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Three crucial problems for query answering
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In this paper, we study log-space complexity classes

We consider the class RelationNL and

show that it has good algorithmic properties in terms of:

Enumeration.

Approximate counting.

Approximate uniform generation.

We consider the subclass RelationUL and

show that it has better algorithmic properties in terms of:

Constant delay enumeration (polynomial time preprocessing).

Exact counting.

Exact uniform generation.

We show applications of these results in

information extraction, graph databases, and among others.
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Relations as instances of problems

Let Σ be a finite alphabet.

Definitions

A problem is a relation R ⊆ Σ∗ ×Σ∗.

If (x , y) ∈ R, then x is an input and y is a solution.

We restrict to p-relations R where for every (x , y) ∈ Σ∗ ×Σ∗:

1. if (x , y) ∈ R, then y is of polynomial size with respect to x .

2. (x , y) ∈ R can be verified in polynomial time.



Three main problems associated to a p-relation

Given an input x we denote by WR(x) the set of solutions or witnesses:

WR(x) = {y ∈ Σ∗ ∣ (x , y) ∈ R}

Problem: Enum(R)
Input: A word x ∈ Σ∗

Output: Enumerate all y ∈WR(x) without repetitions

Problem: Count(R)
Input: A word x ∈ Σ∗

Output: The size ∣WR(x)∣

Problem: Gen(R)
Input: A word x ∈ Σ∗

Output: Generate uniformly at random a word in WR(x).



A log-space complexity class: RelationNL
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A log-space complexity class: RelationNL

Given an NL-transducer M and an input x , we define its set of outputs:

M(x) = {y ∈ Σ∗ ∣ there exists a run of M on x

that halts in an accepting state with y in the output}

Definition of RelationNL

A relation R is in RelationNL iff there exists an NL-transducer M s.t.:

R = {(x , y) ∈ Σ∗ ×Σ∗ ∣ y ∈M(x)}



Main results for RelationNL

Theorem

If R ∈ RelationNL then:

1. Enum(R) can be solved with polinomial delay.

2. Count(R) admits an FPRAS

(fully polynomial-time randomized approximation scheme).

3. Gen(R) admits a polynomial time “Las Vegas” uniform generator.

We introduce a subclass RelationUL that has good properties

w.r.t. constant delay enumeration, exact counting, and uniform gen.
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A complete problem for RelationNL
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n

How many words of length n are accepted

by a non-deterministic finite state automaton (NFA)?



A complete problem for RelationNL
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Problem: #NFA

Input: A NFA A = (Q,Σ,∆,q0,F) and 0n.

Output: ∣{w ∣ w ∈ L(A) and ∣w ∣ = n}∣.

Proposition
For every R ∈ RelationNL,

there exists a parsimonious reduction from Count(R) to #NFA .

If we find an FPRAS for #NFA,

we have an FPRAS for every R ∈ RelationNL.



Main ideas of FPRAS: Unfold the NFA until level n
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Main ideas of FPRAS: Unfold the NFA until level n
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The problem is reduced to approximate

the number of label-paths from the initial state to the final states.



Main ideas of FPRAS: languages at level k
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Level-k

Let Qk be the set of states at level k. For each P ⊆ Qk :

L(P) = all words that reach any state in P from the initial state.

We want to approximate the size ∣L(P)∣ for any P ⊆ Qk .

. . . we want to approximate ∣L(F)∣ where F ⊆ Qn.



Main ideas of FPRAS: a sketch for each level
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N(q) ∶ N(q) ∼ ∣L(q)∣
an (1 ± ε)-approximation.

S(q) ∶ S(q) ⊆ L(q)
uniform sample of poly-size.

For every q ∈ Qk

For every P ⊆ Qk and for any total order < of P:

∣L(P)∣ = ∑
q∈P

∣L(q)∣ ⋅ ∣L(q) / L({p ∈ P ∣ p < q})∣
∣L(q)∣

∼ ∑
q∈P

N(q) ⋅ ∣S(q) / L({p ∈ P ∣ p < q})∣
∣S(q)∣

This approximation can be computed in poly-time from N(q) and S(q)
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For every q ∈ Qk

For every P ⊆ Qk and for any total order < of P:

∣L(P)∣ ∼ N(P) = ∑
q∈P

N(q) ⋅ ∣S(q) / L({p ∈ P ∣ p < q})∣
∣S(q)∣

For every P ⊆ Qk and q ∈ Qk − P (by Hoeffding’s inequality):

∣ ∣S(q) / L(P)∣∣S(q)∣ − ∣L(q) / L(P)∣∣L(q)∣ ∣ ≤ ε with (exponentially) high prob.



Main ideas of FPRAS: update the sketch to the next level
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N(q) ∶ N(q) ∼ ∣L(q)∣
an (1 ± ε)-approximation.

S(q) ∶ S(q) ⊆ L(q)
uniform sample of poly-size.

For every q ∈ Qk

For every q ∈ Qk+1 let Pc = {p ∈ Qk ∣ (p, c,q) ∈ ∆} for c ∈ {a,b}:

N(q) = N(Pa) +N(Pb)

To generate S(q) we use a technique from Jerrum, Valiant, and Vazirani

for generating a uniform sample by using the (1 ± ε)-approximations:

{N(P)}P⊆Qk′
for every k ′ ≤ k.
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Conclusions and future work

1. We provide complexity classes that has good properties

in terms of enumeration, counting, and uniform generation.

2. RelationNL is the first complexity class with a simple definition

based on TM and where each problem admits an FPRAS.

Future work:

1. Find an FPRAS for #NFA that can be used in practice

with better polynomial factors and constants.

2. Find an FPRAS for #CFG.

Thanks!
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