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1 Introduction by establishingdirectional mappings between the peers

schemas. Given a query formulated on a particular peer,
A schema mapping is a specification that describes htive PDMS must proceed to retrieve the answers by refor-
data from a source schema is to be mapped to a tamgedating the query using its complex net of semantic map-
schema. Schema mappings have proved to be essepiiggs. Performing this reformulation at query time may be
for data-interoperability tasks such as data exchange ajuite expensive. The composition operator can be used to
data integration. The research on this area has mainly éssentially combine sequences of mappings into a single
cused on performing these tasks. However, as Bernsteiapping that can be precomputed and optimized for query
pointed out [7], many information-system problems irenswering purposes. Another application is schema evo-
volve not only the design and integration of complex aption, where the inverse together with the composition
plication artifacts, but also their subsequent manipaoiati play a crucial role [8]. Consider a mappivg between
Driven by this consideration, Bernstein proposed in [#themasA and B, and assume that scheraevolves
a general framework for managing schema mappings.imto a schema\’. This evolution can be expressed as a
this framework, mappings are usually specified in a loghappingM’ betweenA andA’. Thus, the relationship
cal language, and high-level algebraic operators are ubetiveen the new schen®’ and schemd can be ob-
to manipulate them [7, 16, 33, 12, 8]. tained by inverting mappingt’ and then composing the

Two of the most fundamental operators in this framé&esult with mapping\1.

work are thecompositionandinversionof schema map-  |n the recent years, a lot of attention has been paid
pings. Intuitively, the composition can be described & the development of solid foundations for the compo-
follows. Given a mapping\; from a schemaA to a sijtion [32, 16, 36] and inversion [12, 19, 4, 3] of schema
schemaB, and a mapping\1; from B to a schem&, the  mappings. In this paper, we review the proposals for the
compositionof M; and M, is a new mapping that de-semantics of these crucial operators. For each of these
scribes the relationship between schemaandE. This proposa'sl we concentrate on the three fo”owing prob_
new mapping must beemantically consistemtith the re- |ems: the definition of the semantics of the operator, the
lationships previously established Byl; and M;. On  |anguage needed to express the operator, and the algorith-
the other handan inverseof M, is a new mapping that mic issues associated to the problem of computing the op-
describes theeverserelationship fromB to A, and is se- erator. It should be pointed out that we primarily consider
mantically consistent witth1; . the formalization of schema mappings introduced in the

In practical scenarios, the composition and inversigvork on data exchange [13]. In particular, when studying
of schema mappings can have several applications. Ith& problem of computing the composition and inverse of
data exchange context [13], if a mapping is used to a schema mapping, we will be mostly interested in com-
exchange data from a source to a target schema, anpiiiting these operators for mappings specifiedbyrce-
verse of M can be used to exchange the data back to fieetarget tuple-generating dependenc[@8]. Although
source, thuseversingthe application ofM. As a sec- there has been an important amount of work about dif-
ond application, consider a peer-data management systerantflavorsof composition and inversion motivated by
(PDMS) [10, 24]. In a PDMS, a peer can act as a dad@actical applications [9, 34, 38], we focus on the most
source, a mediator, or both, and the system relates peresretically-oriented results [32, 16, 12, 19, 4, 3].
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composition operator proposed in [16]. Section 4 cotifiers from £;-T0-L> dependencies and, thus, we write
tains a detailed study of the inverse operators proposed) — ¢ (Z) instead ovZ (p(Z) — ¢ (z)). Finally, the
in [12, 19, 4]. In Section 5, we review a relaxed approasemantics of af, -T0-L, dependency is defined as usual
to define the semantics for the inverse and compositing., see [13, 4]).
operators that parameterizes these notions by a queryf S is a source schema aril is a target schema,
language [32, 3]. Finally, some future work is pointedn £,-To-L, dependency fronS to T is called an
out in Section 6. Due to the lack of space, the proofs 6f-TO-£, source-to-target dependendy;-TO-Ly St-
the new results presented in this survey are given in tthependency), and afi;-To-£, dependency fronT to
extended version of this paper, which can be download&ds called anf,-To-L. target-to-source dependency
fromhttp://arxiv.org/. (£,1-TO-L, ts-dependency). Notice that the fundamen-
tal class of source-to-target tuple-generating depenedgnc
] . (st-tgds) [13] corresponds to the class of GQ-CQ st-
2 BaS|C notation dependencies.
When considering a mapping specified by a set of de-
In this paper, we assume that data is represented in yéﬁdencies, we use the usual semantics given by logi-
relational model. Arelational schemd, or justschema ¢a| satisfaction. That is, iV is a mapping fromR;
is afinite se{ Ry, ..., R, } of relation symbols, with eachg R, specified by a seE of £;-To-L, dependencies,

R; having a fixed arityz;. An instancel of R assigns to we have thatI,.J) € M if and only if I € Inst(R,),
each relation symbak; of R a finiten;-ary relationR!. 7 Inst(R3), and(I, J) satisfiess.

The domainof an instancd, denoted bylom([7), is the
set of all elements that occur in any of the relatidifs In
addition,Inst(R) is defined to be the set of all instance
of R.

As usual in the data exchange literature, we consi
database instances with two types of valuesistantand
nulls. More precisely, leC andN be infinite and disjoint
sets of constants and nulls, respectively. If we refer

a schem& as asourceschema, theiinst(S) is defined with equalities, inequalities, and predicas.), respec-

to _be the set of all instances Sft_hat are constructed bytively. Thus, for example, UCOC is the class of unions
using only elements fror, and if we refer to a schema

: of conjunctive queries with equalities and predicate).
T as fe\targetschema, then instancesDfare constructed As usual, the semantics of queries in the presence of
by using elements from bo# andN.

schema mappings is defined in terms of the notiocerf
Schema mappings and solutions. Schema mappingstain answer Assume thai\ is a mapping from a schema
are used to define a semantic relationship between tio to a schem®,. Then given an instanceof R; and
schemas. In this paper, we use a general representatioh @fieryl) overR, thecertain answers of) for I under
mappings; given two schem®s, andR,, a mapping\! M, denoted bycertain ,,(Q, ), is the set of tuples that
from R, to R, is a set of pairg/, .J), where[ is an in- belong to the evaluation @@ over every possible solution
stance ofR,, andJ is an instance oR. Further, we say for I underM, that is,\{Q(J) | J is a solution for/
that./ is asolution for7 underM if (I,.J) € M. The set underM}.

of solutions for/ underM is denoted bySola(I). The

domain of M, denoted bylom (M), is defined as the set . .
of instanced such thaSol (1) # 0. 3 Comp05|t|on of Schema Mappings

Query Answering. In this paper, we use CQ to denote the
class of conjunctive queries and UCQ to denote the class
8f unions of conjunctive queries. Given a quépyand
database instande we denote byQ(7) the evaluation
'Q overI. Moreover, we use predicate(-) to differ-
entiate between constants and nulls, thaidéq) holds
if and only if ¢ is a constant value. We use, #, and
& as superscripts to denote a class of queries enriched

Dependencies. As usual, we use a class of dependeiithe composition operator has been identified as one of the
cies to specify schema mappings [13]. L&t, £, be fundamental operators for the development of a frame-
query languages arl{, R, be schemas with no relationwork for managing schema mappings [7, 33, 35]. The
symbols in common. A sentendeoverR; U R, is an goal of this operator is to generate a mappivf 3 that
L1-TO-L, dependency froRR, to Ry if @ is of the form has the same effect as applying successively two given
vz (p(Z) — ¥(x)), where (1)z is the tuple of free vari- mappingsM 2 and M3, provided that the target schema
ables in bothp(z) andy(z); (2) ¢(z) is anL;-formula of M;, is the same as the source schema\dfs. In
overR;; and (3)y(Z) is an Lo-formula overR,. Fur- [16], Fagin et al. study the composition for the widely
thermore, we usually omit the outermost universal quamsed class of st-tgds. In particular, they provide solwgion



to the three fundamental problems for mapping operatai®es not express the desired relationship, as it may asso-
considered in this paper, that is, they provide a formal sgate a distinct student igifor each tuplén, ¢) in Takes
mantics for the composition operator, they identify a mapnd, thus, it may create several identifiers for the same
ping language that is appropriate for expressing this opstudent nameJ
ator, and they study the complexity of composing schemarhe previous example shows that in order to express
mappings. In t.hIS section, we present the.se solutions. e composition of mappings specified by st-tgds, one has
In [16], Fagin et al. propose a semantics for the comy yse a language more expressive than st-tgds. However,
position operator that is based on the semantics of tg example gives little information about what the right
operator for binary relations: language for composition is. In fact, the composition of
mappingsM 2 and M3 in this example can be defined

Definition 3.1 ([16]) Let b ing f
etniton ([16]) Let Muz be a mapping from ainfirst-orderlogic(FO):

schemd&; to a schem®,, and M3 a mapping fronR.
to a schem& 3. Then the composition ¢¥1,, and M3
is defined asM12 0o Mos = {(I1,13) | 3z : (I1,12) €

Mz and(lz, I) € Mas]. which may lead to the conclusion that FO is a good al-

Then Fagin et al. consider the natural question of whettigfnative to define the composition of mappings specified

the composition of two mappings specified by st-tgds CQM st-tgds. However, a complexity argument shows that

also be specified by a set of these dependencies. Unfolfis conclusion is wrong. More specifically, given map-

nately, they prove in [16] that this is not the case, as shoRif9SMi2 = (R1, R2, X12) andMas = (Ra, Ry, Ya3),
in the following example. where ¥15 and X553 are sets of st-tgds, define the

composition problem fortM 5 and Ms3, denoted by
COMPOSITION(M 2, Ma3), as the problem of verify-
r“‘lg, givenl; € Inst(R;) andl; € Inst(Rgs), whether
((Nll,lg) € Mz o Moz, If the composition of M4
ith Mss is defined by a set of formulas in some
logic, then @MPOSITION(M 2, Ma3) is reduced to the

VYnIyVe (Takes(n,c) — Enrol | nent (y, ¢)),

Example 3.2. (from [16])Consider a schen®, consist-
ing of one binary relatiofakes, that associates a stude
name with a course she/he is taking, a sch&paonsist-
ing of a relationTakesy, that is intended to be a copy o
Takes, and of an additional relation symb§t udent ,

that associates a student with a student id; and a sch lem of verifying whether a pair of instancé, )

tf;g,tconsstlmtg ofa?|r:jarytrzlat!?hntiymbﬁhr oltlhrrentt(,j satisfiesX. In particular, if ¥ is a set of FO formu-
atassociates a student id wi € courses this stu erl]glés, then the complexity of @UPOSITION( M3, Ma3)

tk)akip‘g.fC:llt)ngider now ;nappi(jrwg\szlm and Mo specified 5 LOGSPACE, as the complexity of verifying whether
y the following sets of st-tgds: a fixed set of FO formulas is satisfied by an instance is
in LOGSPACE [39]. Thus, if for some mappingst-

b = {Tak Tak
12 {Takes(n,c) — Takesi(n,c), and M3, the complexity of the composition problem is
Takes(n,c) — 3s Student (n, s)}, higher than LOGSPACE, one can conclude that FO is not
Y3 = {Student (n,s) A Takesi(n,c) — capable of expressing the composition. In fact, this higher

Enrol | ment (s,c)}. complexity is proved in [16].

Mapping M1, requires that a copy of every tuple inTheorem 3.3 ([16]) For every pair of mappings\ 2,
Takes must exist inTakes; and, moreover, that eachM23 specified by st-tgd$COMPOSITION(M 2, Ma3) is
student name: must be associated with some student id NP. Moreover, there exist mappings(;, and M3,

s in the relationSt udent . MappingM.3 requires that specified by st-tgds such tHabMPOSITION(M Ty, M35)

if a student with name: and id s takes a course, then is NP-complete.

(s,c) is atuplein the relatiofnr ol | ment . Intuitively,

in the composition mapping one would like to replace the Theorem 3.3 not only shows that FO is not the right
namen of a student by a student igl, and then for each language to express the composition of mappings given
coursec that is taken by:, one would like to include the by st-tgds, but also gives a good insight on what needs to
tuple (i, ¢) in the tableEnr ol | ment . Unfortunately, be added to st-tgds to obtain alanguage closed under com-
as shown in [16], it is not possible to express this relatioposition. Given that GMPOSITION(M 12, Ma3) isin NP,

ship by using a set of st-tgds. In particular, a st-tgd of thi¢e know by Fagin's Theorem that the composition can by
form: defined by an existential second-order logic formula [26].

In fact, Fagin et al. use this property in [16] to obtain the
Takes(n,c) — dJyEnrollnent(y,c) (1) rightlanguage for composition. More specifically, Fagin



et al. extend st-tgds with existential second-order qtiantiC]

cation, which gives rise to the class of SO-tgds [16]. FOfnirq, Fagin et al. prove in [16] that the converse of The-
mally, given schemaR, and R, with no relation sym- .o 3 573150 holds, thus showing that SO-tgds are ex-

bols in common, aecond-order tuple-generating depenseqy the right language for representing the composition
dency fromR, to R (SO-tgd) is a formula of the form ¢ mappings given by st-tgds.

3f (Vo1(p1 — 1) Ao AVEa(pn — n)), Where (1)
each member of is a function symbol, (2) each formularheorem 3.7 ([16]) Every SO-tgd defines the composi-

@i (1 < ¢ < n)is a conjunction of relational atoms oftion of a finite number of mappings, each defined by a
the form S(yi,...,yx) and equality atoms of the formfinjte set of st-tgds.

t = t', whereS is ak-ary relation symbol oR, andy;,

..., Yy are (not necessarily distinct) variableszip and Finally, Fagin et al. in [16] also study the complex-

t, t' are terms built fromz; and f, (3) each formula); ity of composing schema mappings. More specifically,
(1 < i < n)is a conjunction of relational atomic formu-+they provide an exponential-time algorithm that given two
las overR,; mentioning terms built front; and f, and (4) mappingsM;, and Mo, each specified by an SO-tgd,

each variable ir; (1 < i < n) appears in some relationaketurns a mapping;3 specified by an SO-tgd and equiv-

atom ofy;. alent to the composition of1;, and Ms3. Furthermore,

In [16], Fagin et al. show that SO-tgds are the right déiey show that exponentiality is unavoidable in such an
pendencies for expressing the composition of mappirgjgorithm, as there exist mappingd,, and M3, each
given by st-tgds. First, it is not difficult to see that evspecified by a finite set of st-tgds, such that every SO-tgd
ery set of st-tgds can be transformed into an SO-tgd. Fbat defines the composition @1, and Mo is of size
example, sek;, from Example 3.2 is equivalent to theexponential in the size 01,5 and M 3.

following SO-tgd: In [36], Nash et al. also study the composition problem
and extend the results of [16]. In particular, they study the
3f (anc (Takes(n,c) — Takesi(n,c)) A composition of mappings given by dependencies that need
not be source-to-target, and for all the classes of mappings

considered in that paper, they provide an algorithm that
attempts to compute the composition and give sufficient
conditions that guarantee that the algorithm will succeed.
Second, Fagin et al. show that SO-tgds are closed under

VnVe (Takes(n,c) — St udent (n, f(n, c))))

composition. .
3.1 Composition under closed world se-
Theorem 3.4 ([16]) Let M5 and Ms3 be mappings mantics
specified by SO-tgds. Then the composit\dhy o Mos
can also be specified by an SO-tgd. In [27], Libkin proposes an alternative semantics for

) ) schema mappings and, in particular, for data exchange.
It should be noticed that the previous theorem can alsoF‘?Sughly speaking, the main idea in [27] is that when ex-

applied to mappings that are specified by finite sets of S@Tanging data with a set of st-tgds and a source in-
tgds, as these dependencies are closed under conjuncigihcer, one generates a target instantsuch that ev-
Moreover, it is important to notice that Theorem 3.4 i”b‘ry tuple inJ is justified by a formula in® and a set
plies that the composition of a finite number of mappingg tuples fromI. A target instance/ that satisfies the
specified by st-tgds can be defined by an SO-tgd, as evggyye property is called@osed-world solutiofior I un-
set of st-tgds can be expressed as an SO-tgd. der X [27]. In [28], Libkin and Sirangelo propose the
language ofCQ-SkSTDs, that slightly extends the syn-
E%x of SO-tgds, and study the composition problem under
e closed-world semantics for mappings given by sets of
CQ-SkSTDs. Due to the lack of space, we do not give
here the formal definition of the closed-world semantics,

Example 3.6.Let M, andM»; be the mappings definedy, ¢ instead we give an example that shows the intuition

in Example 3.2. The following SO-tgd correctly specifie§eping it (see [28] for a formal definition of the semantics
the composition of these two mappings: and ofCQ-SkSTDs).

Theorem 3.5 ([16]) The composition of a finite numbe
of mappings, each defined by a finite set of st-tgds, is
fined by an SO-tgd.

Example 3.8.Let o be the SO-tgd of Example 3.6. For-

g <WNC (Takes(n,c) — Enrol | nent (g(n), C>)>' mulac is also aCQ-SkSTD [28]. Consider now a source



instancel such thaffakes’ = {(Chris logic)}, and the  Furthermore, whenever a mapping is specified by a set

instances/; and.J, such that: of formulas, we consider source instances as just contain-
no_ . ing constants values, and target instances as containing

Enrol | ment = {(075,logic)} constants and null values. This is a natural assumption in
Enrol I ment 2 = {(075,logic), (084,algebra}  a data exchange context, since target instances generated

as a result of exchanging data mayiheomplete thus,
null values are used as place-holders for unknown infor-

affation. In Section 4.3, we consider inverses for alterna-
tive semantics of mappings and, in particular, inverses for
the extended semanti¢hat was proposed in [17] to deal
with incomplete information in source instances.

Notice that both(Z, J;) and (I, J;) satisfyo (consider-
ing an interpretation for functiop such thaty(Chris) =
075). Thus, under the semantics based on logical s
faction [16], both.J; andJ, are solutions fod. The cru-
cial difference betweed; and.J; is thatJ,; has anun-
justifiedtuple [27]; tuple(075, logic) is justifiedby tuple
(Chris logic), while (084, algebra has no justificationin
fact, J; is a closed-world solution faF unders, but J; is 4.1 Fagin-inverse and quasi-inverse
not [27, 28]. O

Given a seft of CQ-SkSTDs from R, to R,, we say We start by considering the notion of inverse proposed
that M is specified by under the closed-world semanby Fagin in [12], and that we call Fagin-inverse in this
tics, denoted byM = cws(X, R1, Ry), if M = {(I,J) | papet. Roughly speaking, Fagin’s definition is based on
I € Inst(R4), J € Inst(Ry) and.J is a closed-world so- the idea that a mapping composed with its inverse should
lution for I underX}. Notice that, as Example 3.8 showsje equal to the identity schema mapping. Thus, given a
the mapping specified by a formula (or a set of formgchemaR, Fagin first defines aidentity mappindd as
las) under the closed-world semantics is different from thél1, I2) | 11, I> are instances dR and/; C I>}. Thena
mapping specified by the same formula but under the $8appingM’ is said to be dagin-inverseof an mapping
mantics of [16]. Thus, it is not immediately clear whetheh! if MoM’ = Id. Notice thafld is not the usual identity
a closure property like the one in Theorem 3.4 can be &¢lation ovelR. As explained in [12]]d is appropriate as
rectly translated to the closed-world semantics. In tha§ identity for mappings that are total and closed-down
respect, Libkin and Sirangelo [28] show that the languag®g the left and, in particular, for the class of mappings
of CQ-SkSTDs is closed under composition. specified by st-tgds.

Theorem 3.9 ([28]) Let M1 = cws(Z12, R1, Ro) and Example 4.1. Let M be a mapping spegified by st-_tgds
Mos = cws(E23, Ra, Rs), WhereS» andS.; are sets of ©(@) — U(z) andS(z) — V(z). Intuitively, M is

CQ-SkSTDs. Then there exists a SEt; of CQ-SkSTDs Fagin-invertible since all the information in the source re
such thatM» 0 Moy = cws(S13, Ry, R). lation S is transferred to both relatioisandV” in the tar-

get. In fact, the mapping1’ specified by ts-tgd/ (x) —
) ] S(z) is a Fagin-inverse oM sinceM o M’ = Id. More-
4 Inversion of Schema Mappings  over, the mapping\t” specified by ts-tgd’ (z) — S(x)

is also a Fagin-inverse d¥1, which shows that there need
In the recent years, the problem of inverting schema mat be a unique Fagin-inversél

pings has received a lot of attention. In particular, the iIS- A first fundamental question about any notion of in-

sue of providing @oodsemantics for this operatorturneq/erse is for which class of mappings is guaranteed to ex-
out to be a difficult problem. Three main proposals fcig
f

. . : ; . t. The followi le f 12] sh that Fagin-
inverting mappings have been considered so far in the e following example from [12] shows that Fagin

r o verses are not guaranteed to exist for mappings specified
erature:Fagin-inversg12], quasi-invers¢19] andmaxi- b g ppIngs sp

. X st-tgds.

mum recoverys]. In this section, we presentand comparey g
these approaches. Example 4.2. Let M be a mapping specified by st-tgd

Some of the notions mentioned above are only appfkz;y) — T'(x). Intuitively, M has no Fagin-inverse
priate for certain classes of mappings. In particular, te#ce M only transfers the information about the first
following two classes of mappings are used in this sectié@mponent of5. In fact, it is formally proved in [12] that
when defining and comparing inverses. A mapping this mapping is not Fagin-invertible.]
from a schemd&; to a schem&R is said to beotal if _ — _
dom(./\/l) _ Inst(Rl) and is said to belosed-down on 1Fagin [12] named his notion just @sverseof a schema mapping.

. ! , . Since we are comparing different semantics foritiverseoperator, we

the leftif whenever(Z, J) € M and!’ C I, it holds that eserve the terrinverseto refer to this operator in general, and use the
(Ir',J) e M. nameFagin-inversefor the notion proposed in [12].




As pointed out in [19], the notion of Fagin-inverse i4.2 Maximum recovery

rather restrictive as it is rare that a schema mapping pos- id h i ‘ ) )
sesses a Fagin-inverse. Thus, there is a need for weaf{grconsider now the notion of maximum recovery intro-

notions of inversion, which is the main motivation for thguced by_ Arenas et al. in [4]. Ir_1 that Paper, the authors
introduction of the notion of quasi-inverse of a sche gllow a different approach to define a notion of inversion.
mapping in [19] In fact, the main goal of [4] is not to define a notion of in-

The idea behind quasi-inverses is to relax the notidfj"S€ Mapping, butinstead to give a formal definition for

. o :
of Fagin-inverse by not differentiating between source iW—hat it means for a mapping!’ to recoversound infor-

stances that have the same space of solutions. More Hl]gponwnh respect to a mapping4. Such a mapping

cisely, letM be a mapping from a scherlRy to a schema M is called a recovery oM in [4]' Given th?‘t’ in gen-
R,. Instanced; andl, of R, aredata-exchange equiv—eral’ there may exist many possible recoveries for a given

alentw.r.t. M, denoted byl; ~nq Io, if Sola(I}) = mapp_ing,_ Arenas et al. introducg an order relgtion on re-
Sola(I2). For example, for the mapping/! in Exam- coveries in [4], ar_1d show that this ngtu_rally gives rise to
ple 4.2, we have thaly ~a I, with I; = {S(1,2)} and thg notion of maximum recovery, whichis a r.napplng.that
I, = {S(1,3)}. ThenM’ is said to be a quasi-inverse O]brlngs back the maximum amount of sound information.
M if the propertyM o M’ = Td holdsmodulothe equiv- _ L&t M be a mapping from a scheriy, to a schema
alence relationv .. Formally, given a mapping/ from Rz, andld the identity schema mapping ovln, that is,

R to R, mapping\~ a1, ~] is defined as Id = {I,I)|I¢€ Inst(.Rl)}. Whe.n trying to invertM,
the ideal would be to find a mappingt’ from R; to R4
{(I, I) € Tnst(R) x Inst(R) | existl], I} with such thaiM o M’ = Id . Unfortunately, in most cases this
N o7 roy ideal is impossible to reach (for example, for the case of
Lo by Iz ~m Iy and(0y, 1) € N} mappings specified by st-tgds [12]). If for a mappifg,
Then a mapping\1’ is said to be guasi-inversef a map- there is no mapping; such thatM o M; = 1d, at least
ping M if (M o M")[~a, ~m] = Id[~pg, ~ ] one would like to find a schema mappirig- that does
Example 4.3. Let M be a mapping specified by st-tgdiot forbid the possibility of recovering the initial source
S(z,y) — T(z). It was shown in Example 4.2 thatdata. This gives rise to the notion of recovery proposed
M does not have a Fagin-inverse. However, mappiity[4]. Formally, given a mapping"t from a schema
M’ specified by ts-tgd’(z) — 3y S(z,y) is a quasi- R1 to a schema,, a mappingM’ from R, to R is
inverse of M [19]. Notice that for the source instanc& recoveryof M if (I,I) € M o M’ for every instance
I, = {5(1,2)}, we have thaf; andl, = {S(1,3)} are I € dom(M) [4].

both solutions fod; under the compositioM o M’ In In general, ifM’ is a recovery ofM, then the smaller
fact, for everyl such thatl ~, I;, we have thaf is a the space of solutions generated by o M’, the more
solution forl; underM o M’. O informative M’ is about the initial source instances. This

In [19], the authors show that if a mapping is Fagin- ngturally give_s rise to the notion of max_imum recovery;
invertible, then a mapping/!’ is a Fagin-inverse ofvt  9iven a mapping\t and a recovery\t” of it, M" is said
if and only if M’ is a quasi-inverse aM. Example 4.3 t0 be amaximum recovergf M if for every recovery\”
shows that the opposite direction does not hold. Thus, #feM. it holds that\ o M” C Mo M” [4].
notion of quasi-inverse is a strict generalization of the nBxample 4.5.In [19], it was shown that the schema map-
tion of Fagin-inverse. Furthermore, the author providesjiing M specified by st-tgd
[19] a necessary and sufficient condition for the existence
of quasi-inverses for mappings specified by st-tgds, and E(x,2) NE(z,y) = F(z,y) A M(2)
use this condition to show the following result:

. . : .., has neither a Fagin-inverse nor a quasi-inverse. However,
Propo_smon 4.4 ([19]) There is a r"_a?pp'”W specified j; i possible to show that the schema mapphg speci-
by a single st-tgd that has no quasi-inverse. fied by ts-tgds:

Thus, although numerous non-Fagin-invertible schema

mappings possess natural and useful quasi-inverses [19], F(z,y) — Ju(E(z,u)A E(u,y)),

there are still simple mappings specified by st-tgds that M(z) — Fvdw(E(v,z) A E(z,w)),

have no quasi-inverse. This leaves as an open problem the

issue of finding an appropriate notion of inversion for sts a maximum recovery of1. Notice that, intuitively, the
tgds, and it is the main motivation for the introduction ahappingM’ is making thebest efforto recover the initial
the notion of inversion discussed in the following sectiodata transferred by1. O



In [4], Arenas et al. study the relationship between tls®urce instancé, a target instancé € Sola(]) is a uni-
notions of Fagin-inverse, quasi-inverse and maximum neersal solution fod underM if for every J' € Solap (1),
covery. It should be noticed that the first two notiorthere exists a homomorphism frafto J'. It was shown
are only appropriate for total and closed-down on the léft[13, 14] that universal solutions have several desirable
mappings [12, 4]. Thus, the comparison in [4] focus guroperties for data exchange. In view of this fact, an al-
these mappings. More precisely, it is shown in [4] th&trnative semantics based on universal solutions was pro-
for every mappingM that is total and closed-down orposed in [14] for schema mappings. Given a mappitg
the left, if M is Fagin-invertible, thenM’ is a Fagin- the mapping:(M) is defined as the set of pairs
inverse of M if and only if M’ is a maximum recov- _ ) _
ery of M. Thus, from Example 4.5, one can conclude {(Z,J) | J is a universal solution fof underM}.

that the_ notion of ma}ximum recovery strictly Qe“er?"ZQ\ﬁappingu(M) was introduced in [14] in order to give
the notion of Fagin-inverse. The exact relationship bg-clean semantics for answering target queries after ex-
tween the notions of quasi-inverse and maximum reCQfranging data with mapping!. By combining the re-
ery is a bit more involved. For every mapping that is  sts on universal solutions for mappings given by st-tgds

total and closed-down on the left, it is shown in [4] that if, [13] and the results in [5] on the existence of maximum
M is quasi-invertible, thedM has a maximum recoveryrecoveries, one can easily prove the following:

and, furthermore, every maximum recovery/ef is also

a quasi-inverse aM. Proposition 4.7 Let M be a mapping specified by a set of
In [4], the authors provide a necessary and sufficiesittgds. Them(M) has a maximum recovery. Moreover,

condition for the existence of a maximum recovery. It i€ mappindu(M))~! = {(J,1) | (I,J) € u(M)} isa

important to notice that this is general condition as it cdRaximum recovery af(M).

be applied to any mapping, as long as it is defined as a

set of pairs of instances. This condition is used in [4] #3.2 Extended solutions semantics

prove that every mapping specified by a set of st-tgds has . . . .
a maximum recovery. A more delicate issue regarding the semantics of map-

pings was considered in [17]. In this paper, Fagin et
al. made the observation that almost all the literature abou
data exchange and, in particular, the literature about in-
verses of schema mappings, assume that source instances
do not have null values. Since null values in the source
4.3 Inverses for alternative semantics may naturally arise when using inverses of mappings to
exchange data, the authors relax the restriction on source
When mappings are specified by sets of logical formimstances allowing them to contain valuesGnJ N. In
las, we have considered the usual semantics of mappifggs, the authors go a step further and propose new refined
based on logical satisfaction. However, some alternativetions for inverting mappings that consider nulls in the
semantics have been considered in the literature, sucls@srce. In particular, they propose the notionexiended
the closed world semanticR27], the universal seman- inverse and ofextended recovergndmaximum extended
tics[13], and theextended semanti¢k7]. Although some recovery In this section, we review the definitions of the
of the notions of inverse discussed in the previous sectidatier two notions and compare them with the previously
can be directly applied to these alternative semantics, gireposed notions of recovery and maximum recovery.
positive and negative results on the existence of inverseJhe first observation to make is that since null values
need to be reconsidered in these particular cases. In Hrisintended to represemissingor unknowrinformation,
section, we focus on this problem for the universal anmldey should not be treated naively as constants [25]. In
extended semantics of mappings. fact, as shown in [17], if one treats nulls in that way, the
existence of a maximum recovery for mappings given by
st-tgds is no longer guaranteed.

Example 4.8. Consider a source schenf&(-, -)} where
Recall that a homomorphism from an instanfeto an instances may contain null values, and At be a map-
instance.J; is a functionh : dom(J;) — dom(Jz) ping specified by st-tgd(x,y) — 3z (T(x, 2) AT (2, y)).
such that (1):(c) = c for every constant € dom(J;), ThenM has no maximum recovery if one considers a
and (2) for every tupleR(aq,...,a;) in Ji, tuple naive semantics where null elements are used as constants
R(h(a1),...,h(ar))isin J. Given a mapping\ and a in the source [17].0

Theorem 4.6 ([4]) Every mappingM specified by a set
of st-tgds has a maximum recovery.

4.3.1 Universal solutions semantics



Since nulls should not be treated naively when e#.4 Computing the inverse

changing data, in [17] the authors proposed a new w . . .
to deal with null values. Intuitively, the idea in [17] iSG% to this point, we have introduced and compared three

to closemappings under homomorphisms. This idea psot?ons of inverse proposed in the Iiterature,_ focusing
supported by the fact that nulls are intended to repres 'QIY on the fulndta_menta:_ problemtogthte;] eX|stebr|1ce Off
unknown data, thus, it should be possible to replace thSHf" NVerses. n this section, we study the problem o
by arbitrary values. Formally, given a mapping, define computing these inverses. More specifically, we present

¢(M), thehomomorphic extensiaf M, as the mapping: some of the algorithms that have been proposed in the lit-
' ' "erature for computing them, and we study the languages

{I1,J)|3(I",J") : (I',J") € M and there exist used in these algorithms to express these inverses.

homomorphisms froni to I’ and from.J’ to J }. Arguably, the most important problem to solve in this
area is the problem of computing inverses of mappings

Thus, for a mapping that has nulls in source and targel, o cified by st-tgds. This problem has been studied for the
instances, one does not have to consiflebute(M) s oqe of Fagin-inverse [19, 20], quasi-inverse [19], maxi-

_the mapp_ing to deal with f_or exchanging data_and COMPYLy; m recovery [4, 3, 5] and maximum extended recovery
Ing mapping operators, sme(i/\/l) treatsnullsina r_nean_-[17, 18]. In this section, we start by presenting the algo-
ingful way [17]. The following result shows that with th'srithm proposed in [5] for computing maximum recoveries

new semantics one can avoid anomalies as the one Sh8‘f"ﬁ‘1appings specified by st-tgds, which by the results of

in Example 4.8. Sections 4.1 and 4.2 can also be used to compute Fagin-
Theorem 4.9 ([18]) For every mapping\U specified by a inverses and quasi-inverses for this class of mappings. In-
set of st-tgds and with nulls in source and target instancéstestingly, this algorithm is based a@uery rewriting
e(M) has a maximum recovery. which greatly simplifies the process of computing such

As mentioned above, Fagin et al. go a step furtherifﬁverses' i
[17] by introducing new notions of inverse for mappings Let M be a mapping from a scheri, to a scher‘r)a
that consider nulls in the source. More specifically, _%2 a_ndQ a query over schemR,. Then a qus/:r_)Q
mapping M’ is said to be arextended recovergf M is said to be aewriting of Q over the sourcéf _Q is a
if (I,1) € e(M) o e(M’), for every source instanck query overR, such that for every e_Inst(Rl),_lt holds
Then given an extended recoveyt’ of M, the map- Nat@'() = certain,((Q, ). Thats, to obtain the set
ping M’ is said to be anaximum extended recoveny of certain answers of) over I underM, one just has to

. Y .

M if for every extended recoveryt” of M, it holds that evaluate its rewr_ltlngg over instancd. ) _
e(M) o e(M') C e(M) o e(M") [17] The computation of a rewriting of a conjunctive query

At a first gIanEe, one may think that the notions of ma>i§ a basic step in the first algorithm presented in this sec-

tion. This problem has been extensively studied in the

imum recovery and maximum extended recovery are i : ) :
comparable. Nevertheless, the next result shows that tidgiabase area [30, 31, 11, 1, 37] and, in particular, in the

is a tight connection between these two notions. In p&ﬁ‘ta integration context [23, 22, 29]. The following algo-

ticular, it shows that the notion proposed in [17] can B4NM USes a query rewriting prOCEdurm?YREWR_'T'
defined in terms of the notion of maximum recovery. NG {0 compute a maximum recovery of a mappifg
specified by a seb: of st-tgds. In the algorithm, if

Theorem 4.10 A mappingM has a maximum extended; — (z1,..., ), thenC(z) is a shorthand fo€ (1) A
recovery if and only ife(M) has a maximum recovery.... 5 C(zp).

Moreover, M’ is a maximum extended recovery.®of if
and only ife(M’) is a maximum recovery ef M).

Algorithm MAxXIMUM RECOVERY(M)
Input: M = (S, T, ), whereX is a set of st-tgds.
In [17], it is proved that every mapping specified by a s€utput: M’ = (T,S,%’), whereY’ is a set of
of st-tgds and considering nulls in the source has a m&xQ®-To-UCQ~ ts-dependencies antl’ is a maximum
imum extended recovery. It should be noticed that thiscovery ofM.
result is also implied by Theorems 4.9 and 4.10. 1. Start withY’ as the empty set.

Finally, another conclusion that can be drawn from tt& For every dependency of the fora{z) — 35 (Z, )
above result is that, all the machinery developed in [4, i] 3, do the following:
for the notion of maximum recovery can be applied over (a) LetQ be the query defined by v(z, ).
maximum extended recoveries, and the extended semartb) Use QUERYREWRITING(M, Q) to compute a for-
tics for mappings, thus giving a new insight about inversesmula «(z) in UCQ™ that is a rewriting o35 ¢ (z, §)
of mappings with null values in the source. over the source.




(c) Add dependencyy ¢ (Z,5) AC(Z) — «(Z) toX'. quasi-inverse cannot be specified by st-tgds. In fact, it is

3. ReturnM’ = (T, S, ). [J proved in [19] that the quasi-inverse of a mapping given
by st-tgds can be specified by using £8-10-UCQ de-

Theorem 4.11 ([4, 5]) Let M — (S,T,¥), where s pend_encies, and that_inequa_llity, _predicﬁle) a_nd dis-
is a set of st-tgds. TheMAXIMUM RECOVERY(M) junction are all unq\{mdable in this language in .or(_jer to
computes a maximum recovery #ff in exponential express sugh quast-inverse. qu the case of Fagin-inverse,
time in the size o, which is specified by a set oi’_t is shown in [19] thgt disjunctions are nqt nc_eeded, that
CQC-T0-UCQ" dep’endencies. Moreover, it is 'S the class of CQ©-To-CQ dependencies is expres-

Fagin-invertible (quasi-invertible), then the output orve enough to represent the Fagin-inverse of a Fagin-

. g ._Invertible mapping specified by a set of st-tgds. In
il\:x;;nggﬂl\?;covmv(M) is a Fagin-inverse (quasi [12, 20], it is proved a second negative result about the

languages needed to express Fagin-inverses, namely that
there is a family of Fagin-invertible mappingsg speci-

{ied by st-tgds such that the size of every Fagin-inverse of
M specified by a set of CQ®-To-CQ dependencies is
_exponential in the size of. Similar results are proved

It is important to notice that the algorithmAXimum -
RECOVERY returns a mapping that is a Fagin-inverse
an input mappingV wheneverM is Fagin-invertible, but

it does not check whethe¥1 indeed satisfies this condi- : . ;
tion (and likewise for the case of quasi-inverse). In fact, N [4: 5] for the case of maximum recoveries of mappings

is not immediately clear whether the problem of checkirgp€cified by st-tgds. More specifically, it is proved in [4]
if a mapping given by a set of st-tgds has a Fagin-inve t the maximum recovery of a mapping given by st-tgds

is decidable. In [20], the authors solve this problem shofan be specifie_d by usir!g é‘QTO-UCQﬁdepgndencies,
ing the following: and that equality, predica®(-) and disjunction are all

unavoidable in this language in order to express such max-
Theorem 4.12 ([20]) The problem of verifying whether amum recovery. Moreover, it is proved in [5] that there is
mapping specified by a set of st-tgds is Fagin-invertibleasfamily of mappingsM specified by st-tgds such that
coNP-complete. the size of every maximum recovery 8fl specified by

a set of C’-T0-UCQ™ dependencies is exponential in
Interestingly, it is not known whether the previous proljhe sjze ofM.

lem is decidable for the case of the notion of quasi-inverse.

One of the interesting features of algorithmak -
MUM RECOVERY is the use of query rewriting, as it al-
lows to reuse in the computation of an inverse the largeln view of the above negative results, Arenas et al. ex-
number of techniques developed to deal with the problgiiore in [3] the possibility of using a more expressive
of query rewriting. However, one can identify two drawlanguage for representing inverses. In particular, they
backs in this procedure. First, algorithmaMiMum RE- explore the possibility of using some extensions of the
COVERY returns a mapping that is specified by a set ofass of SO-tgds to express this operator. In fact, Are-
CQC-10-UCQ™ dependencies. Unfortunately, this typaas et al. provide in [3] a polynomial-time algorithm that
of mappings are difficult to use in the data exchange cagiven a mapping\ specified by a set of st-tgds, returns
text. In particular, it is not clear whether the standaa maximum recovery ofM, which is specified in a lan-
chase procedure could be used to produce a single cangoage that extends SO-tgds (see [3] for a precise defini-
cal target database in this case, thus making the processoof of this language). It should be noticed that the algo-
exchanging data and answering queries much more caititm presented in [3] was designed to compute maximum
plicated. Second, the output mapping oRMmuM RE- recoveries of mappings specified in languages beyond
COVERY can be of exponential size in the size of the inpst-tgds, such as the language rafsted mappingf21]
mapping. Thus, a natural question at this point is whetherd plain SO-tgds (see Section 5 for a definition of the
simpler and smaller inverse mappings can be computelhss of plain SO-tgds). Thus, the algorithm proposed
In the rest of this section, we show some negative reslitis[3] can also be used to compute in polynomial time
in this respect, and also some efforts to overcome thé&&gin-inverses (quasi-inverses) of Fagin-invertiblea&ju
limitations by using more expressive mapping languagésvertible) mappings specified by st-tgds, nested map-

The languages needed to express Fagin-inverses pimgjs and plain SO-tgds. Interestingly, a similar approach
quasi-inverses are investigated in [19, 20]. In the respasts used in [18] to provide a polynomial-time algorithm
the first negative result proved in [19] is that there efer computing the maximum extended recovery for the
ist quasi-invertible mappings specified by st-tgds whosase of mappings defined by st-tgds.



5 Query-based notions of CompOSi-section we shed light on this issue. By the results in [16],
; ; we know that the language of SO-tgds is enough to rep-
tion and inverse resent the CQ-composition of st-tgds. However, as moti-

As we have discussed in the previous sections, to é’)?—ted by the following example, some features of SO-tgds

press the composition and the inverse of schema mappiﬁr not needed to express the CQ-composition of map-

given by st-tgds, one usually needs mapping Iangua% gs given by st-tgds. ) .

that are more expressive than st-tgds, and that do not hig¥@mple 5.1. (from [16])Consider a schem, consist-

the same good properties for data exchange as st-tgdsing of one unary relatiognp that stores employee names,
As a way to overcome this limitation, some weaker né-Schem&s consisting of a binary relatiokgr ; that as-

tions of composition and inversion have been proposedi§NS @ manager to each employee, and a sciiegreon-

the recent years, which are based on the idea that in pi2igting of a binary relatiodyr intended to be a copy of

tice one may be interested in querying exchanged data¥lf 1 @nd of a unary relatiosel f Myr, that stores em-

using only a particular class of queries. In this section, Jéyees that are manager of themselves. Consider now

review these notions. mappingsM o and M3 specified by the following sets
of st-tgds:
5.1 A query-based notion of composition Y12 = {Em(e) — ImMr(e,m) },

In this section, we study the notion afomposition Pa = {Myra(e,m) = Mor (e, m),

w.r.t. conjunctive querie@CQ-composition for short) in- Mara(e,e) — Sel fMr(e) }.

troduced by Madhavan and Halevy [32]. This semantigfappingM, intuitively states that every employee must
for composition can be defined in terms of the notion @k associated with a manager. Mappin,; requires
conjunctive-query equivalene® mappings that was in-that a copy of every tuple iMyr ; must exists inMgr ,
troduced in [32] for studying CQ-composition and gemind creates a tuple Bel f Myr whenever an employee is
eralized in [15] when studying optimization of schemge manager of her/himself. It was shown in [16] that the

mappings. Two mappingst and M’ from S to T are mapping/M,; given by the following SO-tgd:
said to beequivalent w.r.t. conjunctive queriedenoted

by M =cq M', if for every conjunctive query, the set 3 f (Ve(Enp(e) — Mr (e, f(e)))A
of certain answers a@® underM coincides with the set of . .
certain answers af) underM’. Formally M =cq M’ if ve(Bmp(e) e = f(e) — Sel T Myr (e))) 2)
for every conjunctive querg) over T and every instancerepresents the compositiobt,2 o Ms3. Moreover, the
I of S, it holds thatcertain , (@, I) = certain ., (Q, ). authors prove in [16] that the equality in the above for-
Then CQ-composition can be defined as follows; isa mula is strictly necessary to represent that composition.
CQ-composition ofM; and M, if M3 =cq M o M. However, itis not difficult to prove that the mappind;

A fundamental question about the notion of CQgiven by the following formula:
composition is whether the class of st-tgds is closed under
this notion. This problem was implicitly studied by Fagin 3 (ve(Enp(e) — Mir (e, /() ®)
et al. [15] in the context of schema mapping optimizgs CQ-equivalent toM,3, and thus, M}, is a CQ-
tion. In [15], the authors consider the problem of whethgpmposition ofAM;, and Moz, O
a mapping specified by an SO-tgd is CQ-equivalent to
mapping specified by st-tgds. Thus, given that the co
position of a finite number of mappings given by st-tg
can be defined by an SO-tgd [16], the latter problem

A\we say that formula (3) is plain SO-tgd Formally, a

ain SO-tgd fromR,; to R, is an SO-tgd satisfying the
5llowing restrictions: (1) equality atoms are not allowed
: . nd (2) nesting of functions is not allowed. Notice that,
a reformulation of the problem.c?f testing whether §t—tg st as SO-tgds, this language is closed under conjunction
are closed under CQ-compoasition. In fact, by using t %d, thus, we talk about a mapping specified by a plain

results and the examples in [15], one can easily construet : : " :
mappings\; and M. given by st-tgds such that the CQ_§6 tgd (instead of a set of plain SO-tgds). The following

- : : . result shows that even though the language of plain SO-
g?gﬁgzgon oM, andM. is not definable by a finite Settgds is less expressive than the language of SO-tgds, they

) . are equally expressive in terms of CQ-equivalence.
A second fundamental question about the notion of

CQ-composition is what is the right language to expresemma 5.2 For every SO-tgdr, there exists a plain SO-
it. Although this problem is still open, in the rest of thisgd o’ such thatr =cq o”.
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It is easy to see that every mapping specified by a Sdteorem 5.4 ([3]) Every mapping specified by a set of st-
of st-tgds can be specified with a plain SO-tgd. Moreovégds has a&CQ-maximum recovery, which is specified by a
the following theorem shows that this language is closedt ofCQ®”-T0-CQ dependencies.
under CQ-composition, thus showing that this class of de-

pendencies has good properties within the frameworkMNptice that the language needed to express CQ-maximum
CQ-equivalence. recoveries of st-tgds has the same good properties as st-

tgds for data exchange. In particular, the language is
Theorem 5.3 Let M, and M3 be mappings specifiedchaseablen the sense that the standard chase procedure
by plain SO-tgds. Then th@Q-composition ofM; and can be used to obtain a canonical solution. Thus, com-
M3 can be specified with a plain SO-tgd. pared to the notions of Fagin-inverse, quasi-inverse, and

. . maximum recovery, the notion of CQ-maximum recovery

Thus, the CQ-composition of a finite number of magy,5 1y advantages: (1) every mapping specified by st-
pings, each specified by a set of st-gds, is definable fwjq a5 2 cQ-maximum recovery (which is not the case
a plain SO-tgd. It should be noticed that Theorem 5.345 Fagin-inverses and quasi-inverses), and (2) such re-
a consequence of Lemma 5.2 and the fact that the ClasE(‘R;ery can be specified in a mapping language with good

So'tg‘?'s is closed under co_mposmon [16]. roperties for data exchange (which is not the case for
Besides the above mentioned results, the languag QL si-inverses and maximum recovery)

plain SO-tgds also has good properties regarding inver—ln [3], the authors also study the minimality of the lan-

sion. In partlcu_lar, it is proved in [3] that every p_Ia!n S_O- uage used to express CQ-maximum recoveries, showing
tgd has a maximum recovery, and, moreover, it is glv%q

in th | il lorith That inequalities and predicat®-) are both needed to ex-
nt at_paper a polynomia 't'm? algorithm to computg 'bress the CQ-maximum recoveries of mappings specified
Thus, it can be argued that this class of dependencie g'/sst-tgds

more suitable for inversion than SO-tgds, as there exist ’

SO-tgds that do not admit maximum recoveries.

6 Future Work

5.2 A query-based notion of inverse
) . ) As many information-system problems involve not only
In [3], the authors propose an alternative notion of inverge, design and integration of complex application arti-

by focusing on conjunctive queries. In particular, the agsqts pyt also their subsequent manipulation, the defini-
thors first d?flne the notion of C@coveryas follows. A 5y and implementation of some operators for meta data
mappingM’ is a CQ-recovery oM if for every instance 1,502 9ement has been identified as a fundamental issue to
I'and conjunctive quer§, it holds that be solved [7]. In particular, composition and inverse have
been identified as two of the fundamental operators to be
studied in this area, as they can serve as building blocks
of many other operators [33, 35]. In this paper, we have
)Presented some of the results that have been obtained in
the recent years about the composition and inversion of
schema mappings.

certain o (@, 1) € Q).

Intuitively, this equation states that!’ recovers sound in-
formationfor M w.r.t. conjunctive queries since for ever
instancel, by posing a conjunctive queiy against the
space of solutions fof underM o M’, one can only re- ) ) ]
cover data that is already in the evaluation@bver 7. _Many problems remain open in this area. Up to now,

A CQ-maximum recoverjs then defined as a mappindq\/”- schema mapping languages have been proposed and

that recovers the maximum amount of sound informatigtidied [6, 2, 38], but little attention has been paid to the
W.r.t. conjunctive queries. Formally, a CQ-recovevy/ formal study of XML schema mapping operators. For the

of M is a CQ-maximum recovery o¥ if for every other Cas€ of composition, a first insight has been given in [2],

CQ-recoveryM” of M, it holds that showing that the previous results for the relational model
are not directly applicable over XML. Inversion of XML
certain v, (Q, 1) € certain o (Q, ), schema mappings remains an unexplored field.
Regarding the relational model, we believe that the fu-
for every instancd and conjunctive querg). ture effort has to be focused in providing a unifying frame-

In [3], the authors study several properties about C@erk for these operators, one that permits the successful
maximum recoveries. In particular, they provide an akpplication of them. A natural question, for instance, is
gorithm to compute CQ-maximum recoveries for st-tgdshether there exists a schema mapping language that is
showing the following: closed under both composition and inverse. Needless to
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say, this unified framework will permit the modeling of20] R. Fagin, A. Nash. The structure of inverses schema ingpp
more complex algebraic operators for schema mappings. BM Research Report RJ10425, version 4, April 2008.
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