or
Eval, nor tell us when enumeration with polynomial
delay is not possible.

Now that we identified the appropriate decision prob-
lem, we start by understanding the complexity of
EvalpLq in the most general case. It is easy to see that
checking EvalrLs is in NP for all languages and compu-
tational models considered in this paper. Indeed, given
a mapping µ1 such that µ Ď µ1 one can check in PTIME
if µ1 P JγKd by using finite automata evaluation tech-
niques [14]. As the following result shows, this is the
best that one can do if RGX or variable-set automata
contain the language of spanRGX, as non emptiness is
already hard for this fragment.

Theorem 5.2. NonEmprspanRGXs is NP-compl.

We would like to remark that this result was proved
in [2] and here we strengthen it to allow using partial
mappings.

Since this result implies that efficiently enumerating
answers of RGX or variable-set automata is not possi-
ble unless PTIME “ NP, we now examine several syn-
tactic restrictions that make their evaluation problem

tractable. Note that the previous negative results are
considering a more general setting than the one pre-
sented in [8], where RGX and variable-set automata
are restricted to be functional which forces them to only
generate relations of spans. Interestingly, the functional
restriction decreases the complexity of the evaluation
problem for RGX as the following result shows.

Proposition 5.3. EvalrfuncRGXs is in PTIME.

This result proves that the functional restriction for
RGX introduced in [8] is crucial for getting tractabil-
ity. The question that now remains is what the neces-
sary restrictions are that make the evaluation of RGX
tractable when outputting mappings and how to extend
these restrictions to other classes like variable-set au-
tomata. One possible approach is to consider variable-
set automata that produce only relations. Formally,
we say that a variable-set automaton A is relational if
for all documents d, the set JAKd forms a relation. As
the next result shows, this semantic restriction is not
enough to force tractability on EvalrVAs.

Proposition 5.4. NonEmp of relational VA au-
tomata is NP-complete4.

By taking a close look at the proof of the previous result,
one can note that a necessary property for getting in-
tractability is that, during a run, the automaton can see
the same variable on potential transitions many times
but not use it if it has closed the same variable in the
past. Intuitively, this cannot happen in functional RGX
formulas where for every subformula of the form ϕ1 ¨ϕ2

it holds that varpϕ1qXvarpϕ2q “ H. Actually, we claim
that this is the restriction that implies tractability for
evaluating RGX formulas. Formally, we say that a RGX
formula γ is sequential if for every subformula of the
form ϕ1 ¨ ϕ2 or ϕ˚ it holds that varpϕ1q X varpϕ2q “ H

and varpϕq “ H, respectively. We can also extend these
ideas of sequentiality from RGX formulas to variable-set
automata as follows. A path π of a variable-set automa-
ton A “ pQ, q0, qf , δq is a finite sequence of transitions
π : pq1, s2, q2q, pq2, s3, q3q . . . , pqm´1, sm, qmq such that
pqi, si`1, qi`1q P δ for all i P r1,m ´ 1s. We say that a
path π of A is sequential if for every variable x P V it
holds that: (1) there is at most one i P r1,ms such that
si “ x$; (2) there is at most one j P r1,ms such that
sj “% x; and (3) if such a j exists, then i exists and
i ă j. We say that variable-set automaton A is sequen-
tial if every path in A is sequential. Finally, we denote
the class of sequential RGX and sequential variable-set
automata by seqRGX and seqVA, respectively.

The first natural question about sequentiality is
whether this property can be checked efficiently. As
the next proposition shows, this is indeed the case.

Proposition 5.5. Deciding if an VA automaton is
sequential can be done in NLOGSPACE.

Sequentiality is a mild restriction over extraction ex-
pressions since it still allows many RGX formulas that
4Here NP-hardness of NonEmp already follows from the re-
sults of [2, 10].



are useful in practice. For example, all extraction ex-
pressions discussed in Section 3 are sequential. Further-
more, as we now show, no expressive power is lost when
restricting to sequential RGX or automata.

Proposition 5.6. For every RGX (VA automaton),
there exists a sequential RGX (sequential VA, respec-
tively) that defines the same extraction function.

We believe that sequentiality is a natural syntactical
restriction5 of how to use variables in extraction ex-
pressions. Namely, one should not reuse variables by
concatenation since this can easily make the formula
unsatisfiable. Furthermore, the more important advan-
tage for users is that RGX and VA automata that are
sequential can be evaluated efficiently.

Theorem 5.7. EvalrseqRGXs and EvalrseqVAs is
in PTIME.

It is important to recall that this result implies, by
Proposition 5.1, that the evaluation of sequential RGX
formulas can be done with polynomial delay. An inter-
esting question we would like to tackle in the future is if
this algorithm can be further optimised to yield a con-
stant delay algorithm [16] like the one presented in [2]
for the so-called navigational formulas – a class strictly
subsumed by sequential RGX.

Now that we have captured an efficient fragment of
RGX, we will analyse what happens with the com-
plexity of the evaluation problem for extraction rules.
First, we show that evaluating rules is in general a hard
problem. In fact, non-emptiness is already NP-hard,
even when restricted to dag-like rules with functional
spanRGX.

Theorem 5.8. NonEmp of functional dag-like rules
is NP-complete.

The difficulty in this case arises from the fact that dag-
like rules allow referencing the same variable from dif-
ferent extraction expressions. A natural way to circum-
vent this is to use tree-like rules. Indeed, the fact that,
in a tree-like rule, different branches are independent,
causes the evaluation problem to become tractable. In
fact, the functionality constraint is not really needed
here, as the result holds even for sequential rules.

Theorem 5.9. Eval of sequential tree-like rules is
in PTIME.

This implies that we should focus on sequential tree-
like rules if we wish to have efficient algorithms for rules.
Luckily, these do not come at a high price in terms
of expressiveness, since Propositions 4.3 and 4.4 imply
that every satisfiable simple rule is equivalent to a union
of sequential tree-like rules.

The previous results show how far we can go when
syntactically restricting the class of RGX formulas,
5Note that [10] already considers a less general version of
sequentiality called functional VA automata, that open and
close all the variables exactly once. There a version of Propo-
sition 5.5 is given with a PTIME bound, as well as a version
of Proposition 5.6 for functional automata.

variable-set automata, or extraction rules in order to
get tractability. The next step is to parametrise the
size of the query not only in terms of the length, but
also in terms of meaningful parameters that are usually
small in practice. In this direction, a natural parame-
ter is the number of variables of a formula or automata
since one would expect that this number will not be
huge. Indeed, if we restrict the number of variables of
a RGX formula or VA automata we can show that the
problem is fixed parameter tractable.

Theorem 5.10. EvalrRGXs and EvalrVAs
parametrised by the number of variables is FPT.

6. STATIC ANALYSIS AND COMPLEXITY
In this section, we study the computational complex-

ity of static analysis problems for document spanners
like satisfiability and containment. Determining the ex-
act complexity of these problems is crucial for query
optimisation [1] and data integration [19], and it gives
us a better understanding of how difficult it is to man-
age RGX formulas and VA automata. We start with
the satisfiability problem for RGX formulas and VA.
Formally, let L be any formalism for defining document
spanners. Then the satisfiability problem of L, denoted
SatrLs, asks given an expression γ P L if there exist a
document d such that JγKd is non-empty.
SatrLs is a natural generalisation of the satisfiabil-

ity problem for ordinary regular languages: if γ does
not contain variables, then asking if JγKd ‰ H for some
document d is the same as asking if the language of γ
is non-empty. It is a folklore result that satisfiability of
regular languages given by regular expressions or NFAs
has low-complexity [14]. Unfortunately, in the informa-
tion extraction context, this problem is intractable even
for spanRGX.

Theorem 6.1. SatrVAs and Sat of extraction rules
are NP-complete. Furthermore, SatrspanRGXs is NP-
hard.

These results show that satisfiability is generally NP-
complete for all information extraction languages we
consider in this paper. The next step is to consider syn-
tactic restrictions of RGX or VA, like e.g. sequentiality
introduced in Section 5. Indeed, with sequentiality we
can restore tractability.

Theorem 6.2. SatrseqVAs is in NLOGSPACE.

It is interesting to note that this result is very similar to
satisfiability of finite state automata: given a sequential
VA the NLOGSPACE algorithm simply checks reachabil-
ity between initial and final states. This again shows the
similarity between finite state automata and VA if the
sequential restriction is imposed.

Next, we consider extraction rules combined with the
sequential or functional spanRGX. Similarly as before,
Sat of extraction rules remains intractable even for the
class of functional dag-like rules. However, if we con-
sider sequential tree-like rules we can restore tractability
since tree-like rules are always satisfiable.



Theorem 6.3. Sat of functional dag-like rules is
NP-hard. Furthermore, any sequential tree-like rule is
always satisfiable.

It is important to make the connection here between
regular expressions, sequential RGX and sequential
tree-like rules: all formalisms are trivially satisfiable.
In some sense, this gives more evidence that sequential
RGX and sequential tree-like rules are the natural ex-
tensions of regular expressions, as they inherit all the
good properties of its predecessor.

We continue by considering the classical problem of
containment of expressions. Formally, for a language
L we define the problem ContainmentrLs, which,
given two expressions γ1 and γ2 in L, asks whether
Jγ1Kd Ď Jγ2Kd holds for every document d. It is
well known that containment for regular languages is
PSPACE-complete [25], even for restricted classes of reg-
ular expressions [20]. Since our expressions are exten-
sions of regular expressions and automata, these results
imply that a PSPACE bound is the best we can aim for.
Given that the complexity of evaluation and satisfia-
bility for VA increases compared to regular languages,
one would expect the complexity of containment to do
the same. Fortunately, this is not the case. In fact,
containment of all infromation extraction languages we
consider is PSPACE-complete.

Theorem 6.4. Containment of extraction rules or
VA are PSPACE-complete.

Given that all RGX subfragments contain regular ex-
pressions, it does not make sense to consider the func-
tional or sequential restrictions of RGX to lower the
complexity. Instead, we have to look for subclasses of
regular languages where containment can be decided ef-
ficiently like, for example, deterministic finite state au-
tomata [14]. It is well-known that containment between
deterministic finite state automata can be checked in
PTIME [25]. Then a natural question is: what is the
deterministic version of VA? One possible approach is
to consider a deterministic model that, given any doc-
ument produces a mapping deterministically. Unfortu-
nately, this idea is far too restrictive since it will force
the model to output at most one mapping for each doc-
ument. A more reasonable approach is to consider an
automata model that behaves deterministically both in
the document and the mapping. This can be formalised
as follows: a VA pQ, q0, qf , δq is deterministic if for ev-
ery p P Q and v P Σ Y tx$,% x | x P Vu there exists
at most one q P Q such that pp, v, qq P ∆. That is, the
transition relation of a deterministic VA is a function
with respect to both Σ and V. Although the determin-
istic version of VA seems straightforward, as far as we
know, this is the first attempt to introduce this notion
for infromation extraction languages.

The first natural question to ask is whether determin-
istic VA can still define the same class of mappings as
the non-deterministic version. Indeed, one can easily
show that every VA can be determinised by following
the standard determinisation procedure [14].

Proposition 6.5. For every VA A, there exists a de-
terministic VA Adet such that JAKd “ JAdetKd for every
document d.

As mentioned previously, the motivation of having a de-
terministic model is to look for subclasses of VA where
Containment has lower complexity. We can indeed
show that this is the case for deterministic VA, although
the drop in complexity is not as dramatic as with regu-
lar languages.

Theorem 6.6. Containment of deterministic VA
is in Πp

2. Moreover, Containment of deterministic
sequential VA is coNP-complete.

Although containment of deterministic models is bet-
ter than in the general case, the complexity is still high.
By taking a closer look at the lower bound (see the ap-
pendix), this happens because of the following two rea-
sons: (i) some mappings extract spans that intersects
at extreme points; and (ii) the automaton can open a
variable, but never close it. This motivates the follow-
ing definition. We say that two spans pi1, j1q and pi2, j2q
are point-disjoint if ti1, j1u X ti2, j2u “ H, and we say
that a mapping µ is point-disjoint if the images of dif-
ferent variables are point-disjoint. A VA automaton is
point-disjoint if all mappings in JγKd are point-disjoint
for every document d. Furthermore, we say that a VA
A is functional if every path in A has the property that
once a variable on this path has been opened, it must
be closed somewhere further along the path, with open-
ing and closing occurring exactly once6. Using these
restrictions we can show tractability of containment.

Theorem 6.7. Containment of deterministic
functional VA that produce point-disjoint mappings is
in PTIME.

7. CONCLUSIONS
In this paper we propose a theoretical framework sup-

porting extraction of information that is potentially in-
complete. We do so by redefining (and simplifying) the
semantics of regex formulas introduced in [8], allowing
them to output mappings instead of relations. This al-
lows us not only to study the properties of the extended
language, but also compare it to the information extrac-
tion approach of [2] based on datalog-like rules. From
our analysis it follows that several variants of expres-
sions proposed by [8] and [2] are in fact equivalent, and
that obtaining an efficient algorithm for enumerating all
of their outputs is generally not possible. To overcome
the latter, we isolate a class of sequential regex formu-
las, which extend the functionality constraint of [8], and
show that these can be efficiently evaluated both in iso-
lation, and when combined into tree-like rules of [2].
Finally, the good properties of sequential formulas and
tree-like rules are also preserved when considering main
static tasks, thus suggesting that they have the poten-
tial to serve as a theoretical base of information extrac-
tion languages.
6Note that functional automata of [10] require every variable
to be opened and closed exactly once.
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APPENDIX
A. DEFINITIONS

Extended Definition for Variable Automata
For the proofs in this appendix we will use an equivalent, though more precise, definition for variable automata. This
definition is an adaption of the original definition given in [8] that allows for mappings instead of total functions.

Variable-stack automaton. This class of automata operates in a way analogous to RGX; that is, it behaves as
a usual finite state automaton, except that it can also open and close variables. To mimic the way this happens in
RGX, variable-stack automata use a stack in order to track which variables are opened, and when to close them.

Formally, a variable-stack automaton (VAstk) is a tuple pQ, q0, qf , δq, where: Q is a finite set of states; q0 P Q is
the initial state; qf P Q is the final state; and δ is a transition relation consisting of triples of the forms pq, w, q1q,
pq, ε, q1q, pq, x$, q1q or pq,%, q1q, where q, q1 P Q, w P Σ, x P V, $ is a special open symbol, and % is a special close
symbol. For a VAstk automaton A we define the set varpAq as the set of all variables x such that x$ appears in
some transition of A.

A configuration of a VAstk automaton A is a tuple pq, V, Y, iq, where q P Q is the current state; V Ď varpAq is the
stack of active variables; Y Ď varpAq is the set of available variables; and i P r1, |d| ` 1s is the current position. A
run ρ of A over document d “ a1a2 ¨ ¨ ¨ an is a sequence of configurations c0, c1, . . . , cm where c0 “ pq0,H, varpAq, 1q
and for every j P r0,m´ 1s, one of the following holds for cj “ pqj , Vj , Yj , ijq and cj`1 “ pqj`1, Vj`1, Yj`1, ij`1q:

1. Vj`1 “ Vj , Yj`1 “ Yj , and either

(a) ij`1 “ ij ` 1 and pqj , aij , qj`1q P δ (ordinary transition), or
(b) ij`1 “ ij and pqj , ε, qj`1q P δ (ε-transition).

2. ij`1 “ ij and for some x P varpAq, either

(a) x P Yj , Vj`1 “ Vj ¨ x, Yj`1 “ Yjztxu, and pqj , x$, qj`1q P δ (variable insert), or
(b) Vj “ Vj`1 ¨ x, Yj`1 “ Yj and pqj ,%, qj`1q P δ (variable pop).

The set of runs of A over a document d is denoted RunspA, dq. A run ρ “ c0, . . . , cm is accepting if cm “

pqf , Vm, Ym, |d| ` 1q. The set of accepting runs of A over d is denoted ARunspA, dq. Let ρ P ARunspA, dq, then
for each variable x P varpAqzpYmY Vmq there are configurations cb “ pqb, Vb, Yb, ibq and ce “ pqe, Ve, Ye, ieq such that
Vb is the first one in the run where x occurs and Ve (with e ‰ m) is the last one in the run where x occurs; the
span pib, ieq is denoted by ρpxq. The mapping µρ is such that µρpxq is ρpxq if x P varpAqzpYm Y Vmq, and undefined
otherwise. Finally, the semantics of A over D, denoted by JAKd is defined as the set tµρ | ρ P ARunspA, dqu.

Note here that the only difference between our definition and [8] is how we define accepting runs and the mappings
µρ. In particular, we do not impose that all the variables in varpAq should be used in the run, and we also allow
some of them to remain on the stack. Furthermore, we leave our mappings undefined for any unused variable.

Variable-set automaton. Following [8] we introduce a more general class of automata which allow defining
mappings that are not necessarily hierarchical as in the case of VAstk automata and RGX. We call these automata
variable-set automata (VA). The definition of variable-set automata is almost identical to the one of VAstk automata,
but we now have transitions of the form pq,%x, q1q instead of pq,%, q1q, that allow us to explicitly state which variable
is closed. Likewise, instead of a stack, they operate using a set, thus allowing us to add and remove variables in any
order. The only difference between VA and VAstk automata is in the condition 2.(b) of a run, where we directly
stipulate which variable should be removed from the set Vj (this used to be a stack in VAstk). Acceptance is defined
analogously as before. To avoid repeating the same definition we refer the reader to [8] for details, taking note of
the new semantics.

B. PROOFS FROM SECTION 3

Proof of Theorem 3.2
The definition presented in this paper and the one in [8] are syntactically identical. Therefore, it only remains to
show that their semantics are equivalent. The semantics of Regex formulas in [8] are defined using the notion of parse
trees. Given a formula γ and a document d, a γ-parse is a tree where the internal nodes correspond to operators
and variables according to the structure of γ while the leaves correspond to alphabet symbols that compose the
document d. It is straightforward to prove that, in the functional case, both definitions are equivalent since there
is a direct correspondence between the subtree rooted at an specific node, and the first component of the tuples in
rγsd.
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Figure 1: Example of the elimination of state s in the state elimination technique (as shown in [8]).

Proof of Theorem 3.3
The definition of the semantics of span regular expressions in [2] is similar to the one presented in this paper,
except for three aspects: (1) the definition is based on total functions (instead of mappings), (2) variables which
are not given an specific value can take any value, and (3) expressions of the form xtΣ˚u ¨ xtΣ˚u are satisfiable.
By considering only proper expressions we address (3). By letting JγK1d “ M ’ JγKd we address (1) because M
only contains total functions (and so does JγK1d as a consequence), and we address (2) because M contains all total
functions and, therefore, unassigned variables from mappings in JγKd will be given all possible values.

Proof of Theorem 3.4
We present an sketch of the proof of Theorem 4.4 presented in [8], along with the necessary modifications to adjust
to our more general semantics.

First, we show that every RGX has an equivalent VAstk. This can be proved by adapting the well-known Thomp-
son’s Construction Algorithm [14], that takes a regular expression as input and constructs an equivalent automaton.
The only difference is that we extend the algorithm to handle expressions of the form xtγu by respectively adding
an open and close transition for variable x connected to the initial and final states of the automaton constructed for
γ. It is straightforward to prove by induction over the structure of regex formulas that the constructed automaton
will be equivalent to the input expression.

For the opposite direction, we can use the state elimination technique [14]. This technique consists in allowing
transitions to be labeled with regular expressions and eliminating states by replacing them with equivalent transitions
(see Figure 1). Let A “ pQ, q0, qf , δq be the input vstk automaton.

First, we add to A the necessary ε-transitions so that the incoming transitions of each state either: are all variable
transitions, or contain no variable transitions. Then, using the aforementioned technique, we remove all states except
for the initial state, the final state, and all those that have incoming variable transitions (we assume that the final
state has no incoming variable operations). Notice that after this, every transition will be associated with exactly one
variable operation (except for the transitions that end in the final state). This is what [8] denominates a vstk-graph
automaton. Let this resulting vstk-graph automaton be A1.

Second, we will construct a new automaton by considering paths in A1 that go from the initial state to the final
state. This step has the main difference with the original proof because we will consider all paths of length at most
2 ¨ |V| ` 1, whereas the original considers only those which are exactly of that length. This is because the original
proof considered only functional paths, i.e. those that open and close all variables, and that therefore use exactly
2 ¨ |V| variable operations. For each path with the aforementioned characteristics, we build a new automaton that
consists solely of that path, called vstk-path automaton in [8], resulting in a set of such automata. At this step, we
can easily remove in each path the variable operations that open a variable but never close it again. (Remember
that valid runs may open a variable and never close it. The result, however, is the same as if the variable was not
opened.) The new automaton A2 is constructed by merging the initial states and the final states of all the vstk-path
automata, resulting in what [8] calls a vstk-path union automaton.

Finally, it is very easy to see how to obtain a RGX that is equivalent to a certain vstk-path automaton: if the
vstk-path has a valid run, then we simply concatenate the labels of the transitions, replacing x$ for xt and % for u.
Therefore, the final RGX is that which corresponds to the disjunction of the RGX equivalent to each of the vstk-path
automata in A2.

It is not difficult to prove that the final RGX will equivalent to A, since it is clear from the semantics of RGX and
VAstk that each of the steps will preserve the equivalency of the expressions.

Proof of Theorem 3.5
We present an sketch of the proof of Theorem 4.6 presented in [8], along with the necessary modifications to adjust
to our more general semantics.

From the proof of Theorem 3.4, it is very clear that each RGX has an equivalent VAset automaton, since the
construction procedure described can be trivially adapted to VAset automata.

To show that every hierarchical VAset automaton has an equivalent RGX, we will use the same vstk-path union



construction from the previous proof (which will result in a vset-path union automaton in this case). Let A be
the input vset automaton and let A1 be the resulting vset-path union automaton. It can be proven, without much
difficulty, that if A is hierarchical, then A1 will be hierarchical. It is proved in [8] that if A1 is hierarchical, then
its variable operations can be reordered so that they are “correctly nested”. After this reordering, a RGX can be
obtained from A1 in the same manner than the previous proof.

Proof of Theorem 3.6
We present an sketch of the proof of Theorem 4.14 presented in [8], along with the necessary modifications to adjust
to our more general semantics.

We expand the theorem to separate the proof into two containments and an equivalence:

VAstk
tY,π,’u

Ď VAtY,π,’u ” VA Ď VAstk
tY,π,’u

The first containment follows from Theorem 3.5.
The equivalence can be proved as follows. Unions can be simulated in VA by simply using ε-transitions at the start

of different automata. Projections can be simulated by using the path-union automata construction and replacing
the variable transitions of the projected variables with ε-transitions. Joins are simulated in a similar way to NFA
intersections: by constructing an automaton that runs both automata “in parallel”, taking care of opening and
closing shared variable at the same time. For this to work, however, the automata need to first be transformed
into lexicographic VA. These work the same way as VA, but guarantee that for every document d and mapping µ
accepted by an automaton A, there is an accepting run in A that performs the variable operations needed to produce
µ in a specific order.

We finish by explaining why the second containment holds. As usual, the path-union automata construction can
be used to simplify the proof, meaning that we only need to consider path automata. A path VA can be simulated
by a VAstk by introducing auxiliary variables that split spans which may have been non-hierarchical, using joins to
ensure that these auxiliary variables correspond to the original variables, and projecting away the auxiliary variables.
For the full construction, refer to the proof of Lemma 4.13 in [8].

C. PROOFS FROM SECTION 4

Proof of Theorem 4.1
First we will show that there is an extraction rule that has no equivalent RGX. As shown in [8], functional RGX
are hierarchical. It is clear that this also extends to non-functional RGX. With this mind, it is easy to realize that
the extraction rule x ^ x.Σ˚ ¨ y ¨ Σ˚ ^ x.Σ˚ ¨ z ¨ Σ˚ is not hierarchical, since y and z might be assigned spans that
overlap in a non-hierarchical way. This rule, therefore, cannot be expressed by a RGX.

Now we prove that there is a variable regex that has no equivalent extraction rule. Consider the following variable
regex: γ “ pa ¨ xtbuq _ pb ¨ xtauq. There are only two ways in which a document and mapping can satisfy it: (1)
d1 “ ab and µ1pxq “ p2, 3q; or (2) d2 “ ba and µ2pxq “ p2, 3q. Suppose that there is an extraction rule ϕ that is
satisfied only by these two document-mapping pairs. By the structure of extraction rules, we know that there is an
extraction expression x.ϕx such that ϕx is equivalent to the expression a_ b; if not, we can construct a document d3
that satisfies ϕ and is different from d1 and d2. By the same reason, we know that ϕ0, the root extraction expression
of ϕ, must be equivalent to ax _ bx. Notice, however, that the document d3 “ aa and the mapping µ3 such that
µ3pxq “ p2, 3q satisfy ϕ. We have reached a contradiction, and therefore conclude that such ϕ does not exist.

Proof of Theorem 4.2
Consider an arbitrary simple rule that is functional. We start by analyzing the sort of values that a mapping can
assign to the variables which form a cycle. For this, take any rule ϕ and assume that there is a simple cycle x1, . . . , xn
appearing in Gϕ and a mapping µ satisfying ϕ. Then the following must hold:

1. All variables in the cycle must be assigned the same value. This follows from the fact that in a simple rule each
edge px, yq in Gϕ implies that µpxq contains µpyq (see Figure 2a).

2. Every variable reachable from a cycle, but not inside it, must be assigned the empty content. This follows from
the observation above, plus the fact that edges px, yq and px, zq in Gϕ imply that x and y appear in the same
spanRGX. By the structure of spanRGX, if x ‰ y then µpyq and µpzq must be disjoint (see Figure 2b).

3. If the cycle has a chord, then all the variables inside it must be assigned the empty content. Here a chord means
that we have a path from some xi to some xj inside Gϕ which consists of nodes not belonging to our cycle, or
there is a direct edge between them which is not part of the cycle. In the case there is an intermediate node,
we know that it must be assigned ε, therefore xj and all other nodes in the cycle must be ε as well. If the edge



Figure 2: Different cycle arrangements.

(a) Simple cycle. (b) Cycle with reachable nodes. (c) Cycle with a chord.

is direct, then by the definition of a chord, xj is not a successor of xi in the cycle, so just as in the previous
case, the content of the successor of xi and the content of xj must be disjoint and equal, which is only possible
if they are ε (see Figure 2c).

The procedure for eliminating cycles from simple rules is based on the following colouring scheme for a graph Gϕ
associated with the rule ϕ. Let ϕ be an extraction rule with variables x1, . . . xn. We will colour a node xi black if:

‚ xi.ϕi appears in ϕ and ϕi is such that, when treating it as a regular expression, every word that can be derived
from it must contain a symbol from Σ.

We then paint the graph by assigning the colour red to all black nodes, and all nodes which can reach a black node.
All other nodes are coloured green. It is clear that this procedure can be carried out in polynomial time, since
reachability takes only polynomial time. Note that in a black node coming from a conjunct of the form xi.ϕi, the
content of each variable appearing in ϕi must be strictly contained in the content of the variable xi. This is because
ϕi is functional and, since we painted its node black, it must have symbols from Σ which are not part of the content
of the variables used in ϕ. Also note that each cycle has to be coloured using the same colour.

If we now have a simple cycle x1, . . . , xn we can eliminate it by considering its colour:

‚ If the cycle is coloured red, then the rule is not satisfiable, so we can replace it by an arbitrary unsatisfiable
dag-like rule. We have two cases here. First, if a cycle contains a black node, then the content of its successor
must be strictly contained inside its own content, which cannot happen by the analysis above. Second, if a node
x in the cycle can reach some black node not inside the cycle, then its content must be different from ε, which
contradicts point (2) of the above analysis.

‚ If the cycle is green we can simplify it using an auxiliary variable. Let u1, . . . , um be the variables that are not
part of the cycle and for which there is an edge pui, xiq. Let y1, . . . , yl be the variables that are not part of
the cycle and are reachable from some xi (they must have empty content, as proved before). We then add an
auxiliary variable w and an edge from it to x1. Each expression associated with some ui is changed so that
it uses w instead of xi, and all expression associated with some yi are changed to yi.ε. Next, for i ă n, an
expression xi.ϕi is changed to xi.ϕ

1
i, where ϕ1i maintains the possible orderings of variables according to ϕi. This

is done by removing all other letters or starred subexpressions, and is explained in detail later in this proof. For
xn, we replace the occurrences of x1 by Σ˚. This yields an equivalent simple rule without the mentioned cycle.

As an example of how the rewriting above works, consider the rule x.y^ y.z^ z.ux. This rule can be rewritten to
w.x^x.y^ y.z^ z.u ¨Σ˚^u.ε by introducing the auxiliary variable w, forcing the variable u to have empty content,
and breaking the cycle at z.

Of course, here we explained only how a single cycle can be removed, but how do we transform a rule with
multiple cycles in its graph? For this we start by identifying the strongly connected components of our graph Gϕ.
Each component can then be either: (a) a single node, (b) a simple cycle, or (c) a simple cycle with additional edges.
In the latter two cases, if any component is coloured red, we know that the rule is unsatisfiable, so we can replace it
by an arbitrary unsatisfiable dag-like rule. In the case they are coloured green, we can deploy the procedure above
to remove the cycles, taking care that in the case (b) our variables can take an arbitrary, but always equal value,
while in the case (c) they must be equal to the empty content. In both cases, all the variables reachable from the
component are made ε.

Now we will precisely describe the procedure for eliminating cycles in rules. Let ϕ “ ϕx0
^ x1.ϕx1

^ ¨ ¨ ¨ ^ xm.ϕxm
be a simple rule such that each ϕxi (0 ď i ď m) is functional, and let Gϕ be its graph. We will assume that for every
variable x P varpϕq there is an extraction expression x.ϕx in ϕ; if not, we can simply add the extraction expression
x.Σ˚. We will now describe in detail the procedure that produces an equivalent dag-like rule α.

First, we will colour the nodes in Gϕ. For this, we define a function ν : spanRGX Ñ spanRGX that will indicate
when a variable cannot have empty content. Here, H has the usual definition in the regular expression context, with
the following properties: H ¨ α “ H, H_ α “ α, H˚ “ ε, where α is any expression.

‚ νpaq “ H, where a P Σ.

‚ νpxq “ x, where x P V.

‚ νpϕ1 ¨ ϕ2q “ νpϕ1q ¨ νpϕ2q.



‚ νpϕ1 _ ϕ2q “ νpϕ1q _ νpϕ2q.

‚ νpϕ˚q “ ε.

Thus, we paint a node xi black if νpϕiq “ H. After this, we paint a node red if it is black or if it can reach a black
node. We do this by painting black nodes red and then “flooding” the graph by doing depth-first search from black
nodes using the edges in reverse.

Second, we run Tarjan’s Strongly Connected Components Algorithm ([26]). This algorithm will compute the
strongly connected components (SCCs) in the graph and output them in topological order with respect to the dag
formed by the SCCs. We denote the ordered SCCs as S1, . . . , Sl, where each Si (1 ď i ď l) is a set of nodes.

Finally, we process the SCCs in order. Each SCC Si will be of one of the following types: (1) Si is a single node;
(2) Si is a simple cycle; or (3) Si contains a cycle and has additional edges (this includes everything that does not
fall under types (1) and (2)). Notice that the type of Si can easily be computed in polynomial time. Now, according
to the type, do the following:

‚ Type (1): let Si “ tyu. We copy the extraction expression y.ϕy to α.

‚ Type (2): let Si “ ty1, . . . , yku, such that pyk, y1q and pyj , yj`1q are edges in Gϕ, for j P r1, k ´ 1s. If Si has
a red node, then the rule is unsatisfiable and we may stop and replace α with any unsatisfiable dag-like rule.
Otherwise, we add a new auxiliary variable ui and replace every appearance of variables of Si in α with ui. Add
the following extraction expressions to α:

– ui.y1;

– yj .νpϕyj q, for j P r1, k ´ 1s;

– and yk.ψ, where ψ is νpϕykq with all appearances of y1 replaced with pΣ˚q.

After this, mark every SCC reachable from Si as a type (3) SCC.

‚ Type (3): let Si “ ty1, . . . , yku. If Si has a red node, then the rule is unsatisfiable and we may stop and replace
α with any unsatisfiable dag-like rule. Add an auxiliary variable ui and add the following rules to α:

– ui.y1 ¨ ¨ ¨ yk;

– yj .ψ, for j P r1, ks where ψ is νpϕyj q with all appearances of variables y1, . . . , yk replaced with ε.

After this, mark every SCC reachable from Si as a type (3) SCC.

The resulting rule α will be dag-like and equivalent to ϕ. If we take into account the observations presented at
the beginning of this proof, then it is straightforward to verify that the transformations outlined above will remove
the cycles in Gϕ while preserving equivalence.

Proof of Proposition 4.3
Let ϕ “ ϕ0^x1.ϕ1^¨ ¨ ¨^xm.ϕm be a rule such that each ϕi is a spanRGX, where i P r0,ms. We can transform each
ϕi into an equivalent disjunction ψi,1_¨ ¨ ¨_ψi,li where each ψi,j is a functional spanRGX. This is done by using the
PUstk construction from Theorem 3.4, originally presented in [8]. Specifically, we transform ϕi into a VAstk A and
then into a PUstk A

1. It is clear that each path in A1 can be directly transformed into a functional spanRGX (since
paths do not have disjunctions of variables). Therefore, each ψi,j will be a functional spanRGX. Notice, however,
that this transformation might produce exponentially many ψi,j with respect to the size of ϕi.

As an example of this step, the spanRGX px_yq¨pz_wq is equivalent to the disjunction pε_x¨z_x¨w_y ¨z_y ¨wq.
Note that each of the disjuncts is independently functional.

Rule ϕ will be equivalent to the set of rules that consist of all possible conjunctions that can be made by taking one
disjunct ψi,j from every extraction expression (i P r0,ms). Formally, ϕ will be equivalent to tψ0,k0 ^ x1.ψ1,k1 ¨ ¨ ¨ ^

xm.ψm,km | pk0, . . . , kmq P r1, l0s ˆ ¨ ¨ ¨ ˆ r1, lmsu. Note that this will produce another exponential blow-up in size.
The resulting set will therefore be double-exponential in size with respect to ϕ.

For example, consider the rule ϕ “ px_ yq ^ x.pa_ bq ^ y.pcq. Then, ϕ is equivalent to the following set of rules:

tx^ x.a^ y.c, x^ x.b^ y.c, y ^ x.a^ y.c, y ^ x.b^ y.cu

Now we prove that the transformation is correct. The correctness of the transformation from spanRGX to PUstk

carries from the original proof without much modification. Given the definition of the semantics for rules, it is fairly
easy to observe that taking every possible combination of the disjuncts in each extraction expression will produce
an equivalent set of rules.

Finally, by applying Theorem 4.2, we can transform this union of functional rules into a union of functional dag-like
rules.



Proof of Proposition 4.4
In order to prove this proposition, we will first state and prove two auxiliary lemmas which will be necessary for this
proof.

Lemma C.1. Every tree-like expression can be transformed into an equivalent RGX.

Proof. We will transform tree-like extraction rules into RGX by recursively nesting extraction expressions into
their associated variables. The procedure is as follows. Let θ “ ϕx0 ^x1.ϕx1 ^¨ ¨ ¨^xm.ϕxm be a tree-like extraction
rule, and let Gθ be its graph. Without loss of generality, we assume that every variable x P varpθq appears on the
left side of an extraction expression (if not, we can add x.Σ˚). For all i P r0,ms we define a RGX γxi as ϕxi where
each mention of variable y is replaced with ytγyu. The expression γx0 will be a well-formed RGX and equivalent to
θ. It is straightforward to prove this last statement by induction.

As an example, consider the tree-like rule ϕ “ pa ¨x ¨ b ¨ yq^x.pabc ¨ zq^ y.pΣ˚q^ z.pdq. The resulting RGX in this
case would be γ “ a ¨ xtabc ¨ ztduu ¨ b ¨ ytΣ˚u.

It is clear that this procedure terminates since Gθ is a forest. Note, however, that the resulting RGX might be of
exponential size with respect to the input extraction rule, since multiple appearances of the same variable can cause
the expression to grow rapidly when the replacements are made.

Lemma C.2. Unions of tree-like rules and RGX formulas are equivalent.

Proof. We begin by presenting vstk-graph, vstk-path, and vstk-path union, originally defined in [8] (the vset
variants are defined analogously). A vstk-graph is a tuple G “ pQ, q0, qf , δq defined as a vstk-automaton, except that
each transition in δ is of one of the following forms: pq, γ, x$, q1q, pq, γ,%, q1q, and pq, γ, qf q, where q, q1 P Qztqfu,
x P V, and γ is a regular expression over Σ. Configurations are defined in the same way as in the case of vstk-
automata. A run ρ of G on a document d is a sequence of configurations c0, . . . , cm where for all j P r1,m´ 1s the
configurations cj “ pqj , Vj , Yj , ijq and cj`1 “ pqj`1, Vj`1, Yj`1, ij`1q are such that ij ď ij`1 and, depending on the
transition used, one of the following holds:

1. pqj , γ, x$, qj`1q P δ, the substring dpij , ij`1q is in Lpγq, x P Yj , Vj`1 “ Vj ¨ x, and Yj`1 “ Yjztxu;

2. pqj , γ,%, qj`1q P δ, the substring dpij , ij`1q is in Lpγq, Yj “ Yj`1, and Vj “ Vj`1 ¨ x; or

3. pqj , γ, qj`1q P δ (this means qj`1 “ qf ), dpij , ij`1q is in Lpγq, Yj “ Yj`1, and Vj “ Vj`1.

Accepting runs, varpGq, and the semantics of vstk-graph, are defined the same way as in the case of vstk-automata.
A vstk-path P is a vstk-graph that consists of a single path. That is, P has exactly m states q1, . . . , qm “ qf and

exactly m transitions such that there is a transition from q1 to q2, from q2 to q3, and so on. A vstk-path union is
a vstk-graph that consists of a set of vstk-path such that: (1) each vstk-path is sequential, and (2) every pair of
vstk-paths have the same initial state, the same final state, and share no other states.

We define path RGX, a subset of RGX that is simpler to analyze. Formally, a path RGX is an expression that can
be derived using the following grammar with E as the start symbol.

E ::“ xtEu, x P V | pE ¨ Eq | R
R ::“ w, w P pΣY tεuq | pR ¨Rq | pR_Rq | pRq

˚

It is easy to see that path RGX are equivalent to vstk-path automata. This is because path RGX, as vstk-path
automata, do not have disjunctions at a variable level.

With this in mind, we will show that every RGX can be transformed into an equivalent set of tree-like rules. It was
proven in [8, Lemma 4.3 and Theorem 4.4] that functional variable regexes are equivalent to path union stack variable
automata, that is, stack variable automata that consist solely of a union of disjoint paths. This result will also hold
for general RGX, with little modification to the proof. It is apparent that each path in one of these automata will
be equivalent to a path RGX, which implies that every RGX can be transformed into an equivalent union of path
RGX (notice, however, that this union might be exponential in size with respect to the starting expression).

Given this, it only suffices to show that each path RGX is equivalent to a tree-like rule. Let γ be a path RGX.
Given a variable regex α, we denote as α1 the spanRGX that results when replacing every top-level subexpression of
the form xtβu with x. It is easy to notice from the structure of γ that each variable can appear at most once in the
expression. Therefore, we can easily “decompose” γ into an extraction rule by using the following procedure: add
the extraction expression γ1 to the result and, for every subexpression of the form xtγxu in γ, add the extraction
expression x.γ1x to the result. It is apparent that the resulting rule is tree-like, and it is straightforward to prove
that it is equivalent to γ.

The proof that every set of tree-like rules can be transformed into an equivalent RGX follows from Lemma C.1
and the fact that RGXs are closed under union (by usage of the disjunction operator).

With these results in mind, we now proceed to prove the proposition.



Figure 3: Undirected cycle in dag-like rule.
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Let ϕ “ ϕx0 ^ x1.ϕx1 ^ ¨ ¨ ¨ ^ xm.ϕxn be a satisfiable dag-like rule such that each ϕi is a functional spanRGX
(i P r0, ns), and let Gϕ be its graph. Without loss of generality, we assume that for every variable x P varpϕq there
is an expression x.ϕx.

Consider any pair of nodes x and y such that there are at least two distinct paths u1, . . . , ul1 and v1, . . . , vl2 where
u1 “ v1 “ x and ul1 “ vl2 “ y (see Figure 3). Let µ be a satisfying mapping. Since all expressions are functional,
we know the following: µpxq contains µpu2q and µpv2q; µpu2q and µpv2q contain µpyq; µpu2q and µpv2q are disjoint.
From these facts we can deduce that µpyq must be ε. Therefore, if the rule is satisfiable, y must be painted green.
Furthermore, every variable reachable from y must be assigned ε as content, which means that ϕ may be rewritten as
in the proof of Theorem 4.2 to simplify Gθ for all the nodes reachable from y. This means we need only concentrate
on those undirected cycles that are “near to the root”, since the rest can be removed in this way.

Given ϕ, we first paint all nodes following the procedure from Theorem 4.2. After this, we transform every
spanRGX ϕxi into a disjunction of spanRGX ϕxi,1, . . . , ϕxi,mi by the same procedure from the proof of Theorem C.2.

After this, we generate a new set of rules, where each of this rules consist of a possible combination of extraction
expressions made by taking exactly one disjunct ϕxi,ji for each variable xi. More formally, we generate the set of
rules R “ tϕ0,k0 ^ x1.ϕ1,k1 ^ ¨ ¨ ¨ ^ xn.ϕn,kn | pk0, . . . , knq P r1,m0s ˆ ¨ ¨ ¨ ˆ r1,mnsu.

Given a rule α “ αx0
^ x1.αx1

^ ¨ ¨ ¨ ^ xn.αxn in R, we can now easily transform it into a tree-like rule. Consider,
as before, any pair of nodes x and y such that there are at least two distinct paths u1, . . . , ul1 and v1, . . . , vl2 where
u1 “ v1 “ x and ul1 “ vl2 “ y (the proof can be generalized to more paths easily). Consider, without loss of
generality, that u2 appears to the left of v2 in ϕx. Then, for α to be satisfiable, everything between u2 and v2 in
ϕ must be forced to be ε. Likewise, everything to the right of u3 in ϕu2

and everything to the left of v3 in ϕv2
must be forced to be ε, and so on. This can be done in polynomial-time because it is equivalent to checking if a
regular expression accepts the word ε and checking if certain variables are painted green. As we do this, we rewrite
the spanRGX, removing everything but the variables from the parts that can be ε. If at any point we find an
expression that cannot be empty, we remove α from R. Finally, we remove every occurrence of variable y in ϕvl2´1

,
thus removing the edge from vl2´1 to y in Gα and dissolving the undirected cycle.

For example, consider the following dag-like rule:

px ¨ Σ˚ ¨ yq ^ x.pa ¨ z ¨ b˚q ^ y.pb˚ ¨ z ¨ aq ^ z.pΣ˚q

This rule is satisfiable only by the document d “ aa and the mapping µ such that µpxq “ p1, 2q, µpyq “ p2, 3q, and
µpzq “ p2, 2q. By applying the procedure we described, we obtain the following rule:

px ¨ yq ^ x.pa ¨ zq ^ y.pdq ^ z.pεq

It is simple to observe that this rule is equivalent and tree-like.
Given the definitions of the semantics of extraction rules and spanRGX, it can be proved without difficulty that the

final set of tree-like rules will be equivalent to the initial dag-like rule. Furthermore, it is simple to see that the final
expression will be of double-exponential size with respect to the initial dag-like rule: it will experience one exponential
blow-up when the spanRGX are transformed into disjunctions of path spanRGX, and another exponential blow-up
when we generate a rule for each possible combination of disjuncts.

Proof of Theorem 4.5
By Proposition 4.3 we know that simple rules are equivalent to unions of functional dag-like rules, by Proposition 4.4
we know that satisfiable dag-like rules are equivalent to unions of functional tree-like rules. Finally, by Lemma C.2
we know that unions of functional tree-like rules are equivalent to RGX.

D. PROOFS FROM SECTION 5

Proof of Theorem 5.1
The algorithm for enumerating all mappings for an expression γ on a document d is described in Algorithm 2. For
enumerating all mappings, one would have to call Enumeratepγ, d,H,Vpγqq. We denote as “output” the operation



Algorithm 2 Enumerate all spans in JγKd. Here, γ is the expression being evaluated, d is the document, µ is the
current mapping, and V is the set of available variables.

1: procedure Enumerate(γ, d, µ, V )
2: if EvalrLspγ, d, µq is false then return

3: if V “ H then output µ and return

4: let x be some element from V
5: for s P spanpdq Y tKu do
6: Enumerate(γ, d, µrxÑ ss, V ztxu)

of outputting a mapping and then continuing computation from that point. When Vpγq is empty, then we simply
return the empty mapping H if EvalrLspγ, d,Hq, and nothing otherwise.

It is easy to observe that µ P JγKd if and only if EvalrLspγ, d, µKq, where µKpxq is µpxq if x P dompµq, and K
otherwise. It is also easy to observe that for every mapping µ, it holds that H Ď µ. From these two observations,
and given a particular µ P JγKd, it is straightforward to prove by induction that the algorithm will eventually output
µ.

Finally, we prove that this is a polynomial delay algorithm. Notice that the algorithm will only recurse if there
exists a mapping µ1 such that µ1 P JγKd and µrxÑ ss Ď µ1. Since |spanpdq Y tKu| ď |d|2 ` 1 and the algorithm can
only recurse up to a depth of |V|, the function EvalrLs will be called at most |V|p|d|2` 1q times before an output is
reached (or the algorithm terminates). Given that EvalrLs can be decided in polynomial time, the time to produce
the next output will be polynomial.

Proof of Theorem 5.2
To prove that NonEmprspanRGXs is NP-hard, we provide a reduction from 1-IN-3-SAT. The input of 1-IN-3-SAT is
a propositional formula α “ C1 ^ ¨ ¨ ¨ ^Cn, where each Ci (1 ď i ď n) is a disjunction of exactly three propositional
variables (negative literals are not allowed). Then the problem is to verify whether there exists a satisfying assignment
for α that makes exactly one variable per clause true. 1-IN-3-SAT is known to be NP-complete (see [13]).

For the reduction, we construct a spanRGX γα such that JγαKd is not empty if and only if there exists a satisfying
assignment for α that makes exactly one variable per clause true, with d “ ε. In this reduction, we assume that for
every clause Ci in α (1 ď i ď n), it holds that Ci “ ppi,1 _ pi,2 _ pi,3q, where each pi,j is a propositional variable.
Notice that distinct clauses can have propositional variables in common, which means that pi,j can be equal to pk,`
for i ‰ k.

To define γα we consider two sets of variables: txi,j | 1 ď i ď n and 1 ď j ď 3u and tyi,j,k,` | 1 ď i ă k ď n
and 1 ď j, ` ď 3u. With these variables we encode the truth values assigned to the propositional variables in α; in
particular, a span is assigned to the variable xi,j if and only if the propositional variable pi,j is assigned value true.
Moreover, γα is used to indicate that exactly one of pi,1, pi,2 and pi,3 is assigned value true, which is essentially
represented by a spanRGX of the form pxi,1 _ xi,2 _ xi,3q, indicating that exactly one of xi,1, xi,2 and xi,3 has to be
assigned a span. Besides, γα is used to indicate that if pi,j is assigned value true, then we are forced to assign value
false not only to pi,k with k ‰ j but also to some propositional variables in other clauses. This idea is formalized by
means of the notion of conflict between propositional variables. More precisely, we say that pi,j is in conflict with
pk,` if i ă k and one of the following conditions holds:

‚ there exists m P t1, 2, 3u such that pi,j “ pk,m and m ‰ `;

‚ there exists m P t1, 2, 3u such that pi,m “ pk,` and m ‰ j.

Thus, if pi,j is assigned value true and pi,j is in conflict with pk,`, then we know that pk,` has to be assigned value
false. In γα, the variable yi,j,k,` is used to indicate the presence of such a conflict; in particular, a span is assigned
to yi,j,k,` if and only if the propositional variable pi,j is in conflict with the propositional variable pk,`. We collect
all the conflicts of pi,j in the set conflictppi,jq:

tyi,j,k,` | pi,j is in conflict with pk,`u Y tyk,`,i,j | pk,` is in conflict with pi,ju

The variable yi,j,k,` is used as follows in γα. If some spans have been assigned to xi,j and yi,j,k,`, then no span
is assigned to xk,`, as the propositional variable pi,j has been assigned value true and pi,j is in conflict with the
propositional variable pk,`. To encode this restriction, define the spanRGX γi,j as the concatenation of the variables
in conflictppi,jq in no particular order. For example, if

conflictpp3,1q “ ty1,2,3,1, y1,3,3,1, y3,1,4,1, y3,1,5,2u,

then

γ3,1 “ y1,2,3,1 ¨ y1,3,3,1 ¨ y3,1,4,1 ¨ y3,1,5,2



Figure 4: Reduction of Proposition 5.4
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Finally, for every clause Ci (1 ď i ď n) define spanRGX γi as:

pxi,1 ¨ γi,1 _ xi,2 ¨ γi,2 _ xi,3 ¨ γi,3q

With this notation, we define spanRGX γα as follows:

γα “ γ1 ¨ ¨ ¨ γn

At this point it is important to understand how the variables yi,j,k,` are used in the spanRGX γα. Assume that
p1,1 “ p2,1, so that p1,1 is in conflict with p2,2. Then if we assigned value true to p1,1, we have that p2,1 is also
assigned value true, so p2,2 has to be assigned value false. This restriction is encoded by using the variable y1,1,2,2.
More precisely, γα “ γ1 ¨ γ2 ¨ ¨ ¨ γn, where γ1 is of the form:

px1,1 ¨ ¨ ¨ y1,1,2,2 ¨ ¨ ¨ _ x1,2 ¨ γ1,2 _ x1,3 ¨ γ1,3q,

given that y1,1,2,2 P conflictpp1,1q, and γ2 is of the form:

px2,1 ¨ γ2,1 _ x2,2 ¨ ¨ ¨ y1,1,2,2 ¨ ¨ ¨ _ x2,3 ¨ γ2,3q,

given that y1,1,2,2 P conflictpp2,2q. Thus, if x1,1 is assigned a span, representing the assignment of value true to the
propositional variable p1,1, then also y1,1,2,2 is assigned a span (both spans will have empty content by the definition
of γα and d). If we now try to assign a span to x2,2, then we are forced to assign a span to y1,1,2,2 again. This,
however, violates the definition of the semantics of RGX, because the mappings for concatenated expressions must
have disjoint domains (in other words, they cannot both assign the same variable).

Based on the previous intuition, it is straightforward to prove that JγαKd is not empty if and only if there exists a
satisfying assignment for α that makes exactly one variable per clause true, which was to be shown. As before, we
take d to be ε.

Proof of Proposition 5.3
Since funcRGX is a subset of sequential RGX, this is implied by Theorem 5.7.

Proof of Proposition 5.4
We will prove that NonEmp of relational VAset automata is NP-complete and we will also prove that the
ModelCheck problem is NP-complete. The ModelCheck problem receives as input an expression γ, a docu-
ment d, and a mapping µ, and asks whether µ P JγKd.

The membership of both problems to NP is very easy to prove. In both cases we only need to guess a run for the
variable automaton (that conforms to the input document and mapping) and verify that it is accepting. The size
of the runs that we need to consider is bounded by a polynomial because the document and the available variables
are part of the input. Furthermore, we only need to consider sequences of consecutive ε-transitions that are shorter



than the number of states in the variable automaton. This is because longer sequences will inevitably have a cycle,
which can be removed without altering the acceptance of the run.

To prove NP-hardness of the ModelCheck problem we will describe a reduction from the Hamiltonian path
problem. This problem consists in deciding whether or not a directed graph has a path that visits every vertex
exactly once, and it is known to be NP-hard ([13]). Let G “ pV,Eq be a graph and let A “ pQ, q0, qf , δq be the
variable automaton that results from reducing G. We will construct A in such a way that G has a Hamiltonian path
if and only if µε P JAKd, where d “ ε and µε is such that µεpxq “ p1, 1q for all x P varpAq.

The automaton A is built as follows: (1) for every vertex v P V , add states pv,1, pv,2, . . . , pv,|V | to Q; (2) for
every edge pu, vq and every i P r1, |V | ´ 1s add the transitions ppu,i,% xv, pv,i`1q, pq0,% xv, pv,1q to δ; (3) add two
fresh states for q0, qf and, for every v P V add transitions ppv,|V |, ε, qf q, pq0, xv $, q0q to δ. Figure 4 shows an
example of this reduction. Notice that every accepting run of A assigns every variable to the span p1, 1q, since to
go from q0 to qf it must go through |V | closing transitions (which must be different if the run is valid). Thus,
A is relational. Because the states and transitions in A correspond to the vertices and edges in G there will be a
one-to-one correspondence between runs in A and Hamiltonian paths in G. That is, if there is an accepting run that
goes through states pv1,1, . . . , pv|V |,|V |, then there is a Hamiltonian path through the vertices of G. Proving this last
statement is straightforward given the way A was built.

To see why the NonEmp is also NP-hard, notice that in the aforementioned construction, when graph G does not
have a Hamiltonian path there will be no accepting runs. Therefore, it holds that JAKd is not empty if and only if
G has a Hamiltonian path.

Proof of Proposition 5.5
We describe an algorithm for checking if a variable automaton is sequential that is in coNLOGSPACE, which is known
to be equal to NLOGSPACE ([15]).

The algorithm will non-deterministically traverse the automaton searching for a non-sequential path. To do so,
it remembers the current variable’s status, which can be either available, open or closed. If it finds a transition
which is incompatible with the current status (e.g. opening an already open variable), it accepts, indicating that the
variable automaton is not sequential. More formally, let A “ pQ, q0, qf , δq be a variable automaton, let qcurr denote
the current state and let scurr denote the current variable’s status. For every variable x P V the algorithm proceeds
as follows:

‚ Set qcurr to q0 and scurr to available;

‚ while qcurr ‰ qf :

– non-deterministically pick a transition pqcurr, a, qnextq P δ;

– if a is incompatible with the status scurr, then accept; otherwise, update qcurr to qnext and scurr according
to a;

‚ reject.

It is simple to realize that the algorithm is correct, since if there is a non-sequential path, then there is a sequence
of non-deterministic decisions that will lead the algorithm to accept. On the other hand, it is also apparent that the
algorithm uses only logarithmic space, because it only has to store the current variable, current state, next state and
variable status; in other words, a constant amount of information that is at most logarithmic in size with respect to
the input.

Proof of Proposition 5.6
To prove this we use the path union stack variable automata construction detailed in [8, Subsection 4.1.2], that can
be easily adapted to the definition of RGX proposed in this work.

Specifically, let γ be a RGX. By Theorem 3.4, we know that γ has an equivalent VAstk automaton A. By the result
in [8, Lemma 4.3], we know that A has an equivalent path union VAstk (denoted PUstk) A1. Given the construction
of A1, it is easy to observe that every path in it will be sequential, which implies that A1 as a whole is sequential. We
may build a RGX γ1 equivalent to A1 by transforming each path in A1 into a sequential RGX, and then joining the
resulting expressions with disjunctions. It is clear that disjunctions of sequential RGX are sequential. Therefore, γ1

is sequential and equivalent to γ.

Proof of Theorem 5.7
We will reduce the Eval problem in sequential RGX to the same problem on sequential variable automata, and show
that the latter can be decided in PTIME. Let γ be a sequential RGX. We can adapt the Thompson construction
algorithm [14] to transform γ into a variable automaton in polynomial time. We now prove by induction that A will
be sequential, given the fact that γ is sequential. We need to consider the following cases:



‚ γ “ a, where a P Σ: this is the base case and the automaton is trivially sequential.

‚ γ “ ψ1 ¨ ψ2: it is very easy to observe that the concatenation of two sequential paths that use disjoint sets of
variables, is sequential.

‚ γ “ ψ1 _ ψ2: every path will be in either the automaton for ψ1 or the automaton for ψ2, which are sequential
by the inductive hypothesis.

‚ γ “ pψq˚: the set of variables in ψ is empty, its automaton is, thus, trivially sequential.

‚ γ “ xtψu, where x P V: since ψ does not use x, it is trivial to prove that every path will be sequential.

Therefore, automata constructed from sequential expressions will be sequential.
Next, we prove that the Eval problem for sequential variable automata is in PTIME. The main idea behind this

proof, and many of the following, will be to embed in document d the variable operations corresponding to mapping
µ. This will allow us to then to treat variable operation transitions as normal transitions. This is an advantage
because then we can use classical algorithms for finite automata to decide problems.

Let OppAq “ tx$,%x | x P VpAqu. Let ρ be a run for document d and mapping µ on a variable automaton A.
We refer to the label of ρ, denoted Lpρq, as the string λ P pΣYOppAqq that is the concatenation of the labels of the
transitions in ρ, in the order they are used.

Given a label λ, we may easily generate the document-mapping pair pd, µq from the run of λ in logarithmic-space.
We simply scan λ from left to right, outputting symbols of Σ to d, then we do a second scan, counting symbols to
determine the spans of µ. It is simple to see that if we change the order of consecutive variable operation in λ, then
the generated pd, µq will be the same.

As an example, consider the document d “ abc and the mapping µ such that µpxq “ p1, 3q and µpyq “ p3, 3q. Some
labels that correspond to these are λ1 “ x$, a, b, y$,%x,%y, c or λ2 “ x$, a, b,%x, y$,%y, c.

Similarly, for every pair pd, µq, and a fixed set of variables, there is a finite set of possible labels of runs that
correspond to d and µ. By the previous paragraph, it is an easy observation that the labels in this set will differ
only on the ordering of consecutive variable operations, and variables that are opened but never closed.

Since the ordering of variable operations will be problem in most proofs, we will frequently use the technique of
coalescing consecutive variable operations. What this means, is that we will consider a set of consecutive variable
operations as a single symbol. We will usually accompany this by introducing new transitions to the automata that
recognize these coalesced symbols.

Let A “ pQ, q0, qf , δq be the sequential automaton, d the document and µ the mapping. First, let λ be some label
for pd, µq. Let τ “ T1, . . . , T` be a partition of dompµq such that two variable operations o1 and o2 belong to the
same Ti if and only if o1 ¨ w ¨ o2 is a substring of λ and w is ε or consists solely of variable operations. We treat
the sets in τ as new symbols of the alphabet. We will coalesce all sequences of consecutive variable operations in λ
replacing them with their respective Ti, and call the result d1.

Let A1 “ pQ, q0, qf , δ
1q be as follows. For each transition pp, a, qq P δ: (1) if a P ΣY tεu, then pp, a, qq P δ1; (2) if a

is a variable operation for x and x R dompµq, then pp, ε, qq P δ1; otherwise, ignore the transition. Finally, for every
set Ti (i P r1, `s), transition pp, Ti, qq P δ

1 if there exists a path from p to q in A satisfying the following conditions:
(1) every transition in the path is either an ε-transition or corresponds to a variable operation in Ti; and (2) for
every variable operation in Ti, there is exactly one transition in the path that corresponds to it. Notice that A1

has no variable operations, and therefore, behaves exactly like a non-deterministic finite automaton. Therefore, the
problem has been reduced to that of deciding whether the non-deterministic finite automaton A1 accepts the word
d1, which is known to be in PTIME ([14]).

Except for the last step, it is clear that this reduction runs in polynomial time. Therefore, in order to complete
this part of the proof, we only need to provide an algorithm that given states p, q and i P r1, n` 1s decides whether
pp, Ti, qq P δ

1. We will describe an algorithm that finds a path in A that in NLOGSPACE, which is contained in
PTIME ([21]). Taking into account that A is sequential, we know that the paths will not repeat operations nor
execute them in a wrong order, therefore, we only need to count the number of variable operations.

The algorithm starts from state p and sets a counter c to 0. Then, at each step it guesses the next transition,
and checks that it is either an ε-transition or corresponds to a variable transition in Ti. If it is the latter, then it
increments c by one. If the algorithm reaches q, it accepts only if c “ |Ti|. From the description of the algorithm it
is straightforward to prove that it is correct and uses logarithmic-space.

Now we prove the correctness of the algorithm. Namely, we will prove that there exists an extension µ1 of µ if
and only if A1 accepts d1. We will consider the three cases that can happen to a variable x with respect to µ: (1)
x R dompµq, (2) µpxq “ K, and (3) µpxq “ pi, jq for i, j P r1, n` 1s. In case (1), we have that x may or may not be
in dompµ1q. This agrees with the fact that variable operations for x are replaced with ε in A1. Furthermore, because
A is sequential, we know that there are no valid runs in A1 that would be invalid in A. In case (2), µ1 cannot assign
x, which agrees with A1 because variable operations for x were removed. Finally, in case (3), we know that mu1 will
be compatible with µ on x because each of the Ti symbols we introduced can be matched by A1 if and only if there
exists a path in A that performs the variable operations in Ti in some order. Given these observations it is very
apparent that there is a one-to-one correspondence between accepting runs in A and A1, which finishes the proof of



correctness.

Proof of Theorem 5.8
First, we show that the problem is in NP. Consider a rule ϕ that uses functional spanRGX, and a document d. To
decide the problem we can guess a mapping µ, which is of polynomial size, and we check that µ P JϕKd. This can be
done in polynomial time for the following reason. From Theorem 5.7, we know that Eval of sequential (and thus
functional) RGX is in PTIME. Therefore, we can easily check that µ respects the semantics of rules (with regards to
instantiated variables, for example) and for each relevant extraction expression x.ϕx, we can check that µ restricted
to varpϕxq satisfies ϕx when d is restricted to µpxq.

To show that the problem is NP-hard, we will describe a polynomial time reduction from the 1-IN-3-SAT problem.
The input for 1-IN-3-SAT consists of a propositional formula α “ C1 ^ ¨ ¨ ¨ ^ Cn where each clause Ci (1 ď i ď n) is
a disjunction of three positive literals: pi,1, pi,2, and pi,3. The problem is to determine if there is a truth assignment
that makes exactly one literal true in each clause. This problem is known to be NP-complete ([13]).

Given the propositional formula α, the reduction will output a rule ϕ using functional spanRGX and a document
d such that JϕKd is non-empty if and only if α is satisfiable. Let V be the set of variables in α. In ϕ we use the
variables in V plus fresh variables ci for i P r1, ns and two extra variables: T and F . The rule ϕ consists of the
following extraction expressions:

‚ T ¨ c1 ¨ F ;

‚ ci.ppi,1 ¨ ci`1 ¨ pi,2 ¨ pi,3q _ ppi,2 ¨ ci`1 ¨ pi,1 ¨ pi,3q _ ppi,3 ¨ ci`1 ¨ pi,1 ¨ pi,2q for i P r1, n´ 1s; and

‚ cn.ppi,1 ¨ T ¨# ¨F ¨ pi,2 ¨ pi,3q _ ppi,2 ¨ T ¨# ¨F ¨ pi,1 ¨ pi,3q _ ppi,3 ¨ T ¨# ¨F ¨ pi,1 ¨ pi,2q, where # is a symbol in the
alphabet.

Note that every spanRGX is functional.
The intuition behind the reduction is that every variable placed to the left of the # symbol would be assigned a

true value, and every variable placed to the right of the symbol would be assigned a false value. Notice that ϕ can
only be satisfied by the document d “ # and a mapping µ such that µpT q “ p1, 1q and µpF q “ p2, 2q. If µ satisfies
ϕ, we can make the following observations: (1) for every x P V , either µpxq “ p1, 1q or µpxq “ p2, 2q; and (2) for
every i P r1, ns, there is exactly one j P t1, 2, 3u such that µppi,jq “ p1, 1q. With these observations in mind, it is
easy to see that every satisfying mapping of ϕ will correspond to a satisfying truth assignment of α and vice versa,
thus proving the reduction correct.

Proof of Theorem 5.9
In order to prove that Eval of sequential tree-like rules is in PTIME, we will describe an algorithm that first does
some polynomial-time preprocessing of the input, and then runs in alternating logarithmic space (ALOGSPACE),
which is known to be equivalent to PTIME ([21]).

Let ϕ “ ϕx0
^ x1.ϕx1

^ ¨ ¨ ¨ ^ xm.ϕxm be a sequential tree-like rule with graph Gϕ, let d be a document, and let µ
be a mapping. We assume, without loss of generality, that for every variable x in ϕ there is an extraction expression
x.ϕx in ϕ.

We may immediately reject in two cases: (1) µ is not hierarchical; and (2) there are variables x and y such that
µpxq “ µpyq, the content of µpxq is not empty, and there is no directed path in Gϕ that connects x and y. These
two cases can easily be checked in polynomial-time, and will help us simplify the proceeding analysis.

For the purpose of this proof, we say that two variables x and y are indistinguishable if µpxq “ µpyq “ pi, iq for
some i P r1, n` 1s and they are siblings in Gϕ; that is, there exists a variable z such that pz, xq and pz, yq are edges
in Gϕ. The problem with these variables is that we cannot deduce from µ and ϕ the order in which they must be
encountered when processing the document. Therefore, we will coalesce each set of indistinguishable variables into
a single variable. This means removing these variables from the global set of variables and replacing them with a
single new variable that represents the set. We refer to these new variables as coalesced variables, and we refer to
mapping µ updated to reflect this change as µ1.

By coalescing indistinguishable variable, however, we will be destroying the subtrees rooted at them. Therefore,
we must check that µ agrees with this subtrees. Let U be a maximal set of pairwise indistinguishable variables. For
each x P U we perform the following “emptiness” check. Transform ϕx into a variable automaton Ax and check that:
(1) there is a path from the initial state to the final state of Ax that uses only ε-transitions and variable operations;
(2) this path opens and closes every variable y such that px, yq is in Gϕ; (3) for every variable y used in this path,
either µpxq “ µpyq or y R dompµq; and (4) recursively perform the “emptiness” check on y and ϕy. This may be done
in polynomial time by using similar techniques to those shown on the proof of Theorem 5.7.

For this proof, we will use again the idea of labels (defined in the proof of Theorem 5.7). Notice that if we fix an
order ĺOp of the variable operations and limit to those variables in dompµq, then there is a unique label for pd, µq
in which consecutive variable operations are ordered according to ĺOp . We denote this label Lpd, µ,ĺOp q, and we
may compute it easily in polynomial-time.



In addition to the above, we say that a label λ is balanced if all of its opening and closing variable operations are
correctly balanced (like parentheses). It is clear that given a valid pd, µq, µ is hierarchical if and only if pd, µq have
at least one balanced label.

Now, notice that if we take into account µ1, Gϕ and indistinguishable variables, then there is a unique order in
which variable operations could be seen by the rule if the document is processed sequentially. We will use this order
as the order ĺOp , which we can compute as follows. Let V “ tx P dompµ1q | µpxq ‰ Ku and consider the induced
subgraph T “ GϕrV s. A node x in T precedes its sibling y if µ1pxq “ pi, jq, µ1pyq “ pk, lq, and minpi, jq ă maxpk, lq.
Since we coalesced indistinguishable variables, we know that there is a unique way to put siblings in this order.
Finally, the order can be obtained by doing an ordered depth-first search on T : when we enter a node x we add x$
to the output, when we finish processing the subtree rooted at x we add %x to the output. With this in mind, we
define the document d1 “ Lpd, µ1,ĺOp q.

Next, we transform each sequential spanRGX ϕxi into a non-deterministic finite automaton Axi “ pQ, q0, qf , δq.
For each coalesced variable X that represents the set of indistinguishable variables U , we add a new state qX and
transitions pp,X $, qXq and pqX ,% X, qq if there is a path from p to q that uses only ε-transitions and variable
transitions such that every variable in set U is opened and closed in this path. This can be done in polynomial-time
because all expressions are sequential (the same way it was done on the proof of Theorem 5.7).

Now, we run the alternating logarithmic space algorithm. We will have two pointers: icurr and iend. They will
denote the part of the document that we are considering at any given time, and will start as 1 and |d1|`1 respectively.
The algorithm works by traversing the automata guessing transitions. Every time we choose a transition in Ax that
opens variable y, we find the position iclose in d1 where y is closed (or guess it if y R dompµ1q) and check two
conditions in parallel (by use of alternation): (1) Ay recursively accepts pd1, µ1q on the interval picurr, icloseq; and (2)
Ax accepts pd1, µ1q on the interval piclose, iendq, continuing from the current state. More specifically, the algorithm is
the following:

1. Set icurr to 1, iend to |d1| ` 1, and xcurr to x0.

2. Let Axcurr be pQ, q0, qf , δq.

3. Set qcurr to q0.

4. While qcurr ‰ qf and icurr ď iend:

(a) Non-deterministically pick a transition pqcurr, a, qnextq P δ.

(b) If a “ ε, set qcurr to qnext and continue.

(c) Else if a “ x$ for some variable x (that is not coalesced), do as follows. If x P dompµ1q, then check that
a “ aicurr , then find the position iclose such that aiclose “%x. Else if x R dompµ1q, guess iclose ě icurr and
set qnext to the state reached by following the %x-transition from the current qnext. Do the following two
things in parallel:

‚ Set icurr to iclose, qcurr to qnext, and continue.

‚ Set iend to iclose, xcurr to x, increment icurr, and go to step 2.

(d) Else if a is a “ aicurr , then set qcurr to qnext and increment icurr.

(e) Otherwise, reject.

5. If icurr “ iend, accept.

Now we will sketch a proof of correctness. By the definition of the semantics of rules, it is clear that there is
a correspondence between mappings and a set of runs for the automata that compose the rule. It is easy to see
that the algorithm described above will find accepting runs for each of the automatons that correspond to variables
instanced by the rule. These runs will correspond to a mapping ν which is an extension of µ1 and that can be
easily be transformed into an extension of µ by separating the coalesced variables. To see why the algorithm will
accept whenever such a ν exists, consider the following. It can be proven without much difficulty that, given the
nested structure of tree-like rules and the plainness of sequential spanRGX, the way in which we ordered the variable
operations in d1 is the only way in which they might be actually seen. The only case in which this is not true, is in
the case of indistinguishable variables, which we handled as a separate case. Therefore, the algorithm will accept
whenever there exists an extension to µ that satisfies ϕ.

Proof of Theorem 5.10
We know that RGX can be transformed into equivalent variable automata in polynomial-time. Therefore, we will
only consider that case.

Let A be a variable automaton, d a document, µ a mapping and k the number of variables in A, that is, k “
|V arpAq|. We can decide this instance of the EvalrVAs problem using the same reduction from the proof of
Theorem 5.7, but with two modifications.

First, we change the algorithm that decides if pp, Ti, qq P δ
1, for some given states p, q P Q and i P r1, n ` 1s.

The original algorithm will not work in this case because A might not be sequential. Thus, now we iterate over all



possible total orders over the set Ti (there are |Ti|! such orders) and let pt1, . . . , t|Ti|q be a sequence with the elements
of Ti according to that order. We give pt1, . . . , t|Ti|q as an additional input to the algorithm and proceed in a similar
way than before, but we keep an additional counter e with the current position in the new sequence (we set e to 1
at the start). Whenever the algorithm chooses a transition with a variable operation, it compares it with te: if it
is the same, it increments e; otherwise, it rejects. At the target state q we accept if and only if e “ |Ti| ` 1, which
means we saw all the variable operations of |Ti| exactly once. Notice that this gives an algorithm that runs in time
at most k!ppnq, where p is a polynomial.

Second, we slightly change the way we handle a variable x when x R dompµq. Instead of replacing the variable
operation transitions of x with ε-transitions, we preserve them as they are. In this part of the algorithm, we will
iterate over all valid sequences of variable operations in tx$,%x | x P pvarpAq z dompµqqu. We say that a sequence
of variable operations is valid if, for every variable x: (1) the operations x $ and % x appear at most once; (2)
if % x is in the sequence, then x $ is in the sequence at an earlier position. For example, x $, y $,% x,% y and
x$, z $,% x, y$ would be two valid sequences of operations for variables x, y, z. Given a sequence of operations,
the modified automaton, and the modified document, the problem then reduces to checking if the final state of the
variable automaton is reachable from its initial state, subject to the constraint that the chosen transitions must
match the sequence of operations and the document.

Formally, the algorithm would be the following. Let A1 “ pQ, q0, qf , δ
1q be the modified variable automaton, and

let d1 “ a1a2 ¨ ¨ ¨ an be the modified input document (the label). Throughout the algorithm we will keep: the current
position in the document, idoc; the current position in the sequence of operations, iseq; and the current state qcurr.
For every valid sequence of operations s1, s2, . . . , sm we proceed as follows:

‚ Set qcurr to q0, idoc to 1, and iseq to 1.

‚ While qcurr ‰ qf :

– Non-deterministically pick a transition pqcurr, a, qnextq P δ such that a “ aidoc or a “ siseq . If no such
transition exists, then reject.

– Set qcurr to qnext, and if a “ aidoc , increment idoc by one; otherwise, increment iseq by one.

‚ if idoc “ n` 1, then accept; otherwise, reject.

If at any point the counters go “out of bounds”, then we also reject. This part of the algorithm will run in time at
most p2kq!qpnq, for some polynomial q.

It is straightforward to prove that these modification will not alter the correctness of the algorithm. Also, by
combining the different parts of the algorithm, we will get a total running time of k!ppnq ` p2kq!qpnq ` rpnq where
p, q, r are polynomials. This is in Opfpkqncq for some constant c and some function f . Therefore, the problem is in
FPT ([6]).

E. PROOFS FROM SECTION 6

Proof of Theorem 6.1
First, we will prove that SatrVAs is in NP. In order to do this, we prove a lemma that will limit the size of the
documents we must consider.

Lemma E.1. Let A “ pQ, q0, qf , δq be a VA. If A is satisfiable, then there exists a document of size at most
p2|V| ` 1q|Q| that satisfies it.

The proof of this lemma follows a similar idea to the idea behind the pumping lemma for regular languages ([14]).
Suppose the smallest document d “ a1 ¨ ¨ ¨ an that satisfies A is of size greater than p2|V| ` 1q|Q|, and let µ be
its corresponding mapping. Then, there must exist a substring ak ¨ ¨ ¨ al in d of size at least |Q| ` 1 inside which
A does not use any variable operations (since A can use at most 2|V| variable operations). Denote the state of
A after processing ai as qi. Since A has |Q| states, there must exist i, j P rk, ls such that i ă j, qi “ qj , and
|ak ¨ ¨ ¨ aiaj`1 ¨ ¨ ¨ al| ď |Q|. Because A does not use any variable operations in this substring, it is clear that if A
accepts d and µ, then it will accept d1 “ a1 ¨ ¨ ¨ aiaj`1 ¨ ¨ ¨ an and µ1, where µ1 is µ with all the positions greater than
j adjusted by pj ´ iq. If we repeat this for all substrings of size greater than |Q| with no variable operations, then
the final document will have size at most p2|V|`1q|Q|, contradicting our initial supposition. This proves the lemma.

A direct consequence of the previous lemma is that every satisfiable VA A has an accepting run that is at most
polynomial in size with respect to A. Therefore, a NP algorithm for SatrVAs is to simply guess a run and check
that it is an accepting run (which can easily be done in polynomial-time).

Now, we prove that SatrspanRGXs is NP-hard. Notice that this implies that SatrVAs and Sat of extractions
rules are also NP-hard. Consider the proof of Theorem 5.2. Notice that the expression γα is satisfiable if and only
if it is satisfied by document d “ ε, since γα matches only empty documents. Therefore, 1-IN-3-SAT can be reduced
to SatrspanRGXs. Since the former is NP-hard, the latter is also NP-hard.



Proof of Theorem 6.2
Let A “ pQ, q0, qf , δq be a sequential variable automata. Notice that any sequential path from q0 to qf corresponds
to an accepting run, because sequential paths respect the correct use of variables. Since A is sequential, finding
an accepting run for A is as easy as finding a path from q0 to qf . This problem is equivalent to the problem of
reachability on graphs, which is in NLOGSPACE.

Proof of Theorem 6.3
Consider the proof of Theorem 5.8. Notice that the rule ϕ in this proof is satisfiable if and only if it is satisfied by the
document d “ #, since ϕ matches only one # symbol. Therefore, 1-IN-3-SAT can be reduced to Sat of functional
dag-like rules in polynomial time. Since the former problem is NP-hard, the latter must also be NP-hard.

Proof of Theorem 6.4
As previously stated, it is easy to see that regular expressions are a subset of RGX, and it is known that the
containment problem for regular expressions is PSPACE-hard. Therefore, we will only prove that ContainmentrVAs
is in PSPACE.

Let A1 “ pQ1, q
0
1 , q

f
1 , δ1q and A2 “ pQ2, q

0
2 , q

f
2 , δ2q be two variable automata. We will prove that deciding if

JA1Kd Ď JA2Kd for every document d is in PSPACE by describing a non-deterministic algorithm that decides its
complement. The algorithm will attempt to prove that there exists a counterexample, that is, a document d and a
mapping µ such that µ P JA1Kd and µ R JA2Kd. At every moment, we will have sets S1 Ď Q1 and S2 Ď Q2 that will
hold the possible states in which A1 and A2 might be. We will also have sets V and Y which will hold the available
and open variables respectively.

Assume, without loss of generality, that V “ varpA1q “ varpA2q and O “ OppA1q “ OppA2q. We define the
ε-closure of a state q, denoted Epqq, as the set of states reachable from q by using only ε-transitions (including
q). Similarly, we define Spq, aq “ tq1 | pq, a, pq P δ and q1 P Eppqu, where a P pΣ Y Oq and δ is the relevant
transition relation. Given a set of states R, we define EpRq “

Ť

qPREpqq (and SpRq analogously). Lastly, we define

SpR, awq “ SpSpR, aq, wq, where w P pΣYOq˚.
The algorithm proceeds as follows:

1. Set S1 to Epq01q, set S2 to Epq02q, set V to V, and set Y to H.

2. If qf1 P S1 and qf2 R S2, then accept. Otherwise, guess either an element a from Σ or a set of variable operations
P Ď O.

3. If the algorithm guessed a P Σ then:

(a) Set S1 to SpS1, aq and S2 to SpS2, aq.
(b) Go to step 2.

4. If the algorithm guessed a set P of variable operations, then:

(a) Check that P is compatible with V and Y . If they are, the update V and Y accordingly; if not, reject.
(b) Let PermpP q be the set of all strings that are permutations of P .
(c) Set Si to

Ť

wPPermpP q SpSi, wq for i P t1, 2u.

(d) Go to step 2.

It is clear that this algorithm uses only polynomial-space, since we are only guessing strings of polynomial size, and
storing information about variables and states.

Now we prove that the algorithm is correct. Notice that if the algorithm accepts, then there exists strings w1 and w2

differing only on the ordering of consecutive variable operations, such that qf1 P SpEpq
0
1q, w1q and qf2 R SpEpq

0
2q, w2q.

Moreover, qf1 P SpEpq
0
1q, w1q if and only if there exists a document d and mapping µ such that µ P JA1Kd. Since

w1 and w2 generate the same document-mapping pairs, and the algorithm tries all the possible permutations of
consecutive variable operations

”
it is clear that there is no accepting run in A2 with label w2. Therefore µ R JA2Kd.

Proof of Proposition 6.5
Let A “ pQ, q0, qf , δq be a variable automaton. We will determinize A by using the classical method of subset
construction. Without loss of generality, we will allow a set of final states instead of a single final state. We reuse
the definitions of Epqq and Spqq from the proof of Theorem 6.4.

We define the deterministic variable automaton Adet “ pQ1, q10, F
1, δ1q as follows. Let Q1 “ 2Q, q10 “ Epq0q,

F 1 “ tP P Q1 | qf P P u. The transition pP, a, P 1q P δ1 if and only if P 1 “
Ť

qPP Spq, aq.

Now we will prove that for every document d and mapping µ, µ P JAKd if and only if µ P JAdetKd. Let ρ be an
accepting run for d and µ on A. Then it is easy to prove by induction that ρ can be mapped to an accepting run



ρ1 in Adet. For the base case, we have that q0 P q
1
0. For the inductive case, consider that ρ uses transition pp, a, p1q,

and that the last state we appended to ρ1 is P : if a “ ε then p1 P P and we do nothing to ρ1; if a P pΣ Y Opq then
there exist pP, a, P 1q P δ1 such that p1 P P 1, so we add P 1 to ρ1. Since ρ1 uses the same transitions as ρ (except for
ε-transitions), Adet will also accept d and µ.

Now consider the opposite direction: if there is an accepting run ρ1 in Adet, then there is an accepting run ρ in
A. This is also easily proved with induction. In this case the inductive hypothesis is that if there exists a path from
P to P 1 using a certain sequence of symbols and variable operations, then for all p1 P P 1 there exists p P P such
that there is a path from p to p1 using the same sequence of symbols and operations. For the base case we have
that Epq0q “ q10, so it is trivial. For the inductive case, consider that ρ1 uses transition pP, a, P 1q. Consider some
state p1 P P 1. By definition, there is some state q P P 1 such that p1 P Epqq and there exists a state p P P such
that pp, a, qq P δ. By composing the different paths between states, we get the path that proves our hypothesis. By
considering the last state in ρ1 then, we can build an accepting run ρ.

Proof of Theorem 6.6
Let A1 “ pQ1, q

0
1 , q

f
1 , δ1q and A2 “ pQ2, q

0
2 , q

f
2 , δ2q be deterministic variable automata. Assume, without loss of

generality, that O “ OppA1q “ OppA2q and V “ varpA1q “ varpA2q. We will prove the theorem by showing that the
complement of this problem is in ΣP2 . We describe an algorithm that will accept if there exists a document d and
mapping µ such that µ P JA1Kd and µ R JA2Kd. We will use the fact that when we fix some linear order ĺOp over
the variable operations, then there is a unique label λ to each document-mapping pair pd, µq, denoted Lpd, µ,ĺOp q.

First, we guess a document d, a mapping µ, and a linear order ĺ1
Op over O. Then, for all linear orders ĺ2

Op over

O, we compute the label λ1 “ Lpd, µ,ĺ1
Op q and the label λ2 “ Lpd, µ,ĺ2

Opq, and finally, we check if there is a run in

Ai that has λi as a label, for i P t1, 2u. This is equivalent to checking if a deterministic finite automaton accepts a
word, and therefore it can be done in polynomial time. If A1 accepts λ1 and A2 rejects λ2, then we accept; otherwise,
we reject.

It is straightforward to prove that the algorithm is correct. Therefore, it only remains to show that the guessed
document d is of polynomial size (since that will determine the size and running time of the rest). This can be done
by using the same “pumping lemma” argument from the proof of Theorem 6.1. In this case, the substrings without
variable operations will be of size at most |Q1| ¨ |Q2|; if its longer, then there are indices i and j such that the pair
of states of A1 and A2 will be the same at position i and j, and therefore we can shorten the substring by removing
the characters in between. Therefore, we only need to consider documents of size at most p2|V| ` 1q|Q1||Q2|.

Now we prove that for deterministic sequential variable automata A1, A2 the problem is in coNP. As in the
previous case, we show that the complement of the problem is in NP. To do this, we guess a document d and a
mapping µ and then check that µ P JA1Kd and µ R JA2Kd. This is the ModelCheck problem, which is a special
case of the Eval problem, and since A1 and A2 are sequential, Theorem 5.7 guarantees that we can check this in
polynomial time. The same argument made in the previous case for the size of the document d applies here.

It only remains to prove that Containment of deterministic sequential variable automata is coNP-hard. For
this we will describe a polynomial-time reduction from the disjunctive normal form validity problem. The problem
consists in determining whether a propositional formula ϕ in disjunctive normal form is valid, that is, all valuations
make ϕ true. We may assume, without loss of generality, that every clause in ϕ has exactly three literals. This
problem is known to be coNP-complete, since it can be easily shown to be the complement of the conjunctive normal
form satisfiability problem.

Let ϕ “ C1 _ ¨ ¨ ¨ _ Cm be a propositional formula in disjunctive normal form with propositional variables
tp1, . . . , pnu, and let Ci “ li,1 ^ li,2 ^ li,3 (i P r1,ms), where each li,j is a literal. We will describe the procedure

for constructing automata A1 “ pQ1, q
0
1 , q

f
1 , δ1q and A2 “ pQ2, q

0
2 , q

f
2 , δ2q. The construction will only use variable

operation transitions so, in order to simplify the construction, we use transitions of the form pp, x, qq to represent
a “gadget” that opens and closes variable x in succession, that is, a new state r and the transitions pp, x$, rq and
pr,% x, qq. For the automata, we are going to use variables p1, . . . , pn to represent positive literals; p1, . . . , pn to
represent negative literals; and c1, . . . , cm to represent clauses. Thus, we have a total of 2n`m variables.

The automaton A1 is will consist of a long chain with two parts. In the first part, states are joined with two
parallel transitions pi and pi, for every propositional variable pi. This forces the automaton to choose a valuation
for the propositional variables. The second part consists of a path with all the clause variables ci. This will make
the automaton compatible with A2. Formally, A1 is defined as follows:

Q1 “ tr1, . . . , rn`m`1u q01 “ r1 qf1 “ rn`m`1

δ1 “ tpri, pi, ri`1q, pri, pi, ri`1q | i P r1, nsu Y tprn`i, ci, rn`1`iq | i P r1,msu

The automaton A2 will consist of m independent branches, each one representing a clause. Each branch has three
parts. The first part starts with the clause variable ci, and then follows with the variables corresponding with the
literals in C1. In the second part, states are joined with two parallel transitions pj and pj , for every propositional
variable pj not used in Ci. The third part consists of a path with all the clause variables ck such that i ‰ k. Formally,



for i P r1,ms the branch corresponding to clause Ci in A2 is defined as follows:

Q2,i “ tsi,1, . . . , si,n`m`1u q02,i “ si,1 qf2,i “ si,n`m`1

δ2,i “ tpsi,1, ci, si,2q, psi,2, li,1, si,3q, psi,3, li,2, si,4q, psi,4, li,3, si,5qu

Y tpsi,4`j , p
1
j , si,5`jq, psi,4`j , p

1
j , si,5`jq |

j P r1, n´ 3s and p11, . . . , p
1
n´3 are the variables not in Ciu

Y tpsi,n`1`j , cj , si,n`1`jq | j P r1,msu

Finally, we define Q2 “
Ť

iPr1,msQ2,i and δ2 “
Ť

iPr1,ms δ2,i. We fuse the initial states of each branch into a single

state q02 and fuse the final states of each branch into a single state qf2 .
Now we prove that JA1Kd Ď JA2Kd for every document d if and only if ϕ is valid. First, notice that we need only

consider d “ ε, since this is the only document that may satisfy A1 and A2. First, it is easy to see that each mapping
µ corresponds to a valuation ν, namely, by considering νppq “ 1 if p P dompµq, and νppq “ 0 if p P dompµq. The
automaton A1 will accept the set of mappings that correspond to all possible valuations over p1, . . . , pn. It is also
easy to see that the branch i in A2 will accept mapping µ if and only if µ corresponds to a valuation that satisfies
clause Ci. Therefore, if JA1Kd Ď JA2Kd, then A2 accepts the mappings corresponding to all possible valuations. This
means that for each valuation ν there is a clause in ϕ satisfied by ν, which means that ϕ is valid.

Proof of Theorem 6.7
Consider A, a deterministic functional VA that produces point-disjoint mappings. Notice that given a document d
and a mapping µ, such that µ P JAKd, there is exactly one accepting run of A over d that produces µ. This follows
from µ being point-disjoint and A closing all the variables it opens, which means that variable operations can only
occur in a specific order; and A being deterministic, which means that at every step there is only one choice that A
can take. It is also easy to see that the sequence of symbols and variable operations of this run are the same of an
accepting run of d, µ on any other automaton with these properties.

With this in mind, we describe an algorithm that decides the complement of this problem in NLOGSPACE. That
is, given A1 and A2, two deterministic functional VA that produce point-disjoint mappings, the algorithm accepts if
there exists a document d and mapping µ such that µ P JA1Kd and µ R JA2Kd.

The algorithm simply consists of running A1 and A2 in parallel, guessing at every step the next transition. If at
any moment A1 is at an accepting state and A2 is not, then we accept. We only need to remember the current and
next state of A1, A2, and the current transition we are guessing, all of which takes logarithmic space. Functionality
guarantees us that the runs will always be valid. The argument from the first paragraph guarantees us that the
algorithm is correct, since the sequence of operations that made A1 accept is the only one that could have made A2

accept the same document and mapping.


