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We show how to calculate the maximum number of edits per character needed to convert
any string in one regular language to a string in another language. Our algorithm makes
use of a local determinization procedure applicable to a subclass of distance automata.
We then show how to calculate the same property when the editing needs to be done in
streaming fashion, by a finite state transducer, using a reduction to mean-payoff games. In
this case, we show that the optimal streaming editor can be produced in P.
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1. Introduction

Edit distance is a well-studied metric between strings, measuring how many operations are needed to get from one
string to another. In this paper we look for natural (asymmetric) analogs for regular languages: how many edits does it
require to get from a word in regular language R to a word in regular language T , in the worst case? Our notation is
motivated by considering R to be a restriction – a constraint that the input is guaranteed to satisfy – and T to be a target –
a constraint that we want to enforce.

In a prior work [1], we considered the basic question of whether one can get from a word in R to a word in T with
a finite, uniformly bounded number of edits. One of the main results of [1] was a characterization of the pairs (R, T ) for
which such a uniform bound exists.

Example 1. Consider the regular languages R = a∗ b∗ and T = a∗ c b∗ . Clearly, any string in R can be converted to a string
in T with at most 1 edit operation.

Such a bound, when it exists, shows that the language R is “quite close to being a subset of T ” – the gap between strings
in R and strings in T is small. However, having a uniform bound on the number of edits is a strong requirement. In this
paper we look not at the absolute number of edits required to get from R to T , but rather at the percentage of letters that
need to be edited.
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Example 2. Consider the languages R = (a +b)∗ and T = (ab)∗ . Roughly, for any pair of consecutive occurrences of the letter
a in the input, we will have to perform one edit in order to ensure alternation in the output. In particular, the number of
edits required to get from a string in R to a string in T is unbounded. On the other hand, it is clear that, in the worst case
(i.e., a2n), one needs to edit approximately half of the letters in order to produce a string in T – in this case, we say that all
strings in R can be repaired into T with normalized cost at most 1

2 .

We measure the gap from a restriction language R to a target language T via the worst case, over all strings u ∈ R , of the
number of edits needed to bring u into T divided by the length of u. Since we want the definition to be robust to a finite
number of outliers, we take the limit of this quantity as the strings are of larger and larger length – this is the asymptotic
(normalized) cost in getting from R to T . This gives us a measure of the distortion needed to get from R to T , lying always
between 0 and 1.

In our prior work [1] we have given algorithms for determining when the absolute cost of repairing R into T is uniformly
bounded, and in this case compute a bound. Similarly, the main result of the present paper is an algorithm that computes
the asymptotic cost of repairing R into T . The techniques used for the asymptotic cost analysis are radically different
from those used for the bounded repair problem. Specifically, they rely on ideas from the theory of distance automata [2],
and in particular on an application of determinization of distance automata, closely related to Mohri’s determinization
procedure [3].

We then turn to the setting where the repair is required to be done in streaming fashion, producing the edits immedi-
ately on seeing the input letter. We measure a streaming repair processor by the number of edits per character it requires to
get from any string in R to a string in T , again looking at the limit as the string length gets large. We accordingly define the
streaming asymptotic cost to be the optimal cost of a streaming processor. We show that this quantity can also be calculated
effectively, using techniques from mean-payoff games.

Example 3. Consider R = (a + b)c∗(a+ + b+) and T = ac∗a+ + bc∗b+ . One can get from R to T by only editing the initial
letter: so the asymptotic cost is 0. However, a streaming strategy must commit to changing the initial letter or leaving it be:
if it makes the “incorrect” choice, it will have to edit an unbounded final segment; thus the streaming asymptotic cost is 1.

The above two results give us the ability to compare the cost one should pay in editing strings in R to strings in T with
an arbitrary processor with the cost when we are restricted to use a streaming processor. If these are the same, it shows
that streaming processors that edit strings in R to T can approximate arbitrary processors in worst-case behavior.

In summary our contributions are:

• We present an algorithm for calculating the asymptotic normalized cost of repairing strings in regular language R to
strings in regular language T , based on locally determinizing a subclass of distance automata.

• We give an algorithm for calculating the optimal asymptotic normalized cost achieved using a streaming editing algo-
rithm.

Organization Section 2 gives the preliminaries, while Section 3 defines the basic problems. Section 4 studies the problem
of computing the asymptotic cost in the non-streaming case, while Section 5 deals with the streaming case. Section 6 gives
conclusions.

2. Preliminaries

Given a word w over an alphabet Σ , we denote by |w| its length and, given two positions 1 ≤ i ≤ j ≤ |w|, we denote
by w[i] (resp., w[i . . . j]) the i-th symbol of w (resp., the infix of w starting at position i and ending at position j).

Automata Non-deterministic finite state automata (shortly, NFA) will be represented by tuples of the form A =
(Σ, Q , E, I, F ), where Σ is a finite alphabet, Q is a finite set of states, E ⊆ Q × Σ × Q is a transition relation, and
I, F ⊆ Q are sets of initial and finite states. The notions of run and accepted word are the usual ones. L (A) is the language
recognized by A. If A is a deterministic finite state automaton (DFA), then we usually denote the unique initial state by q0
and turn its transition relation E into a partial function δ from Q × Σ∗ to Q defined by δ(q, ε) = q and δ(q,a u) = δ(q′, u)

iff (q,a,q′) ∈ E .
For technical reasons, it is convenient to assume that an automaton is trimmed, namely, all its states are reachable

from some initial states (i.e., they are accessible) and they can reach some final states (i.e., they are co-accessible). It is
worth noticing that, since the decision problems we are going to deal with are at least NLogSpace-hard and since states of
automata that are not accessible or not co-accessible can be pruned using some simple NLogSpace reachability analysis, this
assumption will have no impact on our complexity results.

Since automata can be viewed as directed (labeled) graphs, we inherit the standard definitions and constructions in graph
theory. In particular, given an automaton A = (Σ, Q , E, I, F ) and a state q ∈ Q , we denote by C(q) the strongly connected
component (shortly, SCC) of A that contains all states mutually reachable from q. We say that a component C of A is final
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if it can reach a final state (possibly outside C ). Given a set C of states of A (e.g., an SCC), we denote by A|C the NFA
obtained by restricting A to the set C and by letting the new initial and final states be all and only the states in C (note
that if C consists of a single transient state, then the language L (A|C) recognized by the subautomaton A|C is empty).
Finally, we denote by dag(A) the directed acyclic (unlabeled) graph of the SCCs of A and by dag∗(A) the graph obtained
from the symmetric and transitive closure of the edges of dag(A).

Transducers A (real-time sub-sequential) transducer is a tuple S = (Σ,Δ, Q , δ,q0,Ω), where Σ is a finite input alphabet,
Δ is a finite output alphabet, Q is a finite set of states, δ is a partial transition function from Q × Σ to Δ∗ × Q , q0 is an
initial state, and Ω is a partial function from Q to Δ∗ . For every input word u = a1 . . .an ∈ Σ∗ , there is at most one run of
S on u of the form

q0
a1/v1−−−→ q1

a2/v2−−−→ . . .
an/vn−−−→ qn

ε/vn+1−−−−→
where δ(qi,ai) = (vi,qi+1) for all 0 ≤ i < n and Ω(qn) = vn+1. In such a case, we define the output of S on u to be the
word S(u) = v1 v2 . . . vn vn+1 (observe that the transducer outputs an additional, possibly empty, word to be added on at
the end of the computation).

Transducers as above produce an output word immediately on reading an input character. We will also consider trans-
ducers with a bounded amount of “delay”. A k-lookahead transducer, with k ∈ N, is as above, but where the transition
function δ now has input in Q × Σk+1

⊥ , where Σ⊥ = Σ ∪ {⊥} and ⊥ /∈ Σ . Given an input word u and a position 1 ≤ i ≤ |u|
in it, we denote by 
ui the (k + 1)-character subword of u⊥k that starts at position i and ends at position i + k. The output
of a k-lookahead transducer S on an input u of length n is the unique word v = v1 v2 . . . vn vn+1 for which there exists
a sequence of states q0, ...,qn satisfying δ(qi, 
ui) = (vi,qi+1), for all 1 ≤ i ≤ n, and Ω(qn) = vn+1. Clearly, a 0-lookahead
transducer is simply a standard (real-time sub-sequential) transducer.

3. Problem setting

Given two words u ∈ Σ∗ and v ∈ Δ∗ , we denote by

dist(u, v)

the Levenshtein distance (henceforth, edit distance) between u and v , which is defined as the length of a shortest sequence
s of edit operations (e.g., deleting a single character, modifying a single character, and inserting a single character) that
transforms u into v [4].

We are interested in quantifying how difficult it is to edit a word in one language to obtain a word in another language.
That is, we have finite alphabets Σ and Δ and regular languages R ⊆ Σ∗ and T ⊆ Δ∗ , called the restriction and target
languages, respectively. We would like to edit any string that is known to belong to the restriction language R into a string
in the target language T . We will also consider the special case where R = Σ∗ , which we denote as the unrestricted case.

A repair strategy for two languages R and T is any function from R to T . For a repair strategy f and a word u ∈ R , we
define the (absolute) cost of f on u, denoted cost(u, f ), as the edit distance between u and f (u). In [1] we have given a
characterization of those pairs (R, T ) of languages for which there exist a repair strategy f whose (absolute) cost is finite
and uniformly bounded. In this paper we will not be concerned with the absolute cost of repairing a word, since the worst
case of this is often infinite. We consider instead a notion of repair cost between words that looks at the percentage of
symbols in a word that need to be edited. More precisely, given a repair strategy f for R and T and given a word u ∈ R ,
we define the normalized cost of f on u as the ratio between the cost of f on u and the length of u:

ncost(u, f )
def= cost(u, f )

|u| .

In order to measure the asymptotic behavior of the normalized cost, we define the asymptotic cost of f as the limit superior
of the normalized cost when the length of words in the restriction language tends to infinity:

acost(R, f )
def= lim

n→∞ sup
u∈R|u|≥n

ncost(u, f ).

Accordingly, we define the asymptotic repair cost acost(R, T ) for two languages R and T as the minimum of acost(R, f ) taken
over all repair strategies f for R and T . Note that acost(R, T ) can be equally defined by

acost(R, T ) = lim
n→∞ sup

u∈R|u|≥n

min
v∈T

dist(u, v)

|u| .

Example 2 (Continued). Consider again the languages R = (a + b)∗ and T = (ab)∗ of Example 2 in the introduction. Recall
that, in the worst case (i.e., a2n), one needs to edit approximately half of the letters in order to produce a string in T . This
shows that acost(R, T ) = 1 .
2
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Remark 1. It is easy to see that the asymptotic repair cost acost(R, T ) of any pair of languages ranges over the interval [0,1]
of the real numbers. Indeed, for large words in the restriction language R , one can modify and delete the letters to create
shorter words in the target language T , and thus the resulting editing cost is always less than the length of the input word.

Ideally, we are interested in computing the asymptotic cost acost(R, T ) for any pair of regular languages R and T ,
provided that this number is rational. We will indeed show that this is the case and describe a procedure that computes
the asymptotic cost.

Streaming vs non-streaming We know from [4] that there is a dynamic programming algorithm that, given a word u and a
regular target language T represented by means of a finite state automaton T , computes in time O(|u| · |T |) an optimal edit
sequence that transforms u into some word in T . In particular, this shows that optimal repair strategies can be described
by functions of fairly low complexity.

Sometimes it is desirable to have repair strategies that are in even more limited classes. Perhaps the ideal case is when
we can repair R into T with a one-pass algorithm, that is, using a real-time sub-sequential transducer. Recall that a real-time
sub-sequential transducer defines a word-to-word function; if this function happens to produce a word in T for every input
u ∈ R , then we say that it is a streaming repair strategy for R and T . Similarly, we can consider k-lookahead transducers,
with k ∈ N: this type of transducer outputs words on the basis of its current state and an input (k + 1)-character window
that represents a substring of u of the form u[i] . . . u[i +k], where u[i] is either the i-th symbol of w , if i ≤ |u|, or a dummy
symbol ⊥, if i > |u|. Accordingly, we talk about a k-lookahead streaming repair strategy for R and T .

Given a k-lookahead streaming edit strategy S for R and T and given a word u ∈ R , we can define the (absolute) cost of
S on u in two ways:

1. letting q0
a1/v1−−−−→ q1

a2/v2−−−−→ . . .
an/vn−−−−→ qn

vn+1−−−→ be the run of S on u, we define the aggregate cost of S on u, denoted
costaggr

S (u), to be the length of the final output vn+1 plus the sum, over all indices 1 ≤ i ≤ n, of dist(ai, vi), where
dist(ai, vi) is 1 if vi is empty, |vi | − 1 if ai occurs in vi , and |vi | otherwise;

2. considering the transducer S as a repair strategy, we define the edit cost of S on u, denoted costedit
S (u), to be simply the

edit distance between u and the output S(u).

The first notion of cost considers the distortions performed in producing the input from the output – it is equivalent to
considering the transducer as producing edit sequences rather than strings and counting the number of edits produced. The
second notion of cost is global and it considers only the output and not its production (clearly, the edit cost never exceeds
the aggregate cost). These two models of cost can be very different in general. As an example, consider a transducer S on
the input alphabet Σ = {a,b} that swaps a’s and b’s. On the string un = (ab)n , the aggregate cost is 2n since S changes each
letter, but the edit distance between u and S(u) (i.e., the edit cost of S on u in our sense) is only 2.

In the streaming setting, we will mainly focus on the model of aggregate cost, as for the model of edit cost we do
not have any interesting result. Formally, we define the asymptotic (normalized aggregate) cost of a k-lookahead streaming
strategy S for R and T , as

acostaggr
S (R, T )

def= lim
n→∞ sup

u∈R|u|≥n

costaggr
S (u)

|u|

where costaggr
S (u) is defined above. Similarly, we define the asymptotic k-lookahead streaming cost of R and T , denoted

acostaggr
k-lookahead(R, T ), as the infimum of acostaggr

S (R, T ) taken over all k-lookahead streaming repair strategies S for R and T .
We remark that, a priori, the infimum in the previous definition cannot be replaced by a minimum: it is conceiv-

able that the asymptotic aggregate costs of the k-lookahead streaming repair strategies for R and T are arbitrary close to
acostaggr

k-lookahead(R, T ), but never achieve this value. In fact, in Section 5 we will show that this is not the case, as we can
enforce, without loss of generality, a uniform bound to the memory of the k-lookahead streaming repair strategies.

Example 2 (Continued). Consider again the languages R = (a + b)∗ and T = (ab)∗ of Example 2 and recall that
acost(R, T ) = 1

2 . We show that the asymptotic 0-lookahead streaming aggregate cost acostaggr
0-lookahead(R, T ) is higher than

the asymptotic cost in the nonstreaming case. Suppose that S is a 0-lookahead streaming repair strategy for R and T . One
can inductively construct arbitrarily long words un = a1 a2 . . . an ∈ R such that if

q0
a1/v1−−−→ q1

a2/v2−−−→ . . .
an/vn−−−→ qn

is a partial run of S on un , then each next letter an is equal to the last letter of the prefix v1 v2 . . . vn−1 of the output of
S (if v1 v2 . . . vn−1 is empty, then an can be chosen arbitrarily). It is easy to see that the aggregate cost induced by the run
of S on un is at least n − 1, whence acostaggr

0-lookahead(R, T ) = 1. However, if we consider the model of edit cost, then we have
acostedit (R, T ) = 1 (in fact, any streaming strategy for R and T achieves this asymptotic edit cost).
0-lookahead 2
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Observe that, in general, the k-lookahead streaming asymptotic cost acostaggr
k-lookahead(R, T ) associated with two languages

R and T is a non-increasing function of the lookahead parameter k ∈ N and it is bounded from below by the non-streaming
asymptotic cost acost(R, T ).

Towards the end of Section 5 we will consider the problem of computing the limit of the streaming asymptotic cost
acostaggr

k-lookahead(R, T ) as the lookahead parameter k gets bigger. We are not able to compute the exact value of this limit, nor
to prove that acostaggr

k-lookahead(R, T ) stabilizes for sufficiently large k, as it seems reasonable. However, we will show how to
solve a simpler problem, that consists of deciding given two DFA R and T and a rational threshold ν whether there is k ∈N

such that acostaggr
k-lookahead(R, T ) < ν .

4. Asymptotic cost in the non-streaming case

In this section, we study the problem of computing the asymptotic cost in the non-streaming setting. We begin with
some background on distance automata, which will play a key role in the main characterization result.

4.1. Distance automata computing the edit cost

Intuitively, a distance automaton [2] is a transducer D that receives as input a finite word u and outputs a corresponding
cost D(u) in N∪ {∞}. Distance automata can be equivalently defined using two different presentations based, respectively,
on matrices of transition costs and on transition relations. Here, we adopt the latter type of presentation, which is more
convenient for our purposes (e.g., it eases the definition of a run of a distance automaton).

Formally, a distance automaton is a tuple D = (Σ, Q , E, I, F ), where Q is a finite set of states, E ⊆ Q × Σ × N × Q is
a finite transition relation, I and F are some initial and final conditions described by partial functions from Q to N and
representing the costs of beginning and ending a run with certain states. A run of D on a word u ∈ Σ∗ is a sequence

γ = (q0,a1, c1,q1) (q1,a2, c2,q2) . . . (qn−1,an, cn,qn)

of pairwise adjacent transitions in E that spell the input word u = a1a2 . . .an . The cost of the run γ is naturally defined by

cost(γ )
def=

∑
1≤i≤n

ci .

We denote by D(u) the minimum value I(q0) + cost(γ ) + F (qn) among all states q0 in the domain dom(I) of I , all states qn

in the domain dom(F ) of F , and all runs γ of D on u that start in q0 and end in qn . We let D(u) = ∞ if there are no such
states q0 and qn , or if there is no run from q0 to qn .

When considering the edit distance of a word u ∈ Σ∗ to a regular language T ⊆ Δ∗ , it is fairly natural to express
this value in terms of the cost computed by a distance automaton. By default, we assume that the target language T is
recognized by an NFA T = (Δ, Q , E, I, F ). Given two states p,q of T , we let Tp,q be the NFA obtained from T by letting
p be the new initial state and q the new unique final state. The distance automaton that computes the edit distance of a
word u ∈ Σ∗ to the target language L (T ) is defined as Dedit

T = (Σ, Q , Eedit, Iedit, F edit), where

• Eedit is the set of all transitions of the form (p,a, c,q), with p,q ∈ Q , a ∈ Σ , q reachable from p in T , and c =
min{dist(a, v) : v ∈ L (Tp,q)},

• Iedit is the partial function that maps a state q ∈ Q to the minimum among the values dist(ε, v), with v ∈ ⋃
p∈I L (Tp,q)

(if q is not reachable from some initial state of T , then Iedit(q) is undefined),
• F edit is the partial function that maps a state p ∈ Q to the minimum among the values dist(ε, v), with v ∈ ⋃

q∈F L (Tp,q)

(if p cannot reach a final state of T , then F edit(p) is undefined).

One can easily show that Dedit
T computes exactly the edit distance of a word u ∈ Σ∗ to the regular language L (T ):

Proposition 1. For every word u ∈ Σ∗ , we have

Dedit
T (u) = min

v∈L (T )
dist(u, v).

Proof. Let T = (Δ, Q , E, I, F ) be an NFA and let Dedit
T = (Σ, Q , Eedit, Iedit, F edit) be the corresponding distance automaton,

as defined above. For this proof, it is convenient to introduce the notion of locally optimal run. We say that a run γ =
(q1,a1, c1,q2) . . . (qn,an, cn,qn+1) of Dedit

T is locally optimal if it has the minimum cost among all runs of Dedit
T on the same

word u = a1 . . .an that start in q1 and end in qn+1. Note that there can exist several locally optimal runs on the same word
u with different costs (and, of course, with different beginning and ending states). We have the following characterization
of the minimum cost:
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Claim 1. For every word u ∈ Σ∗ and every locally optimal run γ of Dedit
T on u that starts in p and ends in q, we have that

cost(γ ) = min
v∈L (Tp,q)

dist(u, v).

Proof. The proof of the above claim is by induction on the length of the word u. If u = ε, then the claim follows easily. As
for the inductive step, let us assume that the claim holds for u and let us prove it for u a, with a ∈ Σ . Let γ be a locally
optimal run of Dedit

T on u a that starts in p and ends in q. Moreover, for every state r ∈ Q , let γr be a locally optimal run of
Dedit

T on u from p to r. Since γ is locally optimal, we have that its cost is the minimum among the cost of a run γr , with
r ∈ Q , plus the cost of an a-labeled transition from r to q. From the inductive hypothesis, we have that

cost(γr) = min
v∈L (Tp,r)

dist(u, v).

This shows that

cost(γ ) = min
(r,a,c,q)∈Eedit

cost(γr) + c

= min
(r,a,c,q)∈Eedit

min
v∈L (Tp,r)

dist(u, v) + c.

We now look at the definition of the transition relation Eedit . It contains all quadruples (r,a, c,q) such that c =
min{dist(a, w) : w ∈ L (Tr,q)}. This shows that

cost(γ ) = min
r∈Q

min
v∈L (Tp,r)

min
w∈L (Tr,q)

dist(u, v) + dist(a, w)

= min
v w∈L (Tp,q)

dist(u a, v w). �

To complete the proof of the proposition, it is sufficient to recall that for every word u ∈ Σ∗ , Dedit
T (u) is the minimum

among the values cost(γ ) + Iedit(p) + F edit(q), for all states p ∈ dom(Iedit) and q ∈ dom(F edit) and all (locally optimal) runs
γ of Dedit on u that start from p and end in q. We also recall that Iedit(p) = min{dist(ε, v) : p′ ∈ I, v ∈ L (Tp′,p)} and
F edit(q) = min{dist(ε, v) : q′ ∈ F , v ∈ L (Tq,q′)}. This implies that Dedit

T (u) is the minimum among the values

dist(ε, v I ) + dist(u, v) + dist(ε, v F ) = dist(u, v I v v F )

where v I ∈ ⋃
p′∈I L (Tp′,p), v ∈ L (Tp,q), v F ∈ ⋃

q′∈F L (Tq,q′), (hence v I v v F ∈ L (T )), and p,q ∈ Q . This concludes the
proof of the proposition. �
4.2. Shortcut property and determinizable components

Distance automata of the form Dedit
T are a proper sub-class of all distance automata. In particular, they satisfy the shortcut

property, formalized just below. Given a symbol a ∈ Σ and two states p,q of a distance automaton D, we write p a−→ q to
denote the existence in D of a transition (p,a, c,q) with some cost c ∈N.

Definition 1. A distance automaton D satisfies the shortcut property if for all symbols a,b and all states p,q, r, p a−→ q b−→ r
implies p a−→ r and p b−→ r.

Lemma 1. For every DFA T , Dedit
T satisfies the shortcut property.

Proof. The proof follows almost immediately from the definition of Dedit
T . Let us consider two consecutive transitions

(p,a, c,q) and (q,b, c′, r) in Dedit
T . We know from the definition of the transition relation of Dedit

T that there exist some
words v ∈ L (Tp,q) and w ∈ L (Tq,r). It follows that v w ∈ L (Tp,r). Again from the definition of Dedit

T , we derive the exis-
tence of a transition (p,a, c′′, r), for some c′′ ≤ dist(a, v w). Similarly, it follows that (p,b, c′′′, r) is a transition in Dedit

T , for
some c′′′ ≤ dist(b, v w). �

As with NFA, we call a strongly connected component (SCC) of a distance automaton D any maximal set of mutually
reachable states. Given an SCC C of D, we denote by D|C the sub-automaton obtained from D by restricting the set of
states and transitions to C and by letting the initial and final conditions map any state of C to 0. Note that the transition
graph of D|C is a clique when D satisfies the shortcut property.

A crucial property entailed by the shortcut property is the following one. Consider two runs γ and γ ′ of D|C that spell
the same word u, but end in different states q and q′ . If γ and γ ′ have optimal cost among all runs on D|C on u that end in
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q and q′ respectively, then one can show that the difference in cost between γ and γ ′ is uniformly bounded by a constant.
This implies that we can determinize D|C by using a subset construction, maintaining the difference between the optimal
cost of reaching each state q and the overall optimal cost (the same idea underlies Mohri’s determinization procedure [3]).
Since this difference is always uniformly bounded by a constant, we obtain a finite state deterministic distance automaton:

Proposition 2. For every distance automaton D that satisfies the shortcut property and every SCC C of D, there is a deterministic
distance automaton det(D|C) that is equivalent to D|C , namely, such that, for all words u,

det(D|C)(u) = D|C(u).

In addition, one can construct det(D|C) so as to satisfy the following property: if u1 = uk1 and u2 = uk2 are two repetitions of the
same word and ρ1 and ρ2 are runs of det(D|C) on u1 and u2 , respectively, that form cycles, then

cost(ρ1)

k1
= cost(ρ2)

k2
.

Proof. Let D = (Σ, Q , E, I, F ) be a distance automaton satisfying the shortcut property and let C be an SCC of it. As a
preliminary remark, we observe that, by definition, D|C = (Σ, C, E ′, I ′, F ′), where E ′ is obtained from E by restricting the
set of states to C and I ′(q) = F ′(q) = 0 for all q ∈ C . Below, we consider runs of the distance automaton D|C on a given word
u that end in a given state q and have the minimum cost among all runs of the same type. We call these runs (u,q)-optimal
(note that these are similar to the locally optimal runs used in the proof of Proposition 1, with the only exception that the
starting state is not fixed). We also say that a run is u-optimal if it is (u,q)-optimal for some state q ∈ C .

The basic idea underlying the determinization of the sub-automaton D|C stems from the following property:

Claim 2. Given a word u ∈ Σ∗ , the costs of any two u-optimal runs of D|C differ for at most cmax , where cmax is the maximum cost
that appears in the transitions of D|C.

Proof. Let us fix a word u = a1 . . .an and let us consider two u-optimal runs γ = (q1,a1, c1,q2) . . . (qn,an, cn,qn+1) and
γ ′ = (q′

1,a1, c′
1,q′

2) . . . (q′
n,an, c′

n,q′
n+1) of D|C on it. Observe that the states qn+1 and q′

n+1 belong to the same SCC C of D
and, in particular, qn+1 is reachable from q′

n+1, namely,

q′
n+1

v−→ qn+1

where v−→ denotes the natural extension of the transition relation a−→ from symbols to words (i.e., p v−→ q iff v = ε and
p = q, or v = v ′ · a, p v ′−−→ r, r a−→ q, for some v ′ ∈ Σ∗ and some r ∈ C ). Using a basic induction on |v| and the shortcut
property, one can prove that D contains a transition of the form (q′

n,an, c′′,qn+1), for some c′′ ∈ {0, . . . , cmax}. This implies
that the following is also a valid run of D|C on u:

γ ′′ = (
q′

1,a1, c′
1,q′

2

) (
q′

2,a2, c′
2,q′

3

)
. . .

(
q′

n−1,an−1, c′
1,q′

n

) (
q′

n,an, c′′,qn+1
)
.

Using the u-optimality of γ , we derive

cost(γ ) ≤ cost
(
γ ′′) ≤ cost

(
γ ′) + cmax.

By symmetric arguments, one derives the inequality cost(γ ′) ≤ cost(γ ) + cmax . �
We now construct a deterministic distance automaton det(D|C) that turns out to be equivalent to D|C . Intuitively,

det(D|C) parses an input word u and it outputs the minimal cost of a u-optimal run, keeping track, at the same time, of
the differences between this cost and the costs of the (u,q)-optimal runs, for any q ∈ C (these differences are called residual
costs and, in view of the previous claim, are uniformly bounded). We formally define the deterministic distance automaton
det(D|C) equivalent to D|C as the tuple (Σ, Q ′, δ, r̄0, F ′), where

• Q ′ is the set of vectors with entries indexed by states in C and values ranging over the finite set {0, . . . , cmax}, where
cmax is the maximum cost that appears in the transitions of D|C (intuitively, these vectors represent the residual costs
of (u,q)-locally optimal runs, for each state q ∈ C and for some fixed word u);

• δ is the partial function from Q ′ × Σ to N × Q ′ defined by δ(r̄,a) = (c, r̄′), where c = min{r̄[p] + c′ : p ∈ C,

(p,a, c′,q) ∈ E} and r̄′[q] = min{r̄[p] + c′ − c : p ∈ C, (p,a, c′,q) ∈ E};
• r̄0 is the initial vector defined by r̄0[q] = 0 for all q ∈ C ;
• F ′ is the constant function that maps any vector r̄ ∈ Q ′ to 0 (note that there always exist q ∈ C for which the corre-

sponding residual r̄[q] in r̄ is 0).

We show that det(D|C) is equivalent to D|C , namely, that det(D|C)(u) = D|C(u) for all u ∈ Σ∗ . Let us consider a word
u = a1 . . .an . By exploiting a simple induction on the length of u, one can prove that



M. Benedikt et al. / Theoretical Computer Science 539 (2014) 38–67 45
Fig. 1. A distance automaton with two SCCs and its determinized sub-automata.

1. there exists a run of det(D|C) on u if, and only if, there exists a run of D|C on u, -
2. if ρ = (r̄1,a1, c1, r̄2) . . . (r̄n,an, cn, r̄n+1) is the unique run of det(D|C) on u = a1 . . .an starting from state r̄1 (recall that

det(D|C) is deterministic), then the cost of ρ is equal to the cost of a u-optimal run γ augmented with the residual
r̄1[p], where p is the initial state of γ . That is:

cost(ρ) = cost(γ ) + r̄1[p]. (1)

We omit the formal proof of the above properties and we observe that they immediately imply that det(D|C)(u) = D|C(u)

for all words u ∈ Σ∗ .
Towards a conclusion, we can use Eq. (1) to prove the additional property concerning the cycles in det(D|C). Consider

two repetitions of the same word, that is, u1 = uk1 and u2 = uk2 and suppose that ρ1 and ρ2 are runs of det(D|C) on
u1 and u2 that form cycles (note that the two runs do not need to start from the same state). We denote by cmax be the
maximal cost in D|C and, for every n ∈ N, we let γ (n) be a un-optimal run of D|C . We now consider the costs of suitable
repetitions of the cycles ρ1 and ρ2:

k2 · n · cost(ρ1) = cost
(
ρ

k2·n
1

) ≤ cost
(
γ (k1·k2·n)

) + cmax (by (1))

≤ cost
(
ρ

k1·n
2

) + 2 · cmax (by (1))

≤ k1 · n · cost(ρ2) + 2 · cmax.

As the above inequality holds for all natural numbers n, we conclude that cost(ρ1)
k1

≤ cost(ρ2)
k2

. Finally, a symmetric argument

shows that cost(ρ1)
k1

≥ cost(ρ2)
k2

. �
Hereafter, given a distance automaton D satisfying the shortcut property and an SCC C in it, we denote by det(D|C) the

deterministic distance automaton that satisfies Proposition 2. A close inspection to the proof of the above proposition shows
that det(D|C) can be constructed in exponential time from D and C .

Example 4. Consider the distance automaton D of Fig. 1, which computes the edit distance of any word to the target
language T = (ab + b)∗ a∗ . As D satisfies the shortcut property and consists of two SCCs C1 and C2, the two sub-automata
D|C1 and D|C2 can be turned into equivalent deterministic distance automata det(D|C1) and det(D|C2), depicted to the
right of Fig. 1.

We remark that the above result does not imply that the entire distance automaton D is determinizable. Consider, for
instance, a distance automaton D that computes the edit distance of a word u to the target language T = a∗ + b∗ . This
distance is given by the minimum between the number of occurrences of a and the number of occurrences of b and hence
any deterministic device that computes dist(u,L (T )) must use unbounded memory.

4.3. Asymptotic cost in the unrestricted case

We now look at a special case of the asymptotic cost problem, where the source restriction is trivial. Thanks to Propo-
sition 1 and Lemma 1, we can reduce the problem of computing the asymptotic repair cost acost(Σ∗,L (T )) in the
unrestricted case to the problem of computing the asymptotic cost of a distance automaton D satisfying the shortcut prop-
erty:

acost(D)
def= lim

n→∞ sup
u∈Σ∗

D(u)

|u| .
|u|≥n
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This section is devoted to provide an effective characterization of the asymptotic cost acost(D) that will imply that the
value is rational and computable from D.

Before turning to the characterization, we prove that, in general, it is not possible to compute the asymptotic cost
acost(D) for an arbitrary distance automaton D:

Proposition 3. The problem of deciding, given an arbitrary distance automaton D, whether or not acost(D) ≤ 1
2 is undecidable.

Proof. We use the undecidability of the 1
2 -threshold problem for normalized costs induced by distance automata [5], which

consists of deciding, given a distance automaton D, whether D(u)
|u| ≤ 1

2 holds for all words u ∈ Σ∗ .
Let us consider a distance automaton D = (Σ, Q , E, I, F ). We compute a variant of the Kleene closure of D, denoted

D∗
#, by introducing a fresh symbol # /∈ Σ and by adding 0-cost #-labeled transitions from all states p ∈ dom(F ) to all states

q ∈ dom(I). The new automaton D∗
# satisfies the following property:

∀m ∈N, u1, . . . , um ∈ Σ∗, D∗
#(u1# . . . #um) =

∑
1≤i≤m

D(ui).

Clearly, this implies that acost(D∗
#) ≥ supu∈Σ∗ D(u)

|u| . As for the converse inequality, we consider a family of words u(n) =
u(n)

1 # . . . #u(n)
mn of length n such that limn→∞

D∗
#(u(n))

n = acost(D∗
#) and we observe that

D∗
#(u(n))

n
=

∑
1≤i≤mn

D(u(n)
i )∑

1≤i≤mn
|u(n)

i | + mn − 1
≤ sup

u∈Σ∗
D(u)

|u| .

In particular, the above inequalities imply that acost(D∗
#) = supu∈Σ∗ D(u)

|u| and hence they reduce the 1
2 -threshold prob-

lem for D to the problem of deciding whether acost(D∗
#) ≤ 1

2 . From previous remarks about the undecidability of the
1
2 -threshold problem, it follows that it is not possible to compute the asymptotic cost for generic distance automata. �

The above proof gives a reduction from the 1
2 -threshold problem for the normalized cost of a distance automaton D to

the 1
2 -threshold problem for the asymptotic normalized cost of a distance automaton D∗

#. It is worth remarking that this
reduction does not preserve the shortcut property. This means that, even though it is possible to compute the asymptotic
normalized cost for the sub-class of distance automata satisfying the shortcut property, the decidability of the analogous
1
2 -threshold problem for the normalized cost cannot be immediately derived from that. The problem of computing the
normalized cost for a distance automaton satisfying the shortcut property remains, to our knowledge, open.

An approximate variant of the threshold problem for distance automata was solved in [6] by an algorithm that, given any
rational number ε > 0, tells apart the case D(u)

|u| ≤ (1 − ε) · 1
2 from the case D(u)

|u| ≥ 1
2 (in the reaming cases the algorithm

may return any output).
Next we explain how the shortcut property helps in computing the asymptotic cost. One can show that the problem of

computing acost(D) for a distance automaton D that is deterministic is reducible to the problem of computing normalized
costs of simple cycles. Formally, a simple cycle is a run that is a cycle (i.e., that starts and ends in the same state) but
that does not contain proper sub-cycles. It is then easy to show that for a deterministic distance automaton D, acost(D)

coincides with the maximum of cost(L)
|L| among all simple cycles L of D, where cost(L) denotes the cost of the simple cycle L

and |L| its length (i.e., number of transitions in it). Thus by Proposition 2, calculation with simple cycles suffices to compute
the asymptotic cost of any distance automaton satisfying the shortcut property and having a single SCC.

We consider now the more general case of a distance automaton D satisfying the shortcut property and having many
SCCs, say C1, . . . , Ck . The situation in this case is slightly more complicated, as acost(D) cannot be expressed as a function
of acost(D|C1), . . . ,acost(D|Ck). For this we define D̄ as the deterministic multi-distance automaton obtained from the
synchronous product of det(D|C1), . . . ,det(D|Ck) and we denote by L1, . . . , Lm the simple cycles of D̄. Moreover, given
1 ≤ i ≤ m and 1 ≤ j ≤ k, we denote by cost j(Li) the cost of the projection of the simple cycle Li into the j-th component
of D̄. Assuming that D is trimmed, namely, all its states are reachable from some states in dom(I) and they can reach some
states in dom(F ), we can characterize the asymptotic cost of D as follows:

Theorem 1. For every (trimmed) distance automaton D satisfying the shortcut property,

acost(D) = max
α1,...,αm≥0

min
1≤ j≤k

∑
1≤i≤m αi · cost j(Li)∑

1≤i≤m αi · |Li | (2)

where C1, . . . , Ck are the SCCs of the distance automaton D, L1, . . . , Lm are the simple cycles of the multi-distance automaton D̄ =
det(D|C1) × . . . × det(D|Ck), and cost j(Li) is the cost of the projection of the simple cycle Li into the j-th component of D̄.
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The idea underlying the above characterization is that the asymptotic cost acost(D) is achieved by repetitions of simple
cycles in the multi-distance automaton D̄. The parameters α1, . . . ,αm represent a correlation between the numbers of
repetitions of the various simple cycles and the index j represents the SCC of D that optimizes the normalized cost of these
repetitions. Before turning to the proof of this characterization, we illustrate by means of an example the rationale behind
the use of cycles in D̄.

Example 5. Consider again the distance automaton D of Fig. 1, with the two SCCs C1 and C2. The determinized sub-
automaton det(D|C1) has four different simple cycles: one spelling aa with cost 1, one spelling ab with cost 0, one spelling
b with cost 0, and one spelling aab with cost 1. Similarly, the determinized sub-automaton det(D|C2) has two simple cycles:
one spelling a with cost 0, and the other spelling b with cost 1. Hence (aa)n is a family of words achieving a worst-case
asymptotic cost of lim n

2n = 1
2 for the sub-automaton D|C1, and bn is a family of words achieving a worst-case asymp-

totic cost of lim n
n = 1 for the sub-automaton D|C2. However, a2n is not a worst-case for D|C2 (as it can be repaired with

asymptotic cost 0) and, symmetrically, bn is not a worst-case for D|C1. This means that the asymptotic cost for D must be
achieved by a suitable combination of both families of words. To find the correct combination that witnesses the asymptotic
cost for D it is convenient to consider cycles in the multi-distance automaton D̄ = det(D|C1) × detdet(D|C2) and linear
combinations of their costs in the components C1 and C2. For the considered example, we notice that the simple cycle in D̄
that spells repetitions of the form (aab)n achieves maximal normalized cost in both components, that is, 1

3 , which indeed
coincides with the worst-case asymptotic cost acost(D).

The proof of Theorem 1 consists of establishing two inequalities, which are given by Lemma 3 and Lemma 4 below.
For the first inequality, we argue that all words can be approximated in cost by repetitions of simple cycles, and that the

cost of parsing these words is at most the cost of a “homogeneous run”, i.e., a run lying entirely inside a single component
of D. The first part of the proof relies on the following property, which is also present in [7]. We state it in a graph-theoretic
setting, in such a way that it can be later reused in several proofs. In particular, we consider a directed graph G , which can
be understood as the multi-distance automaton D̄, and a path ρ in it, that is, a sequence of edges of the form e1 e2 . . . en ,
where the target vertex of each edge ei coincides with source vertex of the next edge ei+1. Intuitively, this property state in
the following lemma eases the calculation of the cost within an SCC C j of a run ρ of D̄ that does not show any particular
‘cyclic’ structure.

Lemma 2 (Simple cycle decomposition [7]). Let G be a finite graph and let L1, . . . , Lm be all the simple cycles in it. Given a path ρ in G ,
one can find a partition the domain of ρ into (possibly non-convex) subsets X0, X1, . . . , Xm such that

1. |X0| ≤ K , where K is the number of vertices of G ,
2. for all 1 ≤ i ≤ m, the sub-sequence ρ|Xi is a repetition of Li .

Proof. We find the sets X0, X1, . . . , Xm by exploiting an induction. At the beginning we define X0,0 to be the entire domain
of the path ρ and X0,i = ∅ for all 1 ≤ i ≤ m. At each induction step on n ∈ N, we subtract a suitable convex subset Yn from
Xn,0 and we add it to one of the subsets Xn,i , with 1 ≤ i ≤ m. More precisely, if |Xn,0| ≤ K , where K is the number of vertices
of G , then we terminate the induction with the current sets Xn,0, Xn,1, . . . , Xn,m . Otherwise, we continue the induction by
specifying the sets Xn+1,0, Xn+1,1, . . . , Xn+1,m in terms of Xn,0, Xn,1, . . . , Xn,m as follows. We first claim that there is an
interval Yn contained in Xn,0 for which the sub-sequence ρ|Yn is an occurrence of a simple cycle Li , for some 1 ≤ i ≤ m.
Indeed, since the length of the sub-sequence ρ|Xn,0 exceeds the number K of states of G , we know that ρ|Xn,0 contains
two repeated occurrences of the same state, and hence a cycle L. In its turn, the cycle L must contain an occurrence of a
simple cycle among L1, . . . , Lm (this follows from the fact that the containment relation between cycles is a well-founded
partial order). We choose such an occurrence of the simple cycle Li in ρ|Xn,0 and we denote by Yn the set of the positions
in Xn,0 that carry the chosen occurrence. Accordingly, we define

• Xn+1,0 = Xn,0 \ Yn ,
• Xn+1,i = Xn,i ∪ Yn ,
• Xn+1,i′ = Xn,i′ for all indices 1 ≤ i′ ≤ m different from i.

If n is the last step of the induction, then we define Xi = Xn,i for all 0 ≤ i ≤ m. Note that we have |X0| = |Xn,0| ≤ K . More-
over, it is easy to verify (e.g., by induction on n) that each sub-sequence ρ|Xn,i (and hence, in particular, the sub-sequence
ρ|Xi) is a repetition of the corresponding simple cycle Li . This concludes the proof of the claim. �

Hereafter, for the sake of brevity, we tacitly assume that C1, . . . , Ck are the SCCs of the distance automaton D and
L1, . . . , Lm are the simple cycles of the multi-distance automaton D̄ = det(D|C1) × . . . × det(D|Ck). Moreover, we say that a
run γ = (q0,a1, c1,q1) . . . (qn−1,an, cn,qn) of D = (Σ, Q , E, I, F ) is successful if it starts in a state q0 ∈ dom(I) and it ends in
a state qn ∈ dom(F ).
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Lemma 3. For every distance automaton D satisfying the shortcut property,

acost(D) ≤ max
α1,...,αm≥0

min
1≤ j≤k

∑
1≤i≤m αi · cost j(Li)∑

1≤i≤m αi · |Li | .

Proof. Let (u(n))n∈N be a family of words over the alphabet Σ such that

acost(D) = lim sup
n→∞

D(u(n))

|u(n)| .

Without loss of generality, we can assume that the limit of the sequence D(u(n))

|u(n)| , for arbitrarily large numbers n, exists,

and hence it coincides with acost(D). Indeed, if this were not the case, we could restrict ourselves to a proper sub-family

(u(n))n∈N of words, where N is an infinite subset of the natural numbers, in such a way that the sequence D(u(n))

|u(n)| converges

for n ranging over N . Assuming that limn→∞ D(u(n))

|u(n)| is defined will allow us to further restrict, if necessary, to sub-families of

words without compromising the above equality. To prove the lemma, it is sufficient to find some parameters α1, ...,αm ≥ 0
that satisfy the following inequality:

lim sup
n→∞

D(u(n))

|u(n)| ≤ min
1≤ j≤k

∑
1≤i≤m αi · cost j(Li)∑

1≤i≤m αi · |Li | . (3)

Let us fix n ∈ N and denote by ρ(n) the (unique) successful run of D̄ on the word u(n) , and by ρ
(n)
j the projection of it into

the j-th component C j , for any 1 ≤ j ≤ k.
First, we compare the cost D(u(n)) with the cost D|C j(u(n)) for each SCC C j . Consider a successful run γ (n) of D on

u(n) which starts in some state p and ends in some state q and that minimizes the value cost(γ (n)) + I(p) + F (q). Clearly,
we have D(u(n)) ≤ cost(γ (n)) + Imax + Fmax , where Imax is the maximum value taken by the initial condition of D and
Fmax is the maximum value taken by the final condition of D. Consider now a run γ

(n)
j of D|C j on the same word u(n) ,

but entirely inside the SCC C j , which starts in p′ and ends in q′ and that minimizes the relative cost. Since the initial

and final conditions of D|C j map every state to 0, we have D|C j(u(n)) = cost(γ (n)
j ). Moreover, since D is trimmed, we

know that p′ is reachable from p and q is reachable from q′ . Thus, using the shortcut property, one can easily verify that
cost(γ (n)) ≤ cost(γ (n)

j ) + 2cmax , where cmax is the maximum cost that appears in the transitions of D (the additive constant
2cmax accounts for the cost discount in considering a run of D|C j rather than a run of D). This shows that

D
(
u(n)

) ≤ cost
(
γ (n)

) + Imax + Fmax

≤ min
1≤ j≤k

cost
(
γ

(n)
j

) + 2cmax + Imax + Fmax

= min
1≤ j≤k

D|C j
(
u(n)

) + 2cmax + Imax + Fmax.

From Proposition 2, we also know that D|C j(u(n)) = det(D|C j)(u(n)). Moreover, since det(D|C j) is a deterministic distance

automaton, the projection ρ
(n)
j of ρ(n) can be viewed as the unique run of det(D|C j) on u(n) . We thus obtain

D|C j
(
u(n)

) = det(D|C j)
(
u(n)

) = cost
(
ρ

(n)
j

)
.

Below, we explicitly compute the cost of each run ρ
(n)
j using the costs of the simple cycles Li in the component C j of D. The

problem is that the run ρ(n) may not contain factors consisting of entire repetitions of these simple cycles. We overcome
this problem by viewing the multi-distance automaton D̄ as a finite graph and the run ρ(n) of D̄ as a path in it. The simple
cycle decomposition lemma (Lemma 2) implies the existence of a partition of the domain of ρ(n) into (possibly non-convex)
subsets X (n)

0 , X (n)
1 , . . . , X (n)

m such that

1. |X (n)
0 | is uniformly bounded by the number K of states of D̄,

2. for all 1 ≤ i ≤ m, the sub-sequence ρ(n)|X (n)
i is a repetition of the simple cycle Li of D̄.

For every index 1 ≤ i ≤ m, we denote by occ(n)
i the number of repetitions of the simple cycle Li in the sub-sequence

ρ(n)|X (n)
i (by a slight abuse of terminology we say that these are also ‘repetitions’ in the run ρ(n)). We are now ready to

bound the cost of ρ(n) in the component C j in terms of the costs of the ‘repetitions’ of each simple cycle Li in ρ(n) .

The first, straightforward, inequality is as follows (recall that the sets X (n)
0 , X (n)

1 , . . . , X (n)
m form a partition of the domain

of ρ(n) and |X (n)| ≤ K ):
0
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cost
(
ρ

(n)
j

) =
∑

1≤i≤m

cost
(
ρ

(n)
j

∣∣X (n)
i

) + cost
(
ρ

(n)
j

∣∣X (n)
0

)

≤
∑

1≤i≤m

cost
(
ρ

(n)
j

∣∣X (n)
i

) + K · c′
max

where c′
max is the maximum cost that appears in the transitions of D̄. Moreover, it easily follows from the fact that the

sub-sequence ρ(n)|X (n)
i is an occ(n)

i -fold repetition of the simple cycle Li , that

cost
(
ρ

(n)
j

∣∣X (n)
i

) = occ(n)
i · cost j(Li).

Now, in order to find the parameters α1, ...,αm ≥ 0 that satisfy Eq. (3), we consider the asymptotic behavior of the

sequence
occ(n)

i
n . Without loss of generality, we can assume that the limit of

occ(n)
i

n for arbitrarily large numbers n ∈ N exists.

Indeed, we can always find an infinite set N of natural numbers such that the sequence
occ(n)

i
n converges for n ranging

over N . Note that restricting to the corresponding sub-family of words u(n) and runs γ (n) and ρ(n) , for n ∈ N , does not

affect the previously established equalities (in particular, acost(D) = limn→∞ cost(γ (n))

|u(n)| ). For the sake of simplicity, we shall

not explicitly mention the set N hereafter and we use, for instance, limn→∞ f (n) to denote the limit of a certain function
f for arbitrarily large numbers n ∈ N . Accordingly, for every index 1 ≤ i ≤ m, we define

αi
def= lim

n→∞
occ(n)

i

n
.

Clearly, we have that

occ(n)
i · cost j(Li) = (

n · αi + occ(n)
i − n · αi

) · cost j(Li) = n · αi · cost j(Li) + gi, j(n)

where gi, j(n)
def= (occ(n)

i −n ·αi) ·cost j(Li) is a function whose limit tends to 0 (hence gi, j ∈O(1), using the ‘big-O’ notation).
Putting all together, we get an upper bound to the cost of the run γ (n):

D
(
u(n)

) ≤ min
1≤ j≤k

D|C j
(
u(n)

) + 2cmax + Imax + Fmax

= min
1≤ j≤k

cost
(
ρ

(n)
j

) + 2cmax + Imax + Fmax

≤ min
1≤ j≤k

( ∑
1≤i≤m

cost
(
ρ

(n)
j

∣∣X (n)
i

) + K · c′
max

)
+ 2cmax + Imax + Fmax

= min
1≤ j≤k

∑
1≤i≤m

(
occ(n)

i · cost j(Li)
) + 2cmax + Imax + Fmax + K · c′

max

= min
1≤ j≤k

∑
1≤i≤m

(
n · αi · cost j(Li) + gi, j(n)

) + 2cmax + Imax + Fmax + K · c′
max

= n · min
1≤ j≤k

∑
1≤i≤m

αi · cost j(Li) +O(1).

Similarly, we obtain a lower bound to the length of the word u(n):∣∣u(n)
∣∣ ≥

∑
1≤i≤m

u(n)|X (n)
i

=
∑

1≤i≤m

occ(n)
i · |Li |

= n ·
∑

1≤i≤m

αi · |Li | −O(1).

Towards a conclusion, we prove Eq. (3) as follows:

lim sup
n→∞

D(u(n))

|u(n)| ≤ lim sup
n→∞

n · min1≤ j≤k
∑

1≤i≤m αi · cost j(Li) +O(1)

n · ∑1≤i≤m αi · |Li | −O(1)

= min
1≤ j≤k

∑
1≤i≤m αi · cost j(Li)∑

α · |L | . �

1≤i≤m i i
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For the converse inequality, we present a large family of words for which the optimal runs are nearly homogeneous (in
the sense that they lie almost entirely inside a single component of D). The words will consist of nested repetitions of
simple cycles in such a way that any optimal run stabilizes in the same component.

Lemma 4. For every distance automaton D satisfying the shortcut property,

acost(D) ≥ max
α1,...,αm≥0

min
1≤ j≤k

∑
1≤i≤m αi · cost j(Li)∑

1≤i≤m αi · |Li | .

Proof. Let us fix arbitrarily some parameters α1, . . . ,αm ≥ 0. We prove the above inequality by constructing a family of
‘cyclic’ words u(n) that depend on α1, . . . ,αm and n and such that the normalized cost of any run of D on u(n) dominates,

in the limit, the cost
∑

1≤i≤m αi ·cost j(Li)∑
1≤i≤m αi ·|Li | . For the moment, we assume that all the states of the cycles L1, . . . , Lm are mutually

reachable in D̄. Towards the end of the proof, we will show how to drop this assumption.
We fix (i) a run σ0 of D̄ that starts from the initial state of D̄ and ends in the first/last state of L1, (ii) a run σm of D̄

that starts from the first/last state of Lm and ends in the first/last state of L1, and (iii) for all 1 ≤ i < m, a run σi of D̄ that
starts from the first/last state of Li and ends in the first/last state of Li+1. Without loss of generality, we can assume that
the lengths of the runs σ0, σ1, . . . , σm do not exceed the number K of states of D̄. Now, we think of each simple cycle Li
as a run of the multi-distance automaton D̄ that starts and ends in the same state and we construct, for every natural
number n, a ‘cyclic’ run ρ(n) of D̄ as follows:

ρ(n) def= σ0
(
ρ

(n)
cycles

)n

where ρ
(n)
cycles

def= L�n·α1�
1 σ1 L�n·α2�

2 . . . σm−1 L�n·αm�
m σm.

Accordingly, we denote by u(n) the word spelled out by the run ρ(n) .
To prove the claim of the lemma, it is sufficient to prove that the following inequality holds for all n ∈ N and for all

choices of runs γ (n) of D on u(n):

lim sup
n→∞

cost(γ (n))

|u(n)| ≥ min
1≤ j≤k

∑
1≤i≤m αi · cost j(Li)∑

1≤i≤m αi · |Li | . (4)

Let us now fix further a run γ (n) of D on u(n) for each n ∈ N. We introduce some additional notation. Given n ∈ N, 1 ≤ i ≤ m,
and 1 ≤ j ≤ k, we define:

• X (n)
j to be the set of positions of γ (n) that carry occurrences of transitions whose states belong to the same SCC C j

(note that X (n)
j is an interval);

• Y (n)
j to be the maximal subset of X (n)

j such that the sub-run ρ(n)|Y (n)
j is a repetition of the block ρ

(n)
cycles (note that Y (n)

j
is also an interval);

• Z (n)
j,i to be the maximal subset of Y (n)

j such that ρ(n)|Z (n)
j,i is a repetition of the simple cycle Li (note that the sets

Z (n)
j,1, . . . , Z (n)

j,m form a partition of Y (n)
j and they contain possibly non-contiguous positions).

• occ(n)
j to be the number of repetitions of ρ

(n)
cycles in the sub-run ρ(n)|Y (n)

j , namely, occ(n)
j = |Y (n)

j |
|ρ(n)

cycles|
(note that this implies

ρ(n)|Z (n)
j,i = L

�n·αi�·occ(n)
j

i ).

The first inequality is straightforward (the sets Z (n)
j,i are pairwise disjoint):

cost
(
γ (n)

) ≥
∑

1≤ j≤k

∑
1≤i≤m

cost
(
γ (n)

∣∣Z (n)
j,i

)
.

Given an index 1 ≤ j ≤ k, we also denote by ρ
(n)
j the projection of ρ(n) into the j-th component (we can think of it as a

run of the deterministic distance automaton det(D|C j) on u(n)). Below, we fix some indices 1 ≤ i ≤ m and 1 ≤ j ≤ k and we

compare the cost of each sub-sequence γ (n)|Z (n)
j,i with the cost of the corresponding sub-run ρ

(n)
j |Z (n)

j,i of D|C j .

We observe that γ (n)|Z (n)
j,i is not necessarily a run of D|C j , since the set Z (n)

j,i is not an interval of the domain of γ (n) (we

can still compute its cost though). We first turn γ (n)|Z (n)
j,i into a run γ̃

(n)
j,i of D|C j on u(n)|Z (n)

j,i of similar cost, as follows.

Suppose that there exist two positions x < y in Z (n)
j,i such that z /∈ Z (n)

j,i for all x < z < y and the corresponding transitions

γ (n)[x] = (px,ax, cx,qx) and γ (n)[y] = (p y,ay, c y,qy), which are consecutive in γ (n)|Z (n) , do not match (i.e., qx �= p y). We
j,i
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call such a pair (x, y) of positions a gap of Z (n)
j,i . The states qx and p y belong to the same SCC C j of D and hence it follows

from the shortcut property that D|C j contains a transition of the form (px,ax, c′
x, p y), for some c′

x ∈ N, connecting px to p y .

The described operation of connecting states through shortcuts can be applied to every gap (x, y) of Z (n)
j,i , thus resulting in

a correct run γ̃
(n)
j,i of D|C j on the sub-word u(n)|Z (n)

j,i . We observe two crucial properties about this construction. First, the

number of required operations is at most occ(n)
j (this follows from the fact that the gaps of Z (n)

j,i can only appear between

the positions that correspond to two non-consecutive occurrences of L�n·αi�
i in ρ(n) and from the fact that there exist at most

occ(n)
j such occurrences). Second, the difference in cost that results from one application of this operation never exceeds the

maximum cost cmax of the transitions in D. In view of these properties, we have

cost
(
γ (n)

∣∣Z (n)
j,i

) ≥ cost
(
γ̃

(n)
j,i

) − cmax · occ(n)
j .

From the fact that γ̃
(n)
j,i is a correct run of D|C j on u(n)|Z (n)

j,i and the initial and final conditions of the sub-automaton D|C j

map every state in C j to the cost 0, we derive

cost
(
γ̃

(n)
j,i

) ≥ D|C j
(
u(n)

∣∣Z (n)
j,i

)
.

Proposition 2 then implies that

D|C j
(
u(n)

∣∣Z (n)
j,i

) = det(D|C j)
(
u(n)

∣∣Z (n)
j,i

)
.

Now, consider the j-th projection ρ
(n)
j |Z (n)

j,i of the sub-run ρ(n)|Z (n)
j,i of the deterministic multi-distance D̄. By construction,

ρ
(n)
j |Z (n)

j,i is a run of det(D|C j) on the sub-word u(n)|Z (n)
j,i . Note that ρ

(n)
j |Z (n)

j,i can start from a state that is different from

the initial state of det(D|C j) and hence it is not guaranteed to have optimal cost. However, the first state of ρ
(n)
j |Z (n)

j,i

is reachable from the initial state of det(D|C j) by a path τ
(n)
j,i of length at most K , where K is the number of states

of D̄. For the sake of brevity, we denote by x(n)
j,i be the word spelled out by τ

(n)
j,i and by z(n)

j,i the sub-word u(n)|Z (n)
j,i

(which is spelled out by ρ(n)|Z (n)
j,i ). Clearly, we have cost(ρ(n)

j |Z (n)
j,i ) ≤ cost(τ (n)

j,i ) + cost(ρ(n)
j |Z (n)

j,i ) = det(D|C j)(x(n)
j,i z(n)

j,i ) =
D|C j(x(n)

j,i z(n)
j,i ). Let us now consider two optimal runs α

(n)
j,i and β

(n)
j,i of D|C j on x(n)

j,i and z(n)
j,i , respectively. Clearly, we

have D|C j(x(n)
j,i ) = cost(α(n)

j,i ) and D|C j(z(n)
j,i ) = cost(β(n)

j,i ). Moreover, since D|C j satisfies the shortcut property, we have

that the juxtaposition of the two runs α
(n)
j,i and β

(n)
j,i of D|C j can be turned into a valid run λ

(n)
j,i of D|C j on x(n)

j,i z(n)
j,i ,

having cost at most cost(α(n)
j,i ) + cost(β(n)

j,i ) + cmax , where cmax is the maximum cost of the transitions in D. This shows that

D|C j(x(n)
j,i z(n)

j,i ) ≤ cost(λ(n)
j,i ) ≤ cost(α(n)

j,i )+cost(β(n)
j,i )+ cmax =D|C j(x(n)

j,i )+D|C j(z(n)
j,i )+ cmax ≤ K · cmax +det(D|C j)(z(n)

j,i )+ cmax .
Overall, this shows that

det(D|C j)
(
u(n)

∣∣Z (n)
j,i

) ≥ cost
(
ρ

(n)
j

∣∣Z (n)
j,i

) − (K + 1) · cmax.

Now, we explicitly compute the cost of ρ
(n)
j |Z (n)

j,i as follows. Since ρ
(n)
j |Z (n)

j,i is an (�n · αi� · occ(n)
j )-fold repetition of the

simple cycle Li , we have

cost
(
ρ

(n)
j

∣∣Z (n)
j,i

) = �n · αi� · occ(n)
j · cost j(Li).

Another crucial step amounts to showing that the sum of the numbers occ(n)
j over all indices 1 ≤ j ≤ k is almost equal (i.e.,

equal up to a constant) to the total number n of repetitions of the block ρ
(n)
cycles in ρ(n) . The first inequality follows trivially

by construction:∑
1≤ j≤k

occ(n)
j ≤ n.

As for the converse equality, we recall that each set Y (n)
j is defined as the maximal set of positions of γ (n) that contain

states from the SCC C j and such that the sub-run ρ(n)|Y (n)
j is a repetition of the block ρ

(n)
cycles . This implies that there exist

at most k occurrences of the block ρ
(n)
cycles in ρ(n) that are not entirely covered by some set Y (n)

j , for any 1 ≤ j ≤ k. From this

and from the definition of occ(n)
j , we derive the following inequalities:

∑
occ(n)

j =
∑ |Y (n)

j |
|ρ(n)

cycles|
≥ |ρ(n)| − k · |ρ(n)

cycles|
|ρ(n)

cycles|
≥ n · |ρ(n)

cycles| − k · |ρ(n)
cycles|

|ρ(n)
cycles|

≥ n − k.
1≤ j≤k 1≤ j≤k
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Putting together all the inequalities (and using some basic rewriting), we obtain a lower bound to the cost of the run γ (n):

cost
(
γ (n)

) ≥
∑

1≤ j≤k

∑
1≤i≤m

cost
(
γ (n)

∣∣Z (n)
j,i

)

≥
∑

1≤ j≤k

∑
1≤i≤m

cost
(
γ̃

(n)
j,i

) − m · cmax ·
∑

1≤ j≤k

occ(n)
j

≥
∑

1≤ j≤k

∑
1≤i≤m

det(D|C j)
(
u(n)

∣∣Z (n)
j,i

) − m · cmax ·
∑

1≤ j≤k

occ(n)
j

≥
∑

1≤ j≤k

∑
1≤i≤m

(
cost

(
ρ

(n)
j

∣∣Z (n)
j,i

) − (K + 1) · cmax
) − m · cmax · n

≥
∑

1≤ j≤k

∑
1≤i≤m

(�n · αi� · occ(n)
j · cost j(Li)

) − m · cmax · (k · (K + 1) + n
)

≥
∑

1≤ j≤k

(
occ(n)

j · n ·
∑

1≤i≤m

αi · cost j(Li)

)
− m · cmax · (k · (K + 1) + n

)

≥ n ·
( ∑

1≤ j≤k

occ(n)
j

)
· min

1≤ j≤k

∑
1≤i≤m

(
αi · cost j(Li)

) − m · cmax · (k · (K + 1) + n
)

≥ n · (n − k) · min
1≤ j≤k

∑
1≤i≤m

(
αi · cost j(Li)

) − m · cmax · (k · (K + 1) + n
)

= n2 · min
1≤ j≤k

∑
1≤i≤m

αi · cost j(Li) −O(n). (∗)

Similarly, we easily obtain an upper bound to the length of the word u(n):

∣∣u(n)
∣∣ = n ·

∑
1≤i≤m

(�n · αi� · |Li |
) + |σ0| + n ·

∑
1≤i≤m

|σi|

≤ n2 ·
∑

1≤i≤m

(
αi · |Li |

) + n ·
∑

1≤i≤m

|Li | + K + n · m · K

= n2 ·
∑

1≤i≤m

αi · |Li | +O(n). (∗∗)

Pairing the above equations will allow us to prove the claim of the lemma in the case where all states of the cycles
L1, . . . , Lm are mutually reachable in D̄ (recall that we made such an assumption at the beginning of the proof).

Since, in general, this assumption may not hold, in order to complete the proof of the lemma we need to show how to
derive Eq. (4) where some cycles among L1, . . . , Lm cannot be reached from the others cycles.

Let v1, . . . , vm be the words spelled by the cycles L1, . . . , Lm in D̄. First of all, notice that det(D|C1), . . . ,det(D|Ck) are
complete automata, namely, in these automata, every state has one outgoing transition labeled with each letter of the
alphabet. This means that D̄ is also complete. In particular, we can find a bottom strongly-connected component of D̄ that
contains a set of mutually reachable cycles L′

1, . . . , L′
m , where each cycle L′

i spells a repetition of the word vi , say vli
i for

some positive number li . Now, set l = l1 · . . . · lm and define the cycles L′′
i = (L′

i)
l
li . Clearly, the states of the cycles L′′

1, . . . , L′′
m

are mutually reachable. Furthermore, we can derive both Eq. (∗) and Eq. (∗∗) exactly as we did before. From these equations
we easily get

lim sup
n→∞

cost(γ (n))

|u(n)| ≥ lim sup
n→∞

n2 · min1≤ j≤k
∑

1≤i≤m αi · cost j(L′′
i ) −O(n)

n2 · ∑1≤i≤m αi · |L′′
i | +O(n)

.

Moreover, since each cycle L′′
i spells the li -fold repetition of the word spelled by Li , we derive from the second claim of

Proposition 2 the following equality:

cost
(
L′′

i

) = l · cost j(Li).

Finally, by replacing cost(L′′) with l · cost j(Li) in the above equation, we derive the desired Eq. (4):
i
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lim sup
n→∞

cost(γ (n))

|u(n)| ≥ lim sup
n→∞

n2 · min1≤ j≤k
∑

1≤i≤m αi · l · cost j(Li) −O(n)

n2 · ∑1≤i≤m αi · l · |Li | +O(n)

= min
1≤ j≤k

∑
1≤i≤m αi · cost j(Li)∑

1≤i≤m αi · |Li | .

This completes the proof of Lemma 4. �
By virtue of Lemma 3 and Lemma 4, the proof of Eq. (2) from Theorem 1 becomes trivial.
We make a few remarks related to the effectiveness of the characterization. First of all, we observe that the right

handside term of Eq. (2) can be rewritten as the following instance of a linear programming problem:

maximize y subject to
∑

1≤i≤m

ci, j · xi ≥ y ∀1 ≤ j ≤ k

∑
1≤i≤m

xi ≤ 1, xi ≥ 0 ∀1 ≤ i ≤ m

where, for every 1 ≤ i ≤ m and every 1 ≤ j ≤ k, ci, j = cost j(Li)

|Li | . Intuitively, the variables x1, . . . , xm represent the values
α1 · |L1|, . . ., αm · |Lm| normalized in such a way that they sum up to 1, and the variable y represents an under-approximation
of the value of the right handside term of the equation. It is also known [8] that the optimal choices for the parameters
x1, . . . , xm, y can be found at the ‘corners’ of the (m + 1)-dimensional polyhedron that results from the intersection of
the finitely many half-spaces defined by the above linear inequalities. This explains why we put maxα1,...,αm≥0 instead of
supα1,...,αm≥0 in Eq. (2). Moreover, it also implies that the asymptotic cost acost(D) is a rational number.

Regarding the complexity of the problem of computing acost(D), we observe that (i) the size |D̄| of the multi-distance
automaton D̄ is exponential in |D|, (ii) each simple cycle Li has length at most linear in |D̄|, (iii) the number m of all

simple cycles of D̄ is exponential in |D̄|, and (iv) each constant ci, j = cost j(Li)

|Li | can be computed in time polynomial in |D̄|
and |Li |. Overall, the problem of computing the asymptotic cost of D is reduced, in time doubly exponential, to an instance
of a linear programming problem. The latter problem is known to be in P [9], which proves that acost(D) can be computed
in doubly exponential time.

If we consider the threshold problem for the asymptotic cost, that is, the problem of deciding whether acost(D) ≤ ν for
a given a distance automaton D satisfying the shortcut property and a given rational number ν , then the complexity can be
lowered to coNExp. Indeed, one observes that the cost of the projection into the j-th component of a simple cycle L of D̄
is at most |D̄| · cmax , where cmax is the maximum cost that appears in the transitions of D̄. This implies that there exist at
most M = |D̄|k+1 · ck

max (i.e., exponentially in |D|) distinct tuples (c1, . . . , ck, l) such that c j = cost j(L) and l = |L| for some
simple cycle L of D̄. Eq. (2) can be then rewritten as

acost(D) = max
α1,...,αM≥0

L1,...,LM simple cycles of D̄

min
1≤ j≤k

∑
1≤i≤M αi · cost j(Li)∑

1≤i≤M αi · |Li |

and hence acost(D) ≤ ν holds iff for all M-tuples of simple cycles L1, . . . , LM of D̄, with M = |D̄|2 · cmax · k, the system of
the following linear inequalities in the variables α1, . . . ,αM is unsatisfiable:

α1 ≥ 0
∑

1≤i≤M

(
cost1(Li) − ν · |Li |

) · αi > 0

. . .

αM ≥ 0
∑

1≤i≤M

(
costk(Li) − ν · |Li |

) · αi > 0.

Since satisfiability of systems of linear equations is decidable in polynomial time, this gives a coNExp algorithm that decides
whether acost(D) ≤ ν . As a consequence, we have that the complexity of the threshold problem for the asymptotic repair
cost for a universal restriction language and a target language represented by an NFA is between PSpace and coNExp (note
that the PSpace lower bound follows from a reduction from the universality problem for NFA but it holds also for target
languages represented by DFA):

Proposition 4. The problem of deciding, given an alphabet Σ , an NFA T , and a rational number ν , whether acost(Σ∗,L (T )) ≤ ν is
in coNExp and it is PSpace-hard already when T is a DFA and ν = 1

2 .

Proof. The coNExp upper bound of the considered threshold problem follows directly from the previous arguments. Below,
we prove that the analogous problem that involves target languages represented by DFA is already PSpace-hard. The proof
is by reduction of the universality problem for NFA. Let us fix an NFA A over the alphabet Σ .
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First of all, we construct an intermediate NFA T that recognizes the language (L (A) {#})∗ , where # is a fresh symbol
not belonging to Σ . Let Δ = Σ � {#} and recall that A recognizes the universal language Σ∗ if and only if Δ∗ is repairable
into L (T ) with uniformly bounded cost. In fact, it is easy to see that the following stronger property holds:

L (A) = Σ∗ iff cost
(
Δ∗,L (T )

)
< ∞

iff acost
(
Δ∗,L (T )

) = 0. (�)

Note that this already implies that the threshold problem for the asymptotic cost of a target NFA is PSpace-hard. Below, we
transform the NFA T into a DFA T ′ such that

cost
(
Δ∗,L (T )

)
< ∞ implies acost

(
Δ∗,L

(
T ′)) ≤ 1

2
(a)

acost
(
Δ∗,L (T )

)
> 0 implies acost

(
Δ∗,L

(
T ′)) >

1

2
(b)

(note that pairing the implications (a) and (b) with the equivalences in (�) gives the desired reduction).
Intuitively, the DFA T ′ is defined in such a way that it accepts all and only the successful runs of the NFA T . Precisely,

if T = (Δ, Q , E, I, F ), then we define T ′ = (Δ′, Q ′, E ′,q′
0, F ′), where

• Δ′ = Δ � Q ;
• Q ′ = Q � (Q × Δ) � {q′

0}, where q′
0 is a new state;

• E ′ consists of all transitions of the form:
1. (q′

0,q,q), with q ∈ I (namely, at the beginning T ′ reads an initial state q of T as input symbol and accordingly moves
from its initial state q0 to q),

2. (q,b, (q,b)), with q ∈ Q , b ∈ Δ

(namely, on input symbol b ∈ Δ, T ′ moves deterministically from any state q to the state (q,b)),
3. ((q,b),q′,q′), with (q,b,q′) ∈ E

(namely, T ′ moves deterministically from state (q,b) to state q′ on input q′ , provided that (q,b,q′) is a valid transi-
tion of T );

• F ′ = F .

Clearly, the automaton T ′ is deterministic. Moreover, it is easy to see that the language recognized by T ′ consists of all and
only the encodings of the successful runs of T (here we represent a run of T as a sequence of states from Q interleaved
with letters from Δ).

Let us prove the first implication (a). Suppose that cost(Δ∗,L (T )) < ∞, namely, that Δ∗ can be repaired into L (T )

with uniformly bounded cost. Let u = a1 a2 . . . a2n−1 a2n be a word of even length over Δ, let v be a word that belongs to
L (T ), and let v ′ be the encoding of a successful run of T on v (hence v ′ ∈ L (T ′)). We denote by ueven the sub-sequence
obtained from u by selecting the symbols at the even positions, i.e., ueven = a2 a4 . . . a2n , and we analyze its edit distance
from v . We know form the definition of edit distance that the word v can be factorized into n (= |ueven|) possibly empty
words v1, v2, . . . , vn such that

dist(ueven, v) =
∑

1≤i≤n

dist(a2i, vi).

The factorization v1, v2, . . . , vn of v induces a corresponding factorization v ′
1, v ′

2, . . . , v ′
n, v ′

n+1 of v ′ , where |v ′
i | = 2 · |vi | for

all 1 ≤ i ≤ n and |v ′
n+1| = 1. We now observe that for all 1 ≤ i ≤ n,

dist
(
a2i−1 a2i, v ′

i

) ≤ dist(a2i, vi) + max
{|vi|,1

}
and hence

dist
(
u, v ′) ≤

∑
1≤i≤n

dist
(
a2i−1 a2i, v ′

i

) + 1

≤
∑

1≤i≤n

(
dist(a2i, vi) + max

{|vi|,1
}) + 1

≤ dist(ueven, v) + max
{|ueven|, |v|} + 1.

Recall that the minimum of dist(ueven, v) over all v ∈ L (T ) is uniformly bounded by cost(Δ∗,L (T )), and it is realized by
some word v ∈ L (T ) that has length |v| ≤ |ueven| + dist(ueven, v) ≤ |ueven| + cost(Δ∗,L (T )). We thus derive
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acost
(
Δ∗,L

(
T ′)) = lim

n→∞ sup
u∈(ΔΔ)∗

|u|≥n

min
v ′∈L (T ′)

dist(u, v ′)
|u|

≤ lim
n→∞ sup

u∈(ΔΔ)∗
|u|≥n

min
v∈L (T )

dist(ueven, v) + max{|ueven|, |v|} + 1

|u|

≤ lim
n→∞ sup

u∈(ΔΔ)∗
|u|≥n

2 · cost(Δ∗,L (T )) + |ueven| + 1

|u|

≤ 1

2
.

This proves the first implication (a).
As for the second implication (b), we consider a generic pair of words u ∈ Δ∗ and v ∈ L (T ). We denote by v ′ the

encoding of a successful run of T on v (hence v ′ ∈ L (T ′)) and by udouble the word obtained from u by repeating each
letter twice (i.e., udouble = u(1) u(1) u(2) u(2) . . . u(|u|) u(|u|)). Below we show that

dist
(
udouble, v ′) ≥ dist(u, v) + |u| + 1

(we will then argue that this inequality entails the implication (b)).
For the sake of brevity, we write v ′ as q0 b1 q1 . . . qn−1 bn qn . We know from the definition of edit distance that the

word udouble can be factorized into n + 1 words udouble
1 , udouble

2 , . . . , udouble
n+1 such that

dist
(
udouble, v ′) =

∑
1≤i≤n

dist
(
udouble

i ,qi−1bi
) + dist

(
udouble

n+1 ,qn
)
.

Without loss of generality we can assume that the first factor udouble
1 has even length. Indeed, suppose that this is

not the case and let udouble
i be the first factor after udouble

1 that is non-empty. Observe that the first symbol of udouble
i

coincides with the last symbol of udouble
1 . Now, we consider a new factorization of udouble that is obtained from the

previous one by removing the first symbol from the i-th factor udouble
i and by adding it at the end of the first fac-

tor udouble
1 . Let us write the new factorization as ũdouble

1 , udouble
2 , . . . , udouble

i−1 , ũdouble
i , udouble

i+1 , . . . , udouble
n+1 (notice that only

the first and the i-th factor are changed). It is easy to see that if b1 occurs in ũdouble
1 (or, equally, in udouble

1 ), then
dist(ũdouble

1 ,q0b1) = |ũdouble
1 | − 1 = |udouble

1 | = dist(udouble
1 ,q0b1) + 1, otherwise dist(ũdouble

1 ,q0b1) = |ũdouble
1 | = |udouble

1 | + 1 =
dist(udouble

1 ,q0b1) + 1. Similarly, if bi occurs in ũdouble
i (or, equally, in udouble

i ), then dist(ũdouble
i ,qi−1bi) = |ũdouble

i | − 1 =
|udouble

i | − 2 = dist(udouble
i ,qi−1bi) − 1, otherwise dist(ũdouble

1 ,q0b1) = |ũdouble
i | = |udouble

i | − 1 = dist(udouble
i ,qi−1bi) − 1. In all

cases we have dist(ũdouble
1 ,q0b1) + dist(ũdouble

i ,qi−1bi) = dist(udouble
1 ,q0b1) + dist(udouble

i ,qi−1bi). This means that we could
have equally considered an alternative factorization of udouble that begins with a factor of even length.

Following similar arguments, we can assume, without loss of generality, that all factors but the last one have even length.
This allows us to define a corresponding factorization of u as u1, u2, . . . , un , where each ui is the sub-sequence of udouble

i
obtained by selecting only the symbols at the odd positions – note that u = u1 u2 . . . un . Thanks to the above definitions,
we have that for all 1 ≤ i ≤ n,

dist
(
udouble

i ,qi−1bi
) =

{
2 · dist(ui,bi) if bi does not occur in ui,

2 · dist(ui,bi) + 1 if bi occurs in ui,

and hence, letting I be the set of indices i ∈ {1, . . . ,n} such that bi occurs in ui , we obtain

dist
(
udouble, v ′) =

∑
1≤i≤n

dist
(
udouble

i ,qi−1bi
) + dist

(
udouble

n+1 ,qn
)

=
∑

1≤i≤n

2 · dist(ui,bi) + |I| + max
{

1,
∣∣udouble

n+1

∣∣}

= dist(u, v) +
∑

1≤i≤n

dist(ui,bi) + |I| + max
{

1,
∣∣udouble

n+1

∣∣}

= dist(u, v) +
∑

1≤i≤n

|ui| + max
{

1,
∣∣udouble

n+1

∣∣}

≥ dist(u, v) + |u|.
We thus conclude that
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acost
(
Δ∗,L

(
T ′)) ≥ lim

n→∞ sup
u∈Δ∗

|udouble|≥n

min
v ′∈L (T ′)

dist(udouble, v ′)
|udouble|

≥ lim
n→∞ sup

u∈Δ∗
|udouble|≥n

min
v∈L (T )

dist(u, v) + |u|
2 · |u|

= acost(Δ∗,L (T )) + 1

2
which immediately entails the implication (b).

Finally, observe that, as the NFA T satisfies property (�) and the DFA T ′ satisfies both implications (a) and (b), we
have that L (A) = Σ∗ implies cost(Δ∗,L (T )) < ∞, and hence acost(Δ∗,L (T ′)) ≤ 1

2 ; conversely, L (A) �= Σ∗ implies
acost(Δ∗,L (T )) > 0, and hence acost(Δ∗,L (T ′)) > 1

2 . This reduces the universality problem for the NFA A to a threshold
problem for the asymptotic repair cost of a DFA T ′ . �
4.4. Asymptotic cost in the general case

Here we show how to generalize the characterization of the asymptotic cost in the unrestricted case to our original
repair problem, which involves the presence of both a restriction and a target language. We first modify the definition of
asymptotic cost for a distance automaton to include the presence of a restriction language L (R) recognized by an NFA R:

acost(R,D)
def= lim

n→∞ sup
u∈L (R)

|u|≥n

D(u)

|u| .

Thanks to Proposition 1, we have that the asymptotic cost acost(R, T ) for two regular languages R and T recognized by NFA
R and T is equal to acost(R,Dedit

T ).
As usual, given a distance automaton D satisfying the shortcut property, we denote by D̄ the multi-distance automaton

det(D|C1) × . . . × det(D|Ck), where C1, . . . , Ck are all the SCCs of D. Moreover, given an NFA R and an SCC B of it, we
consider the synchronized product D̄ × (R|B) of the multi-distance automaton D̄ and the sub-automaton R|B , which is
obtained from R by restricting the set of states to B (it does not matter which state is chosen to be initial/final in R|B).
We then denote by LB

1 , . . . , LB
mB all the simple cycles of D̄ × (R|B). Finally, given a simple cycle LB

i of D̄ × (R|B) and an

SCC C of D, we denote by costC (LB
i ) the cost of the projection of LB

i into the component C of D̄ × (R|B). The generalized
characterization result is as follows:

Theorem 2. For every (trimmed) NFA R and every (trimmed) distance automaton D satisfying the shortcut property,

acost(R,D) = max
τ=B1...Bh∈dag(R)

α
B1
1 ,...,α

B1
mB1

≥0
......

α
Bh
1 ,...,α

Bh

mBh
≥0

min
π=C1...Ch∈dag(D)

∑
1≤l≤h

1≤i≤mBl

α
Bl
i · costCl (LBl

i )

∑
1≤l≤h

1≤i≤mBl

α
Bl
i · |LBl

i |
. (5)

Proof sketch. The proof is very similar to the proof of Theorem 1. In particular, we prove two inequalities between the
asymptotic cost acost(R,D) and the right handside expression.

Let us consider first the inequality

acost(R,D) ≤ max
τ=B1...Bh∈dag(R)

α
B1
1 ,...,α

B1
mB1

≥0
......

α
Bh
1 ,...,α

Bh

mBh
≥0

min
π=C1...Ch∈dag(D)

∑
1≤l≤h

1≤i≤mBl

α
Bl
i · costCl (LBl

i )

∑
1≤l≤h

1≤i≤mBl

α
Bl
i · |LBl

i |
.

In order to prove this inequality, one needs to fix, as in Lemma 3, a family of words (u(n))n∈N from the restriction language
L (R) such that

acost(D) = lim sup
n→∞

D(u(n))

|u(n)| .

By possibly restricting to sub-families of words, one can replace lim sup by lim in the above equation.
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One new ingredient is the following. Without loss of generality, we can also assume that all words u(n) induce successful
runs on the NFA R following the same path of SCCs of R. More precisely, we denote by σ (n) some successful run of R
on u(n) , and by τ (n) the path in dag(R) that consists of the sequence of SCCs visited by σ (n) . Then, since there are only a
finite number of paths in dag(R), we can restrict ourselves to suitable sub-families of words and runs in such a way that
all paths τ (n) are the same. We denote them simply by τ = B1 . . . Bh .

The proof then continues as follows. We partition the domain of each run σ (n) of the NFA R into some intervals
Y (n)

1 , . . . , Y (n)

h (recall that h is the number of SCCs in the path τ ) in such a way that each sub-sequence σ (n)|Y (n)

l , for

1 ≤ l ≤ h, is a run of the sub-automaton R|Bl on the sub-word u(n)|Y (n)

l (in fact the sets Y (n)
1 , . . . , Y (n)

h do not form a
partition of the entire domain of σ (n) , since there can be transitions crossing different SCCs in R; however, the number
of these transitions is at most the number of SCCs in R, and thus their cost is negligible for n that tends to ∞). One
then considers the (unique) successful run ρ(n) of D̄ on the word u(n) . Given an index 1 ≤ l ≤ h and an SCC C of D, we
denote by ρ

(n)

l,C the projection of the sub-run ρ(n)|Y (n)

l into the component C . Every sequence ρ
(n)

l,C can be viewed as a run of

det(D|C) on the sub-word u(n)|Y (n)

l . This run has cost almost equal (up to additive constants) to the cost of some optimal

run γ
(n)

l,C of D|C on u(n)|Y (n)

l . Moreover, given a path π = C1 . . . Ch in dag(D), one can construct a run γ
(n)
π of D on u(n)

by ‘concatenating’ the runs γ
(n)

1,C1
, . . . , γ

(n)

h,Ch
(this requires the use of the shortcut property to correct the possible pairs of

consecutive transitions that have unmatched states). This shows that

D
(
u(n)

) ≤ min
π=C1...Ch∈dag(D)

cost
(
γ

(n)
π

) +O(1)

= min
π=C1...Ch∈dag(D)

∑
1≤l≤h

cost
(
γ

(n)

l,Cl

) +O(1)

= min
π=C1...Ch∈dag(D)

∑
1≤l≤h

cost
(
ρ

(n)

l,Cl

) +O(1).

Given the above inequality, the rest of the proof is similar to that of Lemma 3, namely, we decompose each run ρ
(n)

l,Cl
into

simple cycles and we approximate its cost up to additive constants.
We now turn to the converse inequality:

acost(R,D) ≥ max
τ=B1...Bh∈dag(R)

α
B1
1 ,...,α

B1
mB1

≥0
......

α
Bh
1 ,...,α

Bh

mBh
≥0

min
π=C1...Ch∈dag(D)

∑
1≤l≤h

1≤i≤mBl

α
Bl
i · costCl (LBl

i )

∑
1≤l≤h

1≤i≤mBl

α
Bl
i · |LBl

i |
.

As in the proof of Lemma 4, the first step is to fix a path τ = B1 . . . Bh in dag(R) and some parameters α
Bl
i ≥ 0 for each

1 ≤ l ≤ h and each 1 ≤ i ≤ mBl , where mBl denotes the number of simple cycles of the automaton D̄ × (R|Bl).
One proves the inequality by defining the following family of runs of D̄ ×R:

ρ(n) def= σ0
(
ρ

(n)
1,cycles

)n
. . . σh−1

(
ρ

(n)

h,cycles

)n
σh

where, for all 1 ≤ l ≤ h,

ρ
(n)

l,cycles
def= (

LBl
1

)�n·αBl
1 �

σl,1
(
LBl

2

)�n·αBl
2 �

. . . σl,mBl −1

(
LBl

mBk

)�n·αBl

mBl
�
σl,mBl

and σ0, σ1, . . . , σh, σl,1, . . . , σl,mBl are suitable runs of D̄ of bounded length that connect the various simple cycles LBl
i .

Accordingly, one defines u(n) to be the word spelled out by the run ρ(n) . Observe that, by construction (and under the
assumption that the automaton R is trimmed), this word belongs to the language recognized by the NFA R.

It is not difficult then to generalize the arguments used in Lemma 4 (we thus omit the details). �
Using arguments similar to the complexity analysis of the unrestricted case, we obtain a coNExp algorithm that decides

whether the asymptotic repair cost acost(L (R),L (T )) (= acost(R,Dedit
T )) associated with two NFA R and T is less than

or equal to a certain threshold ν ∈Q:

Corollary 1. The problem of deciding, given two NFA R and T and a rational number ν , whether acost(L (R),L (T )) ≤ ν is in
coNExp.
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5. Asymptotic cost in the streaming case

Here we characterize the asymptotic repair (aggregate) cost in the streaming setting in terms of the value of a mean-
payoff game [7].

5.1. Mean-payoff games

A mean-payoff game is an infinite, turn-based game played over an arena A = (V , E, v0), where V is the union of two
disjoint finite sets of vertices, V Adam (owned by player Adam) and V Eve (owned by player Eve), E ⊆ V × N × V is a finite
set of weighted edges, and v0 ∈ V is an initial vertex. The game starts at v0 and, at each round, the player who owns the
current vertex v moves along an edge (v, c, v ′) ∈ E . The reward for Adam (resp., the penalty for Eve) in an infinite play
π = (v0, c1, v1) (v1, c2, v2) . . . is given by the value νπ

Adam (resp., νπ
Eve), where

νπ
Adam

def= lim inf
n→∞

∑n
i=1 ci

n
νπ

Eve
def= lim sup

n→∞

∑n
i=1 ci

n
.

Intuitively, Adam wants to maximize his reward νπ
Adam while Eve wants to minimize her penalty νπ

Eve .
It is known from [7] that, in any mean-payoff game, the best reward that can be enforced by Adam coincides with the

least penalty that can be enforced by Eve, and, furthermore, these values can be achieved by positional strategies:

Theorem 3. (See Ehrenfeucht and Mycielski [7].) We can associate with each mean-payoff game A a value νA such that Adam (resp.,
Eve) has a positional strategy that guarantees νπ

Adam ≥ νA (resp., νπ
Eve ≤ νA) for all plays π that respect his (resp., her) strategy.

In view of the above theorem, we can denote by νA the value of a mean-payoff game over the arena A and we can
restrict ourselves to positional strategies for both Adam and Eve. We will represet a positional strategy for Adam (resp., Eve)
as a function from Adam’s vertices (resp., Eve’s vertices) to outgoing edges.

5.2. Characterization of asymptotic streaming cost

Let R and T be the languages recognized by two (trimmed) DFA R= (Σ, Q , δ,q0, F ) and T = (Δ, Q ′, δ′, r0, F ′), respec-
tively. To compute the asymptotic cost acostaggr

0-lookahead(R, T ) for streaming (0-lookahead) repair strategies we construct the
arena AR,T , where Adam’s vertices are pairs of the form (q, r), with q ∈ Q and r ∈ Q ′ , and Eve’s vertices are pairs of
the form (q, r,a), with q ∈ Q , r ∈ Q ′ , and a ∈ Σ . The edges of the arena are triples of the form ((q, r),0, (q′, r,a)), where
q′ = δ(q,a), or of the form ((q, r,a), c, (q, r′)), where r′ ∈ Q ′ and c = min{dist(a, v) : v ∈ L (Tr,r′)} (recall that Tr,r′ is the
DFA obtained from T by letting r be the initial state and r′ be the unique final state). The initial vertex of the arena is the
pair (q0, r0) (so Adam moves first). Observe that the final states of R and T do not play any relevant role in this definition:
this is because R and T are assumed to be trimmed and the costs of moving from non-final states to final states are
irrelevant for the asymptotic behavior. Furthermore, note that the game alternates between Adam and Eve, and only the
second player can incur positive costs.

Remark 2. In order to avoid that players get stuck at some vertices of the arena AR,T that have no outgoing edges, we
tacitly assume that all states of the DFA R and T can reach non-transient states (i.e., states contained in some cycles).
In particular, as the automata are also trimmed, we have that for all states q ∈ Q and r ∈ Q ′ , both languages L (Rq,F )

and L (Tr,F ′) contain infinitely many words. Note that it is safe to make this assumption when considering the streaming
asymptotic cost, as this cost is preserved when we remove the states that can only reach transient states.

Below, we show that the value of the mean-payoff game over AR,T , multiplied by 2, coincides with the asymptotic
aggregate cost in the streaming setting.

Theorem 4. For all (trimmed) DFA R and T , we have

acostaggr
0-lookahead

(
L (R),L (T )

) = 2 · νAR,T

where νAR,T is the value of the mean-payoff game over the arena AR,T . Moreover, acostaggr
0-lookahead(L (R),L (T )) is rational, it

can be computed in polynomial time, and it is achieved by a single streaming edit strategy for L (R) and L (T ) – which can also be
computed in P.

Example 6. Consider the restriction and target languages R = (a + b)∗ and T = (ab)∗ , whose automata R and T and
mean-payoff arena AR,T are shown in Fig. 2 (diamond nodes are owned by Eve and square nodes are owned by Adam).
One can easily see that an optimal positional strategy for Adam is to play (q, r) Adam−−−−→ (q, r,b) and (q, s) Adam−−−−→ (q, s,a).
With this optimal strategy we get that the value νAR,T of the mean-payoff game over AR,T is equal to 1 and thus
2
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Fig. 2. Two DFA and the arena for the associated mean-payoff game.

acostaggr
0-lookahead(R, T ) = 1. This value contrasts with the non-streaming asymptotic cost between R and T , which is equal

to 1
2 .

Even if it seems natural that the value of the mean-payoff game over AR,T determines the asymptotic cost
acostaggr

0-lookahead(L (R),L (T )), the proof of Theorem 4 is not trivial. Indeed, the mean-payoff game corresponds directly
to a version of the streaming repair problem where the input to the repair strategy is a sequence of prefixes of a single
infinite word spelled by a run of R. The core of the proof is to show a correspondence between the this infinitary version
of the streaming repair problem and the original problem as stated in Section 3. This is done by proving two inequalities.
In one case (Lemma 5) we show that (�) for an optimal strategy S of Eve in the mean-payoff game, one can construct a

streaming repair strategy S ′ for R and T such that
acostaggr

S′ (L (R),L (T ))

2 does not exceed the penalty for Eve induced by her
strategy S . Intuitively, the repair strategy S ′ mimics Eve’s strategy S until the string terminates, at which point it performs
additional insertions to get to a final state. For the other direction (Lemma 6) we consider a streaming repair strategy S ′ for
R and T with asymptotic cost acostaggr

S ′ (L (R),L (T )) and we show that no strategy S for Adam can guarantee a reward

of more than
acostaggr

S′ (L (R),L (T ))

2 . By the result from [7] mentioned above, this shows that Eve can enforce a penalty less
than or equal to this amount. The limit on Adam’s ability is shown by combating his strategy S using the repair strategy
S ′ . Putting these two directions together, we see that the optimal streaming repair strategy is produced by first computing
Eve’s optimal strategy, and then applying the transformation (�) described above; one can then argue that this strategy can
be computed in polynomial time from R and T .

Lemma 5. For all (trimmed) DFA R and T and all streaming repair strategies S for L (R) and L (T ), we have 2 · νAR,T ≤
acostaggr

S (L (R),L (T )).

Proof. Let us fix two DFA R = (Σ, Q , δ,q0, F ) and T = (Δ, Q ′, δ′, r0, F ′) and a transducer S = (Σ,Δ, Q ′′, δ′′, s0,Ω) that
implements a streaming repair strategy for L (R) and L (T ). Let us also fix an optimal positional strategy f : Q × Q ′ → E
for Adam, where E is the set of edges of the arena AR,T .

On the basis of the transducer S and Adam’s positional strategy f , we inductively construct (i) an infinite play π on
AR,T , (ii) an infinite word u ∈ Σω , and (iii) an infinite run ρ of S on u, as follows. The first edge of the play π is given
by Adam’s move f (v0) = (v0,0, v1), where v0 = (q0, r0). Accordingly, the first symbol of the word u is the symbol a1 that
is contained in the vertex v1 (note that v1 ∈ Q × Q ′ × Σ ). The run ρ of S at the beginning is the empty sequence. As for
the induction step, we first extend ρ and π , using the transducer S , and then we extend π and u, using Adam’s strategy
again. Formally:

• Given a prefix (v0,0, v1) (v1, c1, v2) . . . (v2n,0, v2n+1) of π that ends in a vertex v2n+1 = (qn+1, rn,an+1) owned by

Eve and given the corresponding prefix a1 . . . an+1 of u, we extend the prefix of ρ from s0
a1/w1−−−−→ . . .

an/wn−−−−→ sn to

s0
a1/w1−−−−→ . . .

an/wn−−−−→ sn
an+1/wn+1−−−−−−−→ sn+1, where δ′′(sn,an+1) = (wn+1, sn+1). Accordingly, we extend the prefix of π by

adding the edge (v2n+1, cn+1, v2n+2), where v2n+2 = (qn+1, rn+1), rn+1 is the state of T reached from rn after consuming
the word wn+1, and cn+1 = min{dist(an+1, w) : w ∈ L (Trn,rn+1)}.

• Similarly, given a prefix (v0,0, v1) (v1, c1, v2) . . . (v2n+1, cn+1, v2n+2) of π that ends in a vertex v2n+2 = (qn+1, rn+1)

owned by Adam, we extend it using Adam’s positional strategy f , namely, by adding the edge f (v2n+2) =
(v2n+2,0, v2n+3). Accordingly, we extend the prefix of u from a1 . . . an+1 to a1 . . . an+1 an+2, where an+2 is the
symbol contained in the vertex v2n+3.

It is easy to check that the above definitions lead to an infinite play

π = (v0,0, v1) (v1, c1, v2) (v2,0, v3) . . .

over the arena AR,T , and an infinite run

ρ = s0
a1/w1−−−−→ s1

a2/w2−−−−→ . . .
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of the transducer S on the word u = a1 a2 . . . such that, for every n ∈ N, cn ≤ dist(an, wn). The play π clearly respects
Adam’s optimal strategy and hence, by Theorem 3, we have νAR,T ≤ νπ

Adam . Moreover, observe that every prefix a1 . . .an of
the infinite word u can be extended to a word a1 . . . an w ′

n that belongs to the restriction language L (R), where w ′
n has

length at most |Q |. By applying the various definitions and some basic rewriting, we easily obtain:

2 · νAR,T ≤ 2 · νπ
Adam

= 2 · lim inf
n→∞

∑n
i=1 ci

2 · n

≤ lim inf
n→∞

∑n
i=1 dist(an, wn)

n

≤ lim sup
n→∞

∑n
i=1 dist(an, wn)

n

= lim sup
n→∞

costaggr(a1 . . . an w ′
n,S)

n + |w ′
n|

≤ acostaggr
S

(
L (R),L (T )

)
. �

Lemma 6. For all (trimmed) DFA R and T , there is a transducer S , whose states are pairs of states of R and T , that implements a
streaming repair strategy for L (R) and L (T ) and such that acostaggr

S (L (R),L (T )) ≤ 2 · νAR,T .

Proof. We fix two DFA R = (Σ, Q , δ,q0, F ) and T = (Δ, Q ′, δ′, r0, F ′) and an optimal positional strategy g : Q × Q ′ ×
Σ → E for Eve, where E is the set of edges of the arena AR,T . We then construct from that a transducer S =
(Σ,Δ, V Adam, δ′′, v0,Ω) as follows:

• V Adam = Q × Q ′ is the set of vertices of AR,T owned by Adam;
• δ′′ is the function that maps any pair (v,a) ∈ V Adam × Σ , with v = (q, r), to the (unique) pair (w, v ′) ∈ Δ∗ × V Adam ,

with v ′ = (q′, r′), that satisfies
1. g(va) = (va, c, v ′), with va = (δ(q,a), r,a) (note that va ∈ V Eve),
2. w ∈ L (Tr,r′), with dist(a, w) = c (note that since (va, c, v ′) is an edge in AR,T , there exist such a word w).

• v0 = (q0, r0) is the initial vertex of AR,T ,
• Ω is the function that maps any vertex v = (q, r) ∈ V Adam to a word w from the language

⋃
r′∈F ′ L (Tr,r′) (since T is

pruned, there always exists such a word).

Observe that S implements a streaming strategy for repairing L (R) into L (T ) (it basically differs from Eve’s strategy only
in the use of the final output function Ω , which guarantees that the edited words belong to the target language L (T )).
Moreover, by definition, the states of the transducer S range over the set V Adam = Q × Q ′ .

Let us now consider a family of words (u(n))n∈N from the restriction language L (R) such that

acostaggr
S

(
L (R),L (T )

) = lim sup
n→∞

costaggr
S (u(n))

|u(n)| .

Moreover, let L1, . . . , Lm be all the simple cycles of the transition graph of S and let ρ(n) be the run of S on the word u(n) .
We use the simple cycle decomposition Lemma 2 from Section 4 to find a partition of the domain of ρ(n) into (possibly
non-convex) subsets X (n)

0 , X (n)
1 , . . . , X (n)

m such that

1. |X (n)
0 | is uniformly bounded by the number K of states of S ,

2. for all 1 ≤ i ≤ m, the sub-sequence ρ(n)|X (n)
i is a repetition of the simple cycle Li of S .

As usual, we denote by occ(n)
i the number of repetitions of the simple cycle Li in the sub-sequence ρ(n)|X (n)

i , namely, we

let occ(n)
i = |X(n)

i |
|Li | . We have that

lim sup
n→∞

costaggr
S (u(n))

|u(n)| ≤ lim sup
n→∞

∑
1≤i≤m occ(n)

i · cost(Li) + K · cmax∑
1≤i≤m occ(n)

i · |Li | + K

where cost(Li) denotes the sum of the costs of the transitions in the simple cycle Li and cmax denotes the maximum cost
of a transition of S . Note that the additive terms K · cmax and K above can be ignored when considering the limit for n
tending to infinity. Moreover, it is easy to see that the following inequality holds
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lim sup
n→∞

∑
1≤i≤m occ(n)

i · cost(Li)∑
1≤i≤m occ(n)

i · |Li |
≤ max

1≤i≤m

cost(Li)

|Li | .

For the sake of brevity, we denote by L some simple cycle among L1, . . . , Lm that maximizes the ratio cost(L)
|L| , namely, such

that

max
1≤i≤m

cost(Li)

|Li | = cost(L)

|L| .

We now construct a strategy for Adam in the mean-payoff game over AR,T by following the simple cycle L. We denote
by uL be the word that forms the input of the simple cycle L and by u0 any word that makes the DFA R move from its
initial state q0 to the state that appears in the first/last position of L (recall that the states of S are pairs of states from
R and T ). Clearly, the infinite word u0 uω

L induces an infinite run inside the automaton R. Adam’s strategy will follow
precisely this infinite word, choosing at each round n the edge in AR,T that corresponds to the correct transition that
consumes the n-th symbol of u0 uω

L .
Pairing Adam’s strategy given above with Eve’s strategy, we obtain an infinite ‘cyclic’ play π = (v0,0, v1) (v1, c1, v2) . . .

over AR,T . By construction, the average cost incurred by Eve in following the play π ′ coincides with cost(L)
2·|L| , namely,

cost(L)

2 · |L| = νπ
Eve

Finally, recall that Eve’s strategy was assumed to be optimal and hence, by Theorem 3,

νπ
Eve ≤ νAR,T .

Summing up, we just proved that

acostaggr
S

(
L (R),L (T )

) = lim sup
n→∞

costaggr
S (u(n))

|u(n)|

≤ lim sup
n→∞

∑
1≤i≤m occ(n)

i · cost(Li)∑
1≤i≤m occ(n)

i · |Li |
≤ max

1≤i≤m

cost(Li)

|Li |
= 2 · νπ

Eve

≤ 2 · νAR,T . �
We now turn to the proof of Theorem 4.

Proof of Theorem 4. Let νAR,T be the value of the mean-payoff game over AR,T . We know from Lemma 5 that for every
streaming repair strategy S for L (R) and L (T ), 2 · νAR,T ≤ acostaggr

S (L (R),L (T )). Since the asymptotic repair cost
acostaggr

0-lookahead(L (R),L (T )) in the streaming case is defined as the infimum of acostaggr
S (L (R),L (T )) over all streaming

repair strategies S , we have

2 · νAR,T ≤ acostaggr
0-lookahead

(
L (R),L (T )

)
.

Conversely, we know from Lemma 6 that there is a streaming repair strategy S for L (R) and L (T ) such that
acostaggr

S (L (R),L (T )) ≤ 2 · νAR,T and hence, since acostaggr
0-lookahead(L (R),L (T )) ≤ acostaggr

S (L (R),L (T )), we have

acostaggr
0-lookahead

(
L (R),L (T )

) ≤ 2 · νAR,T .

We have just shown that acostaggr
0-lookahead(L (R),L (T )) = 2 · νAR,T .

Now, recall that from the results in [10] the value νAR,T is rational and it can be computed by a deterministic procedure
that runs in time O(|V |2 · |E| · cmax), where V is the set of vertices of the arena AR,T (hence |V | ≤ |Q | · |Q ′| · (|Σ | + 1)),
E is the set of edges of AR,T (hence |E| ≤ |V |2), and cmax is the maximum weight of an edge in AR,T . Since cmax never
exceeds the number |Q ′| of states of the target automaton T , this gives a polynomial time procedure for computing the
value νAR,T of the mean-payoff game over AR,T (and hence the asymptotic cost acostaggr

0-lookahead(L (R),L (T ))).
It remains to show that the asymptotic cost acostaggr(L (R),L (T )) is achieved by a single streaming edit strategy for

L (R) and L (T ) whose states range over Q × Q ′ . This is proven again using the previous two lemmas. For every streaming
edit strategy S for L (R) and L (T ), there is a streaming edit strategy S ′ for the same languages whose states range over
Q × Q ′ (let us call such a strategy positional) and such that
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acostaggr
S ′

(
L (R),L (T )

) ≤ 2 · νAR,T ≤ acostaggr
S

(
L (R),L (T )

)
.

Without loss of generality, we can also assume that, at each step, the transducer S ′ outputs a word of length at most |Q ′|2,

that is, for every symbol a ∈ Σ and every state s of S ′ , if s
a/w−−−→ s′ is a transition of S ′ , then |w| ≤ |Q ′|2. It is safe to make

this assumption because the replacement in any transition s
a/w−−−→ s′ of w by w ′ , where w ′ minimizes dist(a, w ′′) among all

words w ′′ that are Myhill–Nerode equivalent to w (i.e., w ∈ L (Tr,r′) iff w ′′ ∈ L (Tr,r′) for all r, r′ ∈ Q ′) can only result in a
discount of the overall aggregate cost incurred by the streaming repair strategy S .

The above arguments show that we can equivalently calculate the asymptotic cost acostaggr
0-lookahead(L (R),L (T )) as

the infimum over all positional streaming repair strategies S ′ for L (R) and L (T ) that, at each step, output words
of length at most |Q ′|2. Since there are only finitely many such strategies, we conclude that the asymptotic cost
acostaggr

0-lookahead(L (R),L (T )) is achieved by a single positional streaming edit strategy S ′ . �
5.3. Asymptotic streaming cost with lookahead

We conclude the section by mentioning some natural generalizations of Theorem 4 related to streaming repair strategies
with lookahead.

First of all, we observe that in order to compute the asymptotic cost of an optimal streaming repair strategy with
k-lookahead, where k ∈ N is a given parameter, it is sufficient to modify the definition of the arena AR,T in such a way
that Adam plays (k + 1)-character windows representing substrings of an infinite word. This requires extending the set of
vertices of the arena AR,T from (Q × Q ′)∪ (Q × Q ′ ×Σ) to (Q × Q ′ ×Σk)∪ (Q × Q ′ ×Σk+1) and letting the game start
from any vertex of the form (p0,q0, u0), where p0 is the initial state of R, q0 is the initial state of T , and u0 ∈ Σk . We
denote by Ak-lookahead

R,T the new arena and by νAk-lookahead
R,T

the value of the mean-payoff game associated with it. Following

the same arguments of the proof of Theorem 4, one shows that

acostaggr
k-lookahead

(
L (R),L (T )

) = 2 · νAk-lookahead
R,T

.

We also know that streaming repair strategies with longer lookahead outperform those with shorter lookahead, that is,
acostaggr

k-lookahead(R, T ) is a non-increasing function of k ∈ N.
Now, it becomes natural to ask whether one can compute the inferior of the asymptotic costs for all possible streaming

strategies with finite (unbounded) lookahead, and whether this value can be achieved using a fixed amount of lookahead that
only depends on the restriction and target languages. For instance, a similar result for quantitative games has been proven
in [11]. As we are not able to answer these questions, we address in the following a simpler threshold problem for the
streaming asymptotic cost:

Theorem 5. Given two DFA R and T and a rational threshold ν , one can decide in double exponential time whether there is k ∈ N

such that

acostaggr
k-lookahead

(
L (R),L (T )

)
< ν.

The proof of Theorem 5 is based on a reduction of the game-theoretic version of the streaming repair problem (i.e.,
a mean-payoff game with arbitrary lookahead) to a suitable regular infinite game that is similar to the type of games
considered in [11]. Below, we recall the two types of games we are dealing with. The first type of game is a mean-payoff
game played by Adam and Eve over an arena of the form Ak-lookahead

R,T , where R and T are two DFA and k is a lookahead
parameter. We have already shown that the value of this game characterizes the k-lookahead streaming asymptotic cost for
R and T . The second type of game is a qualitative game between two players, Input and Output, who act according to the
following rules. Player Input moves first by choosing 2 elements q0,q1 from a fixed finite set Q ; player Output responds by
choosing a single element r0 from another finite set Q ′ . At the next round, player Input chooses another element q2 ∈ Q ,
and player Output responds by choosing r1 ∈ Q ′ . The game continues in this way by alternating between the two players.
The resulting play is an infinite sequence

w =
(

q0

r0

)(
q1

r1

)(
q2

r2

)
. . . .

The winner is determined by a given regular ω-language L ⊆ (Q × Q ′)ω , that is, player Input wins the game over L if he
can enforce infinite plays w ∈ L. Notice that, in the above game, player Output has a slight advantage in that his moves are
one step behind those of player Input. We call this type of game a 1-lookahead regular game.

Part of the proof of Theorem 5 requires also a bit of reasoning on non-streaming asymptotic costs. The following lemma
discloses a technical property that will be used in the sequel.

Lemma 7. Given a threshold ν ∈ Q and two DFA R and T such that acost(L (R),L (T )) < ν , there is a number maxlengthν
R,T

such that, for all words u ∈ L (R),
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|u| > maxlengthν
R,T implies min

v∈L (T )

dist(u, v)

|u| < ν.

Proof. We remark that the following proof is not constructive, so it does not provides any effective means of computing the
number maxlengthν

R,T from R, T , and ν . As a matter of fact, computing such a number would enable us to compute the
least amount of lookahead k that satisfies the claim of Theorem 5.

Let R and T be two DFA such that acost(L (R),L (T )) < ν . It is easy to see that there exist only finitely many words
u ∈ L (R) that are at normalized distance from L (T ) at least ν – indeed, if this were not the case, then we would have
that the limit superior of minv∈L (T )

dist(u,v)
|u| for arbitrarily long words u ∈ L (R) would be at least ν , thus contradicting

acost(L (R),L (T )) < ν . This enables the use of max in the following definition:

maxlengthν
R,T

def= max

{
|u| : u ∈ L (R), min

v∈L (T )

dist(u, v)

|u| ≥ ν

}
.

Thanks to the above definition, we have that for all words u ∈ L (R), |u| > maxlengthν
R,T implies minv∈L (T )

dist(u,v)
|u| <

ν . �
The following lemma reduces the threshold problem for the arbitrary-lookahead streaming asymptotic cost to the prob-

lem of deciding the winner of a 1-lookahead regular game.

Lemma 8. Given two DFA R and T and a rational number ν , one can compute in double exponential time a parity automaton AR,T ,ν

of size polynomial in |R| · |T | that recognizes a regular ω-language L such that:

1. if Input wins the 1-lookahead regular game on L, then 2 · νAk-lookahead
R,T

≥ ν , for all k ∈ N,

2. if Output wins the 1-lookahead regular game on L, then 2 · νAk-lookahead
R,T

< ν , for all k ≥ kmax , where kmax depends only on R, T ,

and ν .

Proof. We first define the language L on the basis of the two DFA R = (Σ, Q , δ,q0, F ) and T = (Δ, Q ′, δ′,q′
0, F ′) and the

rational number ν . The alphabet of L is the product Q × Q ′ of the state spaces of R and T . L contains all infinite sequences

w =
(

q0

r0

)(
q1

r1

)(
q2

r2

)
. . .

such that

1. q0 is the initial state of R,
2. for all i ∈ N, |L (Rqi ,qi+1)| = ∞, namely, R consumes arbitrarily long words from state qi to state qi+1;
3. at least one of the following conditions holds:

a) r0 is not the initial state of T ,
b) there is i ∈ N such that L (Tri ,ri+1) = ∅,
c) for all but finitely many i ∈ N, acost(L (Rqi ,qi+1 ),L (Tri ,ri+1 )) ≥ ν , namely, there are arbitrarily long words ui ∈

L (Rqi ,qi+1 ) having normalized distance from L (Tri ,ri+1 ) at least ν .

Note that L is a boolean combination of safety, reachability, and liveness properties, and thus it is a regular language. It is
also easy to construct a parity automaton AR,T ,ν that has approximately O(|Q × Q ′|) states and that recognizes L. We
omit the formal definition of AR,T ,ν and we only observe that in order to compute AR,T ,ν , one needs to solve a number
of threshold problems for the non-streaming asymptotic costs associated with the languages L (Rq,q′) and L (Tr,r′): this
can be done in double exponential time using the procedure described in Section 4.

We also make the following crucial observation. In the definition of the language L, we could have equally rewritten
Condition 3.c) as

3.c′) for infinitely many i ∈ N, acost(L (Rqi ,qi+1),L (Tri ,ri+1 )) ≥ ν .

Indeed, it is clear that any infinite play that satisfies Condition 3.c) also satisfies Condition 3.c′). As for the converse implica-
tion, consider an infinite play w = (q0

r0

)(q1
r1

)(q2
r2

)
. . . that satisfies both Condition 2. and Condition 3.c′), but not Condition 3.b).

Since w satisfies Condition 3.c′), by the Pigeonhole Principle there exist two pairs (q̃, r̃), (q̃′, r̃′) ∈ Q × Q ′ that occur con-
secutively and infinitely often in w and such that acost(L (Rq̃,q̃′),L (Tr̃,r̃′)) ≥ ν . To derive Condition 3.c) it is sufficient
to show that for all pairs (q, r), (q′, r′) ∈ Q × Q ′ that occur infinitely often in w , acost(L (Rq,q′),L (Tr,r′)) ≥ ν holds. Let
(q, r), (q′, r′) be two such pairs. Observe that w contains a substring of the form(

q
)

. . .

(
q̃

˜
)(

q̃′
˜′

)
. . .

(
q′
′

)
. . .

(
q
)

. . .

(
q̃

˜
)(

q̃′
˜′

)
. . .

(
q′
′

)
.

r r r r r r r r
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Notice that (i) L (Rq,q′) ⊇ L (Rq,q̃) L (Rq̃,q̃′) L (Rq̃′,q′), (ii) both L (Rq,q̃) and L (Rq̃′,q′) are non-empty (this follows from
the fact that w satisfies Condition 2.), and (iii) both L (Tr̃,r) and L (Tr′,r̃′ ) are non-empty (this follows from the fact that w
does not satisfy Condition 3.b)). From these properties we easily derive

acost
(
L (Rq,q′),L (Tr,r′)

) = acost
(
L (Rq,q′),L (Tr̃,r̃′)

)
≥ acost

(
L (Rq̃,q̃′),L (Tr̃,r̃′)

)
≥ ν.

This shows that Conditions 3.c) and 3.c′) are interchangeable when they are used in the definition of the winning condi-
tion L.

Below, we prove a correspondence between the outcomes of the mean-payoff games over the arenas Ak-lookahead
R,T , for all

k ∈ N, and the winners of regular games on L. The correspondence can be described as follows. If player Input wins the
1-lookahead regular game by satisfying Conditions 1., 2., and 3.c) (this is the interesting case), then, in the k-lookahead
streaming repair game, player Adam can choose, from some point onwards, arbitrarily long words ui ∈ L (Rqi ,qi+1 ) with
normalized distance from L (Tri ,ri+1) at least ν – as the lengths of these words increase, the mean-payoff value of the
resulting play gets closer to the average of the normalized distances, and thus eventually stabilizes to a value greater than
or equal to ν (this happens no matter how large is the lookahead parameter k). Conversely, if player Output wins the
1-lookahead regular game, then he must be able to enforce a play w = (q0

r0

)(q1
r1

)(q2
r2

)
. . . that violates Conditions 3.a), 3.b),

and 3.c′). In particular, from some point onwards, only finitely many words ui ∈ L (Rqi ,qi+1 ) have normalized distance from
L (Tri ,ri+1 ) greater than ν – in this case we will show that Eve can use a sufficient amount of lookahead to enforce a play
in the streaming repair game with value at most ν .

Let us assume that player Input wins the 1-lookahead regular game on L and let us fix a lookahead parameter k for the
streaming repair game. Using Input’s winning strategy, we have to derive a strategy for Adam, for each lookahead parameter
k ∈N, that induces a mean-payoff value greater than ν over the arena Ak-lookahead

R,T . We fix k ∈ N and we assume that at the
beginning player Input has chooses two consecutive elements q0,q1 ∈ Q , with q0 initial state of R. After Output’s response,
which we assume to be the initial state r0 of T , Input chooses a third element q2 ∈ Q . Thus, the partial play constructed
so far is(

q0

r0

)(
q1

)(
q2

)
.

We know that both languages L (Rq0,q1 ) and L (Rq1,q2) contain arbitrarily long words, so we can use them to construct
the first moves of Adam in the streaming repair game. Precisely, we fix two words u1 ∈ L (Rq0,q1) and u2 ∈ L (Rq1,q2),
with |u1| ≥ 1 and |u2| ≥ |u1| + k, and we denote by a1, . . . ,a|u1|+k the first |u1| + k symbols of the juxtaposition u1 u2. We
define the first |u1| moves of Adam’s strategy as follows:

• at the 1st round, Adam moves from vertex (q0, r0,a1 . . .ak) to vertex (δ(q0,a1), r0,a1 . . .ak+1);
• at the 2nd round, after Eve has moved from (δ(q0,a1), r0,a1 . . .ak+1) to some vertex (δ(q0,a1), δ(r0, v1),a2 . . .ak+1), for

some v1 ∈ Δ∗ , Adam moves to the next vertex (δ(q0,a1a2), δ(r0, v1),a2 . . .ak+2);
• in general, at the i-th round, with 1 ≤ i ≤ |u1|, Adam moves from any vertex of the form (δ(q0,a1 . . .ai−1), δ(r0,

v1 . . . vi−1),ai . . .ak+i−1) to the vertex (δ(q0,a1 . . .ai), δ(r0, v1 . . . vi−1),ai . . .ak+i).

Now, recall that q1 = δ(a1 . . .a|u1|) and hence, after the first |u1| rounds, the streaming repair game must reach a vertex
of the form (q1, r1,a|u1|+1 . . .a|u1|+k), for some r1 = δ(r0, v1 . . . v |u1|) and some prefix a|u1|+1 . . .a|u1|+k of u2 ∈ L (Rq1,q2 ).
Moreover, the partial cost incurred by Eve so far is

∑
1≤i≤|u1|

dist(ai, vi) ≥ dist(u1, v1 . . . v |u1|) ≥ min
v∈L (Tr0,r1 )

dist(u1, v).

The definition of Adam’s strategy for the subsequent rounds follows similar arguments. Specifically, we assume that the
current partial play of the regular game is(

q0

r0

)
. . .

(
qi

ri

)(
qi+1

)

and that the current position of the streaming repair game is (qi, ri,ai,1 . . .ai,k), where ai,1 . . .ai,k is a prefix of some word
ui+1 ∈ L (Rqi ,qi+1). We then look at the next move induced by Input’s strategy, which adds a new state qi+2 to the partial
play, and we choose another word ui+2 ∈ L (Rqi+1,qi+2 ) of length |ui+2| ≥ |ui+1| + k. Accordingly, we define the moves of
Adam’s strategy for the next |ui+1| rounds using the first |ui+1| + k letters in the juxtaposition ui+1 ui+2.

Now, consider a play π of the mean-payoff game that results from Adam’s strategy. We know form the previous argu-
ments that the play π can be factorized into an infinite sequence π0,π1,π2, . . . of sub-plays of the form
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(q0, r0,a1 . . .ak) . . .︸ ︷︷ ︸
π0

(q1, r1,an1+1 . . .an1+k) . . .︸ ︷︷ ︸
π1

(q2, r2,an2+1 . . .an2+k) . . .︸ ︷︷ ︸
π2

. . .

where w = (q0
r0

)(q1
r1

)(q2
r2

)
. . . is a corresponding play in the regular game that follows Input’s winning strategy. Moreover, the

repair cost incurred in each sub-play πi is at least

min
v∈L (Tri ,ri+1 )

dist(ui, v)

where ui is any word from L (Rqi ,qi+1) of length |πi |
2 . Without loss of generality, we can further assume that Adam has

chosen the words u0, u1, u2, . . . in such a way that the following additional property is satisfied:

lim inf
i→∞

min
v∈L (Tri ,ri+1 )

dist(ui, v)

|ui| = lim inf
i→∞

acost
(
L (Rqi ,qi+1),L (Tri ,ri+1)

)
.

Recall that r0 is the initial state of T (so Condition 3.a) is violated) and each language L (Tri−1,ri ) is non-empty (so Condition
3.b) is violated). As the play is won by player Input, Condition 3.c) must hold. This implies

lim inf
i→∞

acost
(
L (Rqi ,qi+1),L (Tri ,ri+1)

) ≥ ν.

Putting all together, we obtain that Adam can enforce a play π = π0 π1 π2 . . . with mean-payoff value greater than or
equal to ν

2 :

2 · νπ
Adam ≥ lim inf

i→∞
min

v∈L (Tri ,ri+1 )
dist(ui, v)

= lim inf
i→∞

acost
(
L (Rqi ,qi+1),L (Tri ,ri+1)

)
≥ ν.

This proves that 2 · νAk-lookahead
R,T

≥ 2 · νπ
Adam ≥ ν .

As for the converse direction, we assume that player Output wins the 1-lookahead regular game on L. We will use
Output’s winning strategy to construct a strategy for Eve that guarantees a value less than ν in the mean-payoff game over
the arena Ak-lookahead

R,T , where k is a sufficiently large number. In order to establish what ‘sufficiently large’ means, we use
Lemma 7 to devise the existence of a natural number � > |Q | such that, for all states q,q′ ∈ Q and r, r′ ∈ Q ′ and all words
u ∈ L (Rq,q′) of length at least �,

acost
(
L (Rq,q′),L (Tr,r′)

)
< ν implies min

v∈L (Tr,r′ )

dist(u, v)

|u| < ν (†)

(technically speaking, the number � can be defined as the maximum among the number of states in R plus 1 and the
numbers maxlengthν

Rq,q′ ,Tr,r′
that are obtained from Lemma 7 when considering all possible DFA Rq,q′ , Tr,r′ such that

acost(L (Rq,q′),L (Tr,r′)) < ν).
Accordingly, we define kmax = 2� and we fix a lookahead parameter k ≥ kmax for the rest of this proof.
We now turn to the definition of Eve’s strategy for the mean-payoff game over Ak-lookahead

R,T . Roughly, the idea is look
at each move of player Output and construct from it � consecutive moves of Eve. Suppose that, at the beginning, Adam
chooses an edge of the form

(q0, r0,a1 . . .ak)
Adam−−−→ (

δ(q0,a1), r0,a1 . . .ak+1
)
,

with q0 initial state of R, r0 initial state of T , and a1, . . . ,ak+1 ∈ Σ . We define q1 = δ(q0,a1 . . .a�) and q2 =
δ(q1,a�+1 . . .a2�), and we look at the move induced by Output’s winning strategy in the corresponding partial play of
the 1-lookahead regular game:(

q0

r0

) (
q1

) (
q2

)
Output−−−→

(
q0

r0

) (
q1

r1

) (
q2

)
.

We then choose some words v1, . . . , v� ∈ Δ∗ whose juxtaposition v1 . . . v� belongs to L (Tr0,r1) and for which the aggregate
distance

∑
1≤ j≤� dist(a j, v j) is minimized (in particular, this aggregate distance must be equal to the distance of a1 . . .a�

from L (Tr0,r1)). Accordingly, we define the first � moves of Eve’s strategy as follows:

• at the 1st round, Eve moves from vertex (δ(q0,a1), r0,a1 . . .ak+1) to vertex (δ(q0,a1), δ(r0, v1),a2 . . .ak+1);
• at the 2nd round, after Adam has moved from (δ(q0,a1), δ(r0, v1),a2 . . .ak+1) to some vertex (δ(q0,a1a2), δ(r0, v1),

a2 . . .ak+2), Eve moves to the next vertex (δ(q0,a1a2), δ(r0, v1 v2),a3 . . .ak+2);
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• in general, at the j-th round, with 1 ≤ j ≤ l, Eve moves from any vertex of the form (δ(q0,a1 . . .a j), δ(r0, v1 . . . v j−1),

ai . . .a j+k) to the vertex (δ(q0,a1 . . .a j), δ(r0, v1 . . . v j),a j+1 . . .a j+k).

Note that after the first � rounds, a vertex of the form (q1, r1,a�+1 . . .a�+k) The strategy for Eve for the subsequent rounds
is defined in a similar way, that is, by translating Adam’s moves to corresponding moves of player Input and using Output’s
response to construct blocks of � consecutive moves of Eve.

Below, we prove that the defined strategy for Eve guarantees a mean-payoff value less than ν
2 . Let π be an infinite

play of the mean-payoff game induced by Eve’s strategy and let us focus on the sequence of vertices x1, x2, x3, . . . that are
reached at the beginnings of rounds 1, � + 1, 2� + 1, . . . :

π = (q0, r0,a1 . . .ak)︸ ︷︷ ︸
x1

. . . (q1, r1,a�+1 . . .a�+k)︸ ︷︷ ︸
x2

. . . (q2, r2,a2�+1 . . .a2�+k)︸ ︷︷ ︸
x3

. . . .

By construction, at each round i� + 1, with i ∈N, the �-character prefix ai�+1 . . .ai�+k of the word that appears at vertex xi�
belongs to the language L (Rqi ,qi+1 ). Moreover, the 2� consecutive moves that are taken alternatively by Adam and Eve at
rounds i� + 1, . . . , (i + 1)� induce a cost

ci =
∑

1≤ j≤�

dist(ai�+ j, vi�+ j) = min
v∈L (Tri ,ri+1 )

dist(ai�+1 . . .a(i+1)�, v).

Now, consider the corresponding play in the 1-lookahead regular game:

w =
(

q0

r0

)(
q1

r1

)(
q2

r2

)
. . . .

Note that w follows Output’s winning strategy, so it cannot belong to the language L. We know that state q0 is initial in
R and hence w satisfies Condition 1. above. We claim that w satisfies Condition 2. as well. Indeed, for all i ∈ N, we have
that the word ai�+1 . . .a(i+1)� belongs to the language L (Rqi ,qi+1 ) and has length greater than |Q | (recall that � > |Q |). As
we tacitly assumed that all states in R can reach non-transient states (cf. Remark 2 in Section 5.2) it follows that Rqi ,qi+1

visits some same state twice when parsing ai�+1 . . .a(i+1)� , and hence |L (Rqi ,qi+1 )| = ∞. As w satisfies both Condition 1.
and Condition 2. and w /∈ L, we know that w must violate Condition 3.c′). Therefore, for all but finitely many i ∈N, we have

acost
(
L (Rqi ,qi+1),L (Tri ,ri+1)

)
< ν.

We now recall the definition of � and, in particular, the fact that it satisfies Property (†) above, namely, for all
states q,q′ ∈ Q and r, r′ ∈ Q ′ and all words u ∈ L (Rq,q′) of length at least �, acost(L (Rq,q′),L (Tr,r′)) < ν implies

minv∈L (Tr,r′ )
dist(u,v)

|u| < ν . This means that for all but finitely many i ∈ N,

min
v∈L (Tri ,ri+1 )

dist(ai�+1 . . .a(i+1)�, v)

�
< ν.

Putting all together, we have that Eve’s strategy bounds the mean-payoff value of the game by

νπ
Eve = lim sup

n→∞

∑n
i=1 ci

2n�
<

ν

2
.

and hence 2 · νAR,T ≤ 2 · νπ
Eve < ν . �

We conclude with the proof of Theorem 5.

Proof of Theorem 5. Thanks to Lemma 8, the problem of deciding whether

∃k ∈N acostaggr
k-lookahead

(
L (R),L (T )

)
< ν

is immediately reduced to the problem of deciding whether player Output wins the 1-lookahead regular game on L, where
L is a suitable regular ω-language computable from R, T , and ν in double exponential time. �
6. Conclusions

We have addressed the problem of computing the asymptotic cost of repairing regular languages in the non-streaming
and streaming settings. It is surprising that the asymptotic cost in both settings is rational and computable.

In the non-streaming setting, we proved that the threshold problem for the asymptotic cost is between PSpace and
coNExp. We leave as an open problem the unclosed gap between our lower and upper bounds.
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In the streaming setting, where a finite lookahead is given, we derive optimal online algorithms for editing one language
into another, which are quite distinct from traditional edit distance algorithms based on dynamic programming.

We also began an investigation of the best repair cost for arbitrary finite lookup. We leave open the problem of com-
puting the infimum of the asymptotic costs of all such edit strategies, giving here only a decision procedure for the strict
threshold problem.
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