Descriptive complexity for counting complexity classes

Cristian Riveros

CIWS - PUC Chile

Joint work with Marcelo Arenas and Martin Muñoz

Descriptive complexity has been very fruitful in connecting **logics** with **computational complexity**

$$\begin{array}{cccc} \mathrm{NP} & \equiv & \exists \mathsf{SO} \\ \mathrm{coNP} & \equiv & \forall \mathsf{SO} \\ \mathrm{P} & \equiv & \mathsf{LFP}_{\leq} \\ \mathrm{NL} & \equiv & \mathsf{TC}_{\leq} \\ \mathrm{AC}_0 & \equiv & \mathsf{FO} + \mathsf{Bit} \\ \mathrm{PSPACE} & \equiv & \mathsf{PFP}_{\leq} \\ \vdots & \vdots & \vdots \end{array}$$

Many applications in diverse areas like:

- 1. Computational complexity and logics.
- 2. Database management systems.
- 3. Verification systems.

...but computational complexity
is not only about true or false

One would like to study the **complexity** of problems like:

"How many valuations satisfies my boolean formula?"

"How many simple paths are connecting two vertices in my graph?"

is not only about true or false

```
 \begin{array}{c} \text{Counting} \\ \text{Counting} \\ \text{complexity} \\ \text{classes} \end{array} \begin{array}{c} \#P & \equiv ? \\ \text{SPANP} & \equiv ? \\ FP & \equiv ? \\ \#L & \equiv ? \\ \#PSPACE & \equiv ? \end{array}
```

...but computational complexity is not only about true or false

```
 \begin{array}{c} \text{Counting} \\ \text{Counting} \\ \text{complexity} \\ \text{classes} \end{array} \begin{array}{c} \#P & \equiv ? \\ \text{SPANP} & \equiv ? \\ \\ \#L & \equiv ? \\ \\ \#PSPACE & \equiv ? \\ \\ \vdots & \vdots & \vdots \end{array}
```

How can we describe this counting classes with logic?

In this paper, we propose to use weighted logics for descriptive complexity of counting classes

We propose to use:

Quantitative Second Order Logics (QSO) = Weighted Logics over \mathbb{N}

Specifically, our contributions are:

- 1. We show that QSO captures many counting complexity classes.
 - #P, SPANP, FP, #PSPACE, MINP, MAXP, ...
- 2. We use QSO to find classes below #P that has good tractable and closure properties.
- 3. We show how to define quantitative recursion over QSO in order to capture classes below FP.

Outline

Quantitative second order logic

QSO vs counting complexity

Below and beyond

Outline

Quantitative second order logic

QSO vs counting complexity

Below and beyond

Some notation and restrictions

Given a relational signature $\mathbf{R} = \{R_1, \dots, R_k, <\}$, we consider **finite ordered structures** over \mathbf{R} of the form:

$$\mathfrak{A}=(A,R_1^{\mathfrak{A}},\ldots,R_k^{\mathfrak{A}},<^{\mathfrak{A}})$$

where A is the domain and $<^{\mathfrak{A}}$ is a linear order over A.

Let Struct(R) be the set of all finite ordered structures over R.

We consider formulas of Second Order logic over R of the form:

$$\varphi := \text{True} \mid x = y \mid R(\bar{u}) \mid X(\bar{v}) \mid \neg \varphi \mid (\varphi \lor \varphi) \mid \exists x. \varphi \mid \exists X. \varphi$$

where $R \in \mathbf{R}$ and X and X is a first and second order variable, respectively.

The semantics of a second order formula is defined as usual.

Syntax of Quantitative Second Order logic

Definition

A QSO-formula α over **R** is given by the following syntax:

$$\alpha := \varphi \in \mathsf{SO} \mid s \mid (\alpha + \alpha) \mid (\alpha \cdot \alpha) \mid \Sigma x. \alpha \mid \Pi x. \alpha \mid \Sigma X. \alpha \mid \Pi X. \alpha$$
 where φ is (boolean) second order formula and $s \in \mathbb{N}$.

Example

Let $\mathbf{R} = \{E(\cdot, \cdot), <\}$ where E encodes an edge relation.

$$\alpha := \sum x. \sum y. \sum z. (E(x,y) \wedge E(y,z) \wedge E(z,x) \wedge x < y \wedge y < z)$$

Syntax of Quantitative Second Order logic

Definition

A QSO-formula α over **R** is given by the following syntax:

$$\alpha := \varphi \in \mathsf{SO} \mid s \mid (\alpha + \alpha) \mid (\alpha \cdot \alpha) \mid \Sigma x. \alpha \mid \Pi x. \alpha \mid \Sigma X. \alpha \mid \Pi X. \alpha$$
 where φ is (boolean) second order formula and $s \in \mathbb{N}$.

Example

Let $\mathbf{R} = \{E(\cdot, \cdot), <\}$ where E encodes an edge relation.

$$\alpha := \sum x. \sum y. \sum z. \left(\underbrace{E(x,y) \land E(y,z) \land E(z,x) \land x < y \land y < z}_{SO \text{ formula } \varphi}\right)$$

Semantics of Quantitative Second Order logic

Given a QSO-formula α , $\mathfrak{A} \in Struct(\mathbf{R})$ and a var. assignment $v : \mathbf{X} \to A$ we define the semantics $\llbracket \alpha \rrbracket : Struct(\mathbf{R}) \to \mathbb{N}$ recursively as follow:

$$\llbracket \varphi \rrbracket (\mathfrak{A}, v) \ = \ \begin{cases} 1 & \text{if } (\mathfrak{A}, v) \vDash \varphi \\ 0 & \text{otherwise} \end{cases}$$

$$\llbracket s \rrbracket (\mathfrak{A}, v) \ = \ s$$

$$\llbracket \alpha_1 + \alpha_2 \rrbracket (\mathfrak{A}, v) \ = \ \llbracket \alpha_1 \rrbracket (\mathfrak{A}, v) + \llbracket \alpha_2 \rrbracket (\mathfrak{A}, v)$$

$$\llbracket \alpha_1 \cdot \alpha_2 \rrbracket (\mathfrak{A}, v) \ = \ \llbracket \alpha_1 \rrbracket (\mathfrak{A}, v) \cdot \llbracket \alpha_2 \rrbracket (\mathfrak{A}, v)$$

$$\llbracket \Sigma x. \alpha \rrbracket (\mathfrak{A}, v) \ = \ \sum_{a \in A} \llbracket \alpha \rrbracket (\mathfrak{A}, v [a/x])$$

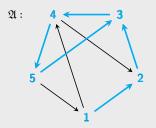
$$\llbracket \Pi x. \alpha \rrbracket (\mathfrak{A}, v) \ = \ \prod_{a \in A} \llbracket \alpha \rrbracket (\mathfrak{A}, v [a/x])$$

$$\llbracket \Sigma X. \alpha \rrbracket (\mathfrak{A}, v) \ = \ \prod_{C \subseteq A^{\operatorname{arity}(X)}} \llbracket \alpha \rrbracket (\mathfrak{A}, v [C/X])$$

$$\llbracket \Pi X. \alpha \rrbracket (\mathfrak{A}, v) \ = \ \prod_{C \subseteq A^{\operatorname{arity}(X)}} \llbracket \alpha \rrbracket (\mathfrak{A}, v [C/X])$$

Semantics of Quantitative Second Order logic

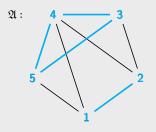
Example (counting the triangles in a graph)



 $\llbracket \alpha \rrbracket (\mathfrak{A}) = 3$

Semantics of Quantitative Second Order logic

Example (counting the number of cliques in a graph)



$$\begin{aligned} & \text{clique}(X) \coloneqq \forall x. \ \forall y. \ (X(x) \land X(y) \land x \neq y) \rightarrow E(x,y) \\ & & \text{[clique]}(\mathfrak{A}, \{3,4,5\}) \ = \ 1 \end{aligned} \qquad \begin{aligned} & \text{[clique]}(\mathfrak{A}, \{1,2\}) \ = \ 1 \end{aligned}$$

$$\alpha := \Sigma X. \operatorname{clique}(X)$$

$$[\![\alpha]\!](\mathfrak{A}) = 18$$

Subfragments and extentions of QSO

$$\alpha := \varphi \in SO \mid s \mid (\alpha + \alpha) \mid (\alpha \cdot \alpha) \mid \Sigma x. \alpha \mid \Pi x. \alpha \mid \Sigma X. \alpha \mid \Pi X. \alpha$$

$$QSO = \underbrace{QSO(SO)}_{\alpha}$$

We can restrict or extend the language of φ :

QSO(FO) := φ is restricted to **FO logic**. QSO(LFP) := φ is restricted to **LFP logic**.

We can restrict or extend the language of α :

QFO(SO) :=
$$\alpha$$
 is restricted to **first order operators** (i.e. $s, +, \Sigma x., \Pi x.$).
 Σ QSO(SO) := α is restricted to **sum operators** (i.e. $s, +, \Sigma x., \Sigma X.$)

Or both φ and α :

 ${\sf QFO}({\sf LFP}) \quad = \quad \alpha \text{ is restricted to } {\sf first order operators} \\ {\sf and } \varphi \text{ is restricted to } {\sf LFP logic}.$

Outline

Quantitative second order logic

QSO vs counting complexity

Below and beyond

Capturing a counting complexity class with QSO

- Recall that a counting complexity $C \subseteq \{f : \Sigma^* \to \mathbb{N}\}.$
- Let $enc(\mathfrak{A})$ be any reasonable encoding of \mathfrak{A} into a string in Σ^* .

Definition

Let $\mathcal F$ be a fragment or extention of QSO and $\mathcal C$ a counting complexity class. Then $\mathcal F$ captures $\mathcal C$ over ordered **R**-structures if:

- 1. for every $\alpha \in \mathcal{F}$, there exists $f \in \mathcal{C}$ such that $[\alpha](\mathfrak{A}) = f(\text{enc}(\mathcal{A}))$ for every $\mathfrak{A} \in \text{STRUCT}[\mathbf{R}]$.
- 2. for every $f \in \mathcal{C}$, there exists $\alpha \in \mathcal{F}$ such that $f(\text{enc}(\mathcal{A})) = [\![\alpha]\!](\mathfrak{A})$ for every $\mathfrak{A} \in \text{Struct}[\mathbf{R}]$.

 ${\mathcal F}$ captures ${\mathcal C}$ over ordered structures if ${\mathcal F}$ captures ${\mathcal C}$ over ordered R-structures for every signature R.

What counting classes can be captured by QSO?

$$\label{eq:counting} \text{Counting} \\ \text{complexity} \\ \text{classes} \\ \begin{cases} &\#P &\equiv ?\\ &\text{FP} &\equiv ?\\ &\#L &\equiv ?\\ &\#PSPACE &\equiv ?\\ &\vdots &\vdots \end{cases}$$

We show that most of these classes can be captured by subfragments or extentions of QSO

How to capture #P?

```
f \in \# P iff there exists an NP machine M such that f(x) = \# \operatorname{accepts}_M(x) for all x \in \Sigma^*. \Sigma \mathsf{QSO}(\mathsf{FO}) \ := \ \alpha \ \text{restricted to sum operators (i.e. } s, +, \Sigma x., \Sigma X.) and \varphi restricted to FO logic.
```

Theorem

 $\Sigma \mathsf{QSO}(\mathsf{FO})$ captures $\#\mathrm{P}$ over ordered structures.

How to capture SPANP?

$$f \in \operatorname{SPANP}$$
 iff there exists an **NP machine** M with **output** such that $f(x) = \#\operatorname{outputs}_M(x)$ for all $x \in \Sigma^*$.

$$\begin{array}{rcl} \mathsf{\Sigma}\mathsf{QSO}(\exists \mathsf{SO}) & := & \alpha \text{ restricted to } \mathsf{sum} \ \mathsf{operators} \ (\mathsf{i.e.} \ s, +, \mathsf{\Sigma}x.\,, \mathsf{\Sigma}X.) \\ & \mathsf{and} \ \varphi \ \mathsf{restricted} \ \mathsf{to} \ \mathsf{existential} \ \mathsf{SO} \ \mathsf{logic}. \end{array}$$

Theorem

 $\Sigma QSO(\exists SO)$ captures SPANP over ordered structures.

#P and SPANP were shown to be captured by a different framework of Saluja et al. and Compton et al.

How to capture FP?

$$\#P \equiv \Sigma QSO(FO)$$

 $SPANP \equiv \Sigma QSO(\exists SO)$

```
f \in \mathrm{FP} iff there exists PTIME machine M with output such that f(x) = M(x) for all x \in \Sigma^*.
```

$$\mathsf{QFO}(\mathsf{LFP}) \quad := \quad \alpha \text{ restricted to } \mathbf{first \ order \ op.} \ (\mathsf{i.e.} \ +, \cdot, \Sigma x.\,, \Pi x.)$$
 and φ restricted to $\mathbf{LFP} \ \mathbf{logic}.$

Theorem

 $\mathsf{QFO}(\mathsf{LFP})$ captures FP over ordered structures.

How to capture FPSPACE?

```
\#P \equiv \Sigma QSO(FO)
SPANP \equiv \Sigma QSO(\exists SO)
\#P \equiv QFO(LFP)
```

```
f \in \mathrm{FPSPACE} iff there exists PSPACE machine M with output such that f(x) = M(x) for all x \in \Sigma^*.
```

```
\mathsf{QSO}(\mathsf{PFP}) \quad := \quad \varphi \; \mathsf{restricted} \; \mathsf{to} \; \textcolor{red}{\mathsf{PFP}} \; \textcolor{red}{\mathsf{logic}}.
```

Theorem

QSO(PFP) captures FPSPACE over ordered structures.

How to capture FPSPACE(poly)?

```
\#P \equiv \Sigma QSO(FO)

SPANP \equiv \Sigma QSO(\exists SO)

\#P \equiv QFO(LFP)

FPSPACE \equiv QSO(PFP)
```

```
f \in \operatorname{FPSPACE}(\operatorname{poly}) iff there exists PSPACE machine M with output of polynomial size such that f(x) = M(x) for all x \in \Sigma^*.

QFO(PFP) := \alpha restricted to first order op. (i.e. +,\cdot,\Sigma x,\Pi x.)
```

and φ restricted to PFP logic.

Theorem

 $\mathsf{QFO}(\mathsf{PFP})$ captures $\mathrm{FPSPACE}(\mathsf{poly})$ over ordered structures.

More classes?

```
\Sigma QSO(FO)
      #P
                   ≡
    SpanP
                       ΣQSO(∃SO)
                   ≡
      #P
                        QFO(LFP)
                   ≡
  FPSPACE
                        QSO(PFP)
                   ≡
FPSPACE(poly)
                        QFO(PFP)
                   \equiv
     Gapp
                       \Sigma QSO_{\mathbb{Z}}(FO)
                   ≣
    MaxP
                       MaxQSO(FO)
                   ≡
                       MinQSO(FO)
     MinP
                   \equiv
```

Outline

Quantitative second order logic

QSO vs counting complexity

Below and beyond

Use QSO to understand classes **below** #P

$$\#P \equiv \Sigma QSO(FO)$$

We consider subfragments below FO:

$$\begin{array}{lll} \Sigma_0 & = & \{ \; \theta \in \mathsf{FO} \; \mid \; \theta \; \mathsf{has} \; \mathsf{no} \; \mathsf{first-order} \; \mathsf{quantifiers} \; \} \\ \Sigma_1 & = & \{ \; \varphi \in \mathsf{FO} \; \mid \; \varphi = \exists \bar{x}. \; \theta(\bar{x}) \; \wedge \; \theta \in \Sigma_0 \; \} \\ \Pi_1 & = & \{ \; \varphi \in \mathsf{FO} \; \mid \; \varphi = \forall \bar{x}. \; \theta(\bar{x}) \; \wedge \; \theta \in \Sigma_0 \; \} \\ \Sigma_2 & = & \{ \; \varphi \in \mathsf{FO} \; \mid \; \varphi = \exists \bar{x}. \; \forall \bar{y}. \; \theta(\bar{x}, \bar{y}) \; \wedge \; \theta \in \Sigma_0 \; \} \\ \Pi_2 & = & \{ \; \varphi \in \mathsf{FO} \; \mid \; \varphi = \forall \bar{x}. \; \exists \bar{y}. \; \theta(\bar{x}, \bar{y}) \; \wedge \; \theta \in \Sigma_0 \; \} \end{array}$$

Use QSO to understand classes **below** #P

$$\#P \equiv \Sigma QSO(FO)$$

Saluja et. al. counting classes below #P

$$\#\Sigma_0 \ \subsetneq \ \#\Sigma_1 \ \subsetneq \ \#\Pi_1 \ \subsetneq \ \#\Sigma_2 \ \subsetneq \ \#\Pi_2 \ = \ \#FO \ \equiv \ \#P$$

Theorem (Σ QSO-hierarchy)

$$\#\Sigma_{1}$$

$$\#\Sigma_{0}$$

$$\Sigma QSO(\Sigma_{1}) \subseteq \#\Pi_{1} = \Sigma QSO(\Pi_{1}) \subseteq \#\Sigma_{2}$$

$$\Sigma QSO(\Sigma_{0})$$

$$\#\Sigma_{2} = \Sigma QSO(\Sigma_{2}) \subseteq \#\Pi_{2} = \Sigma QSO(\Pi_{2}) \equiv \#P$$

Use QSO to understand classes **below** #P

Theorem (Σ QSO-hierarchy)

$$\#\Sigma_{1}$$

$$\#\Sigma_{0} \qquad \qquad \Sigma \mathsf{QSO}(\Sigma_{1}) \; \subsetneq \; \#\Pi_{1} \; = \; \Sigma \mathsf{QSO}(\Pi_{1}) \; \subsetneq \; \#\Sigma_{2}$$

$$\mathbb{E} \mathsf{QSO}(\Sigma_{0})$$

$$\#\Sigma_{2} \; = \; \Sigma \mathsf{QSO}(\Sigma_{2}) \; \subsetneq \; \#\Pi_{2} \; = \; \Sigma \mathsf{QSO}(\Pi_{2}) \; \equiv \; \#P$$

Theorem (good decision and closure properties)

The class $\Sigma \mathsf{QSO}(\Sigma_1[\mathsf{FO}])$ is closed under sum, multiplication and subtraction by one. Moreover, $\Sigma \mathsf{QSO}(\Sigma_1[\mathsf{FO}]) \subseteq \mathrm{TOTP}$ and every function in $\Sigma \mathsf{QSO}(\Sigma_1[\mathsf{FO}])$ has an FPRAS.

Substraction by one is the most technical result of the paper.

Extend QSO to capture complexity classes beyond QSO

We extend QFO with recursion:

RQFO = QFO with quantitative recursion.

TQFO = QFO with **quantitative** transitive closure.

Theorem

- $1.\,$ RQFO(FO) captures ${
 m FP}$ over the class of ordered structures.
- 2. TQFO(FO) captures #L over the class of ordered structures.

Conclusions and future work

"We believe that quantitative logics are the right framework for Descriptive complexity of counting complexity classes."

Plenty of open problems here . . .

- 1. Logical characterization of classes like TOTP, SPANL,...
- 2. Compl. characterization of subfragments like QSO(FO), QFO(FO), ...
- 3. Use quantitative logic to find complexity classes with good properties.
- 4. Understand the expressiveness of QSO and their subfragments.

Thanks! Questions?