Constant delay algorithms
for regular document spanners

Fernando Florenzano
Cristian Riveros
Domagoj Vrgot
From PUC Chile

Martin Ugarte
Stijn Vansummeren

From Université Libre de Bruxelles

Rule-based information extraction by example

18:30 ERROR 06
19:10 OK 00
20:00 ERROR 19

“Extract all pairs (time,id)
of ERROR events”

X y X y
18:30) ERROR (06L19:10 0K 00420:00 ERROR@

123 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Y*.x{60:66} - _ERROR.-y{d6} - L* X y
[1,6) [13,15)

§=(0+1+...+9) [28,33) [40,42)

Rule-based information extraction by example

Problem: Evaluation of rules in information extraction.
Input: RGX formula R and document d.
Output: Enumerate all mappings of d that satisfy R.

18:30 ERROR 06<419:10 0K 00<420:00 ERROR 19

123 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Y*.x{00:66} - _ERROR_-y{d6} - L* X y
[1,6) [13,15)

§=0+1+...+9) [28,33) [40,42)

Unfortunately, the output can easily become exponential

(18)%30) ERROR (06419:10 0K 00420:00 ERROR (19)

123 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Y ox1 {06} - T* - x2{66} - L* X s
[1,3) [4,6)
§=(0+1+...49) [1,3) [13,15)

[13) [40.42) o(dP)
[4,6) [13,15)
[4,6) [16,18)

In general, a RGX formula with k variables
can have an output of size ©(|d|¥).

Constant delay algorithms to the rescue

Definition

Given a RGX rule R and a document d,
a constant delay algorithm is a two-phase enumeration algorithm:

1. Preprocessing phase: linear in |d| and, hopefully, linear in |R].

2. Enumeration phase: constant time between two consecutive outputs.

Can we have an efficient constant delay algorithm for RGX formulas?

In this paper, we propose

a constant delay algorithm for variable-set automata

Specifically, our contributions are:

1.
2.

We study the class of extended and deterministic variable-set automata.

We give a simple constant delay algorithm for
deterministic functional extended variable-set automata.

. We extend this algorithm for the full class of

variable-set automata and spanner algebra.

. We study the complexity of counting the number of output mappings.

In this talk: only the main ideas of the constant delay algorithm.

Outline

Variable-set automata and their variants

The constant delay algorithm

Outline

Variable-set automata and their variants

Variable-set automata (VA)

aab

document:

123

Variable-set automata (VA)

a
—Hx -y
@ 6 O
-y =X

aab

123

y= b -y
DSOS DBE) D)

x=[1,3),y =[1,4)

document:

Variable-set automata (VA)

a
—x -y
@ 6 0
Hy -1x

aab

123

y= b -y
DSOS DBE) D)
x:[1,3),y:[1,4)
y= X+ a a —y b —ax
OO0~ '0 060G 0

x=[1,4),y =[1,3)

document:

Variable-set automata (VA)

aab

document:

123

Theorem (Freydenberger17, MRV18)

The evaluation problem of variable-set automata is NP-complete.

How do we restrict VA to have constant delay algorithms?

Problematic behaviors of VA and their classes

1. Functional VA 2. Extended VA 3 Deterministic VA

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Problem: A VA can have accepting runs that are NOT valid.

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

a
-x Yy

> O 0
-y —x

Problem: A VA can have accepting runs that are NOT valid.

Example of an accepting run that is not valid

Xl—Y"aa—!Xb—iX x

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Definition: functional VA

A VA is functional if every accepting run is a valid run.

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Definition: functional VA

A VA is functional if every accepting run is a valid run.

Theorem (FKRV15)

Every VA is equivalent to a functional VA of at most exponential size.

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Problem: VA can use several paths of variables
for the same extraction of spans.

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Definition: extended VA
An extended VA uses transitions extended with sets of variables such that
between each pair of letters at most one of these transitions are used.

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Definition: extended VA
An extended VA uses transitions extended with sets of variables such that
between each pair of letters at most one of these transitions are used.

Theorem

Every VA is equivalent to an extended VA of at most exponential size.

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Problem: A VA can have several runs that witness the same output.

Example of several runs with the same input/output

{xr,)’"}/-\ a /-\ a m{“x}m b m{_*)’}
O \/ u &) &) \/

{X’—J/’—}m a ~ a m{“x}/'\ b m{—‘}’}
© O—O—(—E—O—0

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Definition: deterministic (Input/Output) VA

An extended VA is deterministic if the transition relation is a function.

Problematic behaviors of VA and their classes

1. Functional VA 2 Extended VA 3 Deterministic VA

Definition: deterministic (Input/Output) VA

An extended VA is deterministic if the transition relation is a function.

Theorem
Every extended VA is equivalent to a deterministic extended VA

of at most exponential size.

Outline

The constant delay algorithm

The constant delay algorithm for extended VA

Given an deterministic and functional extended VA A = (Q, qo, F,d).

procedure EVALUATE(A, a;...a,) procedure CAPTURING(/)

forall ge Q\ {qo} do for all g€ Q do
listy < € Iistg’d < listq.1azycopy
listgy < [1] for all g € Q with list)” ¢ do
for i:=1to ndo for all S € Markerss(q) do
CAPTURING(/) node < Node((S,), /istgld)
READING(/) p<6(q,S)
CAPTURING(n + 1) listp.add(node)
ENUMERATE({listq }qeq, F) .
procedure READING(/)
for all g€ Q do
listg’d < listq
listg < €
for all g € Q with list?? # e do
p < d(q,ai)

list,.append (list3)

Sketch idea of the constant delay algorithm in 3 steps

Given an deterministic and functional extended VA A = (Q, qo, F,9).

1. Convert the document d into a deterministic extended VA Ay.

aab

123

document d:

xep s

Sketch idea of the constant delay algorithm in 3 steps

Given an deterministic and functional extended VA A = (Q, qo, F,9).

1. Convert the document d into a deterministic extended VA Ay.

2. Build the product between A and Ay, and annotate the variable
transitions with the position of d where they take place.

2. Build the product between A and Ay

eyl isl2,

a b {-x}
D@ DO @I

{x+,y+},1 {-y}

Sketch idea of the constant delay algorithm in 3 steps

Given an deterministic and functional extended VA A = (Q, qo, F,0).

1. Convert the document d into a deterministic eVA Ad.

2. Build the product between A and Ay, and annotate the variable
transitions with the position of d where they take place.

3. Replace all the letters in the transitions of A x A4 with ¢, and
construct the “forward” e-closure of the resulting graph.

3. Replace all the letters with e-transitions and

construct the forward e-closure

{x+,yr},1

3. Replace all the letters with e-transitions and

construct the forward e-closure

{x+,yr},1

3. Replace all the letters with e-transitions and

construct the forward e-closure

{xryr}1

3. Replace all the letters with e-transitions and

construct the forward e-closure

3. Replace all the letters with e-transitions and

construct the forward e-closure

3. Replace all the letters with e-transitions and

construct the forward e-closure

{-y},4

Given that the VA is functional, extended and deterministic:
m each path in the graph corresponds exactly to an output mapping, and

= every path is different (i.e. there are no duplicates).

Sketch idea of the constant delay algorithm in 3 steps

Given an deterministic and functional extended VA A = (Q, qo, F,0).

1. Convert the document d into a deterministic eVA Ad.

2. Build the product between A and Ay, and annotate the variable
transitions with the position of d where they take place.

3. Replace all the letters in the transitions of A x A4 with ¢, and
construct the “forward” e-closure of the resulting graph.

Finally, we enumerate all paths from the resulting acyclic labeled graph
which can easily be done with constant delay between outputs.

Efficiency of the constant delay algorithm

Given a VA A and a document d if:

n = Ftstates of A

m = #transitions of A

| = #number of variables of A
Class of regular spanners Precomputation phase
deterministic functional extended VA (n+m)-|d|
functional extended VA 2"-m-|d|
functional VA / functional RGX 2" (n* +|Z]) - |d|
VA / RGX (2"5¢ +2"3Y%)) - |d|

In the paper, we give some evidences that
the exponential blow-up of functional extended VA seems unavoidable.

Conclusions and future work

m We provide a simple constant delay algorithm for evaluating
deterministic functional extended VA.

m We extend this algorithm for the full class of
variable-set automata and (also) regular spanner algebra.

Future work:
1. Code the algorithm and show that it works in practice.

2. Extend the algorithm to include other features used
in rule-based information extraction.

Thanks!

	Variable-set automata and their variants
	The constant delay algorithm

