
Query answering is the most fundamental problem in DB

R A B

u x

v x

S B C

x y

x z

Database D

Q(D) A C

u y

u z

v y

v z

Result Q(D)

SELECT R.A, S.C

FROM R, S

WHERE R.B = S.B

Query Q



Three crucial problems for query answering

R A B
u x
v x

S B C
x y
x z

Q(D) A C

u y

u z

v y

v z

SELECT R.A, S.C

FROM R, S WHERE R.B = S.B

1. Enumeration

(u, y), (u, z), (v , y), (v , z)

2. Uniform generation

(u, y) ∶ 1

4
, (u, z) ∶ 1

4
, (v , y) ∶ 1

4
, (v , z) ∶ 1

4

3. Counting

∣Q(D)∣ = 4



In this paper, we study log-space complexity classes

We consider the class RelationNL and

show that it has good algorithmic properties in terms of:

Enumeration.

Approximate counting.

Approximate uniform generation.

We consider the subclass RelationUL and

show that it has better algorithmic properties in terms of:

Constant delay enumeration (polynomial time preprocessing).

Exact counting.

Exact uniform generation.

We show applications of these results in

information extraction, graph databases, and among others.



Efficient log-space classes for
enumeration, counting, and
uniform generation

Marcelo Arenas

Luis Alberto Croqueville

Cristian Riveros

PUC & IMFD Chile

Rajesh Jayaram

Carnegie Mellon University



The class RelationNL

FPRAS for RelationNL

Conclusions

Outline



The class RelationNL

FPRAS for RelationNL

Conclusions

Outline



Relations as instances of problems

Let Σ be a finite alphabet.

Definitions

A problem is a relation R ⊆ Σ∗ ×Σ∗.

If (x , y) ∈ R, then x is an input and y is a solution.

We restrict to p-relations R where for every (x , y) ∈ Σ∗ ×Σ∗:

1. if (x , y) ∈ R, then y is of polynomial size with respect to x .

2. (x , y) ∈ R can be verified in polynomial time.



Three main problems associated to a p-relation

Given an input x we denote by WR(x) the set of solutions or witnesses:

WR(x) = {y ∈ Σ∗ ∣ (x , y) ∈ R}

Problem: Enum(R)
Input: A word x ∈ Σ∗

Output: Enumerate all y ∈WR(x) without repetitions

Problem: Count(R)
Input: A word x ∈ Σ∗

Output: The size ∣WR(x)∣

Problem: Gen(R)
Input: A word x ∈ Σ∗

Output: Generate uniformly at random a word in WR(x).



A log-space complexity class: RelationNL

⊢ W O R K

⊢ I N P U T T A P E

⊢ O U T P U T T A P E

q0q1

q2

q3 ⋱
qn

Non-deterministic

log-space

Read only

Read/Write

Write only

NL transducer M



A log-space complexity class: RelationNL

Given an NL-transducer M and an input x , we define its set of outputs:

M(x) = {y ∈ Σ∗ ∣ there exists a run of M on x

that halts in an accepting state with y in the output}

Definition of RelationNL

A relation R is in RelationNL iff there exists an NL-transducer M s.t.:

R = {(x , y) ∈ Σ∗ ×Σ∗ ∣ y ∈M(x)}



Main results for RelationNL

Theorem

If R ∈ RelationNL then:

1. Enum(R) can be solved with polinomial delay.

2. Count(R) admits an FPRAS

(fully polynomial-time randomized approximation scheme).

3. Gen(R) admits a polynomial time “Las Vegas” uniform generator.

We introduce a subclass RelationUL that has good properties

w.r.t. constant delay enumeration, exact counting, and uniform gen.



The class RelationNL

FPRAS for RelationNL

Conclusions

Outline



A complete problem for RelationNL

r s t
a

b

b

a b a

000000000⋯00
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

How many words of length n are accepted

by a non-deterministic finite state automaton (NFA)?



A complete problem for RelationNL

r s t
a

b

b

a b a

000000000⋯00
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

Problem: #NFA

Input: A NFA A = (Q,Σ,∆,q0,F) and 0n.

Output: ∣{w ∣ w ∈ L(A) and ∣w ∣ = n}∣.

Proposition
For every R ∈ RelationNL,

there exists a parsimonious reduction from Count(R) to #NFA .

If we find an FPRAS for #NFA,

we have an FPRAS for every R ∈ RelationNL.



Main ideas of FPRAS: Unfold the NFA until level n

r

s

t

a

bb

a

b

a

r0

s0

t0

r1

s1

t1

a

b

b

a

b

a

r2

s2

t2

a

b

b

a

b

a

r3

s3

t3

a

b

b

a

b

a

⋯

⋯

⋯

a

b

b

a

b

a

rn

sn

tn

a

b

b

a

b

a

n-levels



Main ideas of FPRAS: Unfold the NFA until level n

r

s

t

a

bb

a

b

a

r0

s0

t0

r1

s1

t1

a

b

b

a

b

a

r2

s2

t2

a

b

b

a

b

a

r3

s3

t3

a

b

b

a

b

a

⋯

⋯

⋯

a

b

b

a

b

a

rn

sn

tn

a

b

b

a

b

a

n-levels



Main ideas of FPRAS: Unfold the NFA until level n

r

s

t

a

bb

a

b

a

r0 r1

s1

a

a
r2

s2

t2

a

b

a

b

r3

s3

t3

a

b

b

a

b

a

⋯

⋯

⋯

a

b

b

a

b

a

rn

tn

b

a

n-levels

The problem is reduced to approximate

the number of label-paths from the initial state to the final states.



Main ideas of FPRAS: languages at level k

. . .

⋯

⋯

rk

sk

tk

⋯

⋯

⋯

Level-k

Let Qk be the set of states at level k. For each P ⊆ Qk :

L(P) = all words that reach any state in P from the initial state.

We want to approximate the size ∣L(P)∣ for any P ⊆ Qk .

. . . we want to approximate ∣L(F)∣ where F ⊆ Qn.



Main ideas of FPRAS: a sketch for each level

. . .

⋯

⋯

rk

sk

tk

⋯

⋯

⋯

Level-k

N(q) ∶ N(q) ∼ ∣L(q)∣
an (1 ± ε)-approximation.

S(q) ∶ S(q) ⊆ L(q)
uniform sample of poly-size.

For every q ∈ Qk

For every P ⊆ Qk and for any total order < of P:

∣L(P)∣ = ∑
q∈P

∣L(q)∣ ⋅ ∣L(q) / L({p ∈ P ∣ p < q})∣
∣L(q)∣

∼ ∑
q∈P

N(q) ⋅ ∣S(q) / L({p ∈ P ∣ p < q})∣
∣S(q)∣

This approximation can be computed in poly-time from N(q) and S(q)



Main ideas of FPRAS: a sketch for each level

. . .

⋯

⋯

rk

sk

tk

⋯

⋯

⋯

Level-k

N(q) ∶ N(q) ∼ ∣L(q)∣
an (1 ± ε)-approximation.

S(q) ∶ S(q) ⊆ L(q)
uniform sample of poly-size.

For every q ∈ Qk

For every P ⊆ Qk and for any total order < of P:

∣L(P)∣ ∼ N(P) = ∑
q∈P

N(q) ⋅ ∣S(q) / L({p ∈ P ∣ p < q})∣
∣S(q)∣

For every P ⊆ Qk and q ∈ Qk − P (by Hoeffding’s inequality):

∣ ∣S(q) / L(P)∣∣S(q)∣ − ∣L(q) / L(P)∣∣L(q)∣ ∣ ≤ ε with (exponentially) high prob.



Main ideas of FPRAS: update the sketch to the next level

. . .

⋯

⋯

rk

sk

tk

rk+1

sk+1

tk+1

a

b

b

a

b

a

⋯

⋯

⋯

Level-k Level-k + 1

N(q) ∶ N(q) ∼ ∣L(q)∣
an (1 ± ε)-approximation.

S(q) ∶ S(q) ⊆ L(q)
uniform sample of poly-size.

For every q ∈ Qk

For every q ∈ Qk+1 let Pc = {p ∈ Qk ∣ (p, c,q) ∈ ∆} for c ∈ {a,b}:

N(q) = N(Pa) +N(Pb)

To generate S(q) we use a technique from Jerrum, Valiant, and Vazirani

for generating a uniform sample by using the (1 ± ε)-approximations:

{N(P)}P⊆Qk′
for every k ′ ≤ k.



The class RelationNL

FPRAS for RelationNL

Conclusions

Outline



Conclusions and future work

1. We provide complexity classes that has good properties

in terms of enumeration, counting, and uniform generation.

2. RelationNL is the first complexity class with a simple definition

based on TM and where each problem admits an FPRAS.

Future work:

1. Find an FPRAS for #NFA that can be used in practice

with better polynomial factors and constants.

2. Find an FPRAS for #CFG.

Thanks!


	The class RelationNL
	FPRAS for RelationNL
	Conclusions

