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Abstract
It is highly desirable for a computational model to have a logic characterization like in the seminal
work of Büchi that connects MSO with finite automata. For example, weighted automata are
the quantitative extension of finite automata for computing functions over words and they can
be naturally characterized by a subfragment of weighted logic introduced by Droste and Gastin.
Recently, cost register automata (CRA) were introduced by Alur et al. as an alternative model for
weighted automata. In hope of finding decidable subclasses of weighted automata, they proposed
to restrict their model with the so-called copyless restriction. Unfortunately, copyless CRA do
not enjoy good closure properties and, therefore, a logical characterization of this class seems to
be unlikely.

In this paper, we introduce a new logic called maximal partition logic (MP) for studying the
expressiveness of copyless CRA. In contrast to the previous approaches (i.e. weighted logics),
MP is based on a new set of “regular” quantifiers that partition a word into maximal subwords,
compute the output of a subformula over each subword separately, and then aggregate these
outputs with a semiring operation. We study the expressiveness of MP and compare it with
weighted logics. Furthermore, we show that MP is equally expressive to a natural subclass of
copyless CRA. This shows the first logical characterization of copyless CRA and it gives a better
understanding of the copyless restriction in weighted automata.
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1 Introduction

Weighted automata are an extension of finite state automata to compute functions over
strings [8]. They have been extensively studied since Schützenberger [21], and its decidability
problems [15, 2], extensions [7], and applications [18, 6] have been deeply investigated. From
the logic-side, Weighted MSO logic (WMSO) has been introduced and investigated in [7, 14].
This logic is a quantitative extension of MSO to define functions over strings and its natural
fragment gives a logic-based characterization of weighted automata.

Recently, Alur et al. [3] introduced the computational model of cost register automata
(CRA), an alternative model to weighted automata for computing functions. The main
idea of this model is to enhance deterministic finite automata with registers that can be
combined with semiring operations, but the registers cannot be used for taking decisions
during a computation. Alur et al. show in [3] that a fragment of CRA is equally expressive
to weighted automata, but the general model is strictly more expressive.

The main advantage of introducing a new model is that it allows to study natural sub-
classes of functions that do not arise naturally in the classical framework. This is the case

© Filip Mazowiecki and Cristian Riveros;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–44

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Maximal partition logic: towards a logical characterization of copyless CRA

for the class of copyless CRA that where proposed in [3]. The idea of the so-called copyless
restriction is to use each register at most once in every transition. Intuitively, the auto-
maton model is register-deterministic in the sense that it cannot copy the content of each
register, similar to a deterministic finite automaton that cannot make a copy of its current
state. Copyless CRA is also an excellent candidate for having good decidability properties.
It was stated in [3] that the existing proofs of undecidability in weighted automata rely on
the unrestricted non-deterministic nature of the model and, thus, it might be possible that
copyless CRA can have good decidability properties [3]. Despite that this is a natural and
interesting model for computing functions, research on this line has not been pursued further
and not much is known about copyless CRA.

In this paper, we introduce a new logic called Maximal Partition Logic (MP) to define
functions over strings. In contrast to the previous approaches (WMSO), MP is based on a
different set of quantifiers and it does not need to distinguish between a boolean or quantitat-
ive level of evaluation (see [7, 14]). MP is based on regular quantifiers that partition a string
into maximal substrings, compute a subformula over each substring separately and then
aggregate these outputs with respect to a semiring operation. Recently in [5] a logic with
a similar flavor has been proposed but in a different context, namely for data words. The
authors define a syntactically restricted fragment of MSO formulas with two free variables
called rigid MSO-formulas. Each assignment of the free variables can be seen as choosing
the substrings between the assigned positions. The rigid formulas put restrictions in the
chosen set of substrings that coincides with our restriction of choosing maximal substrings.

WMSO has the drawbacks of its automata counterpart (weighted automata) – the lack of
good decidability properties [2, 7, 14, 15]. We show that MP is less expressive than WMSO
and even less expressive than weighted automata. Interestingly, MP can still define natural
functions and it is strictly more expressive than finitely ambiguous weighted automata, a
subclass of weighted automata, which has good decidability properties. In this paper we
study the expressiveness of MP and compare its expressiveness with WMSO and fragments of
WMSO. By this comparison, MP might be a good candidate for a logic with good decidability
properties.

The main result of this paper is that MP is equally expressive to a natural fragment of
copyless CRA, called bounded alternation copyless CRA (BAC). This fragment of copyless
CRA has good closure properties and, at the same time, it does not lose much in terms of
expressibility. Most examples in [3] and this paper are definable by BAC automata. This
result could also be the first step in proving the decidability of MP. For example a positive
answer to a decidability problem for copyless CRA will imply a positive answer for the same
decidability problem for MP.

Organization. In Section 2 we introduce CRA and some basic definitions. In Section 3 we
introduce MP and compare it with other formalisms. In particular we discuss the connection
between this logic and rigid formulas. In Section 4 we define BAC automata and prove
that that this class of automata is equally expressive to MP. In Section 5 we compare the
expressiveness of MP with WMSO. We conclude in Section 6 with possible directions for
future research. Due to the page limit some proofs are moved to the appendix, available
online.

2 Preliminaries

In this section, we summarize the notation and definitions used for finite automata, regular
expressions, MSO logic and cost register automata.
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Finite automata over strings. Let Σ be a finite set of symbols. We denote by Σ∗ the set
of all finite strings over Σ and by ε the empty string in Σ∗. The length of a string w ∈ Σ∗ is
denoted by ∣w∣. Furthermore, for any a ∈ Σ the number of a-symbols in w is denoted by ∣w∣a.

A finite automaton [11] over Σ∗ is a tuple A = (Q,Σ, δ, q0, F ) where Q is a finite set of
states, δ ⊆ Q ×Σ ×Q is a finite transition relation, q0 is the initial state and F is the set of
final states. A run ρ of A is a sequence of transitions of the form: p0

a1Ð→p1
a2Ð→⋯ anÐ→pn where

(pi, ai+1, pi+1) ∈ δ for every i < n. We say that ρ (like above) is a run of A over w = a1 . . . an
if p0 = q0. Furthermore, we say that ρ is an accepting run if pn ∈ F . A string w is accepted
by A if there exists an accepting run of A over w. We denote by L(A) the language of all
strings accepted by A. A finite automaton A is called deterministic if δ is a function of the
form δ ∶ Q ×Σ→ Q.

Regular expressions. Let Σ be an alphabet. The syntax of regular expressions [11] over
Σ is given by:

R ∶= ∅ ∣ ε ∣ a ∣ R ⋅R ∣ R +R ∣ R∗

where a ∈ Σ. The semantics of regular expressions over strings is defined as usual [11]. We
write L(R) to denote the set of all strings that satisfy the regular expression R.

MSO. Let Σ be an alphabet. The syntax of an MSO-formula over Σ-strings is given by:

ϕ ∶= Pa(x) ∣ x ≤ y ∣ x ∈X ∣ (ϕ ∨ ϕ) ∣ ¬ϕ ∣ ∃x. ϕ ∣ ∃X. ϕ

where a ∈ Σ, x and y are first-order variables and X is a set of variables. Let w = a1 . . . an ∈
Σ∗ be a string. We represent the string w as a structure ({1, . . . , n},≤, (Pa)a∈Σ), where
Pa = {i ∣ ai = a}. Further, we denote by dom(w) = {1, . . . , n} the domain of w as a structure.
Given a finite set x̄ of first-order and second-order variables, an (x̄,w)-assignment σ is a
function that maps every first order variable in x̄ to dom(w) and every second order variable
in x̄ to 2dom(w). Furthermore, we denote by σ[x→ i] the extension of the (x̄,w)-assignment
σ such that σ[x → i](x) = i and σ[x → i](y) = σ(y) for all variables y ≠ x. Consider an
MSO-formula ϕ(x̄) and a (x̄,w)-assignment σ. We write w ⊧ ϕ(σ) if (w,σ) satisfies ϕ(x̄)
using the standard MSO-semantics.

Semirings and functions. A semiring is a structure S = (S,⊕,⊙,0,1) where (S,⊕,0)
is a commutative monoid, (S − 0,⊙,1) is a monoid, multiplication distributes over addi-
tion, and 0 ⊙ s = s ⊙ 0 = 0 for each s ∈ S. If the multiplication is commutative, we say
that S is commutative. In this paper, we always assume that S is commutative. For the
sake of simplicity, we usually denote the set of elements S by the name of the semiring
S. As standard examples of semirings we will consider the semiring of natural numbers
N(+, ⋅) = (N,+, ⋅,0,1), the min-plus semiring N∞(min,+) = (N∞,min,+,∞,0) and the max-
plus semiring N−∞(max,+) = (N−∞,max,+,−∞,0) which are standard semirings in the field
of weighted automata [8].

In this paper, we study the specification of functions from strings to values, namely, from
Σ∗ to S. We say that a function f ∶ Σ∗ → S is definable by a computational system A (e.g.
weighted automaton, or CRA) if f(w) = ⟦A⟧(w) for any w ∈ Σ∗ where ⟦A⟧ is the semantics
of A over strings. For any string w, we denote by wr the reverse string. We say that a class
of functions F is closed under reverse [3] if for every f ∈ F there exists a function fr ∈ F
such that fr(w) = f(wr) for all w ∈ Σ∗.

Variables, expressions, and substitutions. Fix a semiring S = (S,⊕,⊙,0,1) and a set
of variables X disjoint from S. We denote by Expr(X ) the set of all syntactical expressions
that can be defined from X , constants in S, and the syntactical signature of S. For any
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expression e ∈ Expr(X ) we denote by Var(e) the set of variables in e. We call an expression
e ∈ Expr(X ) without variables (i.e. Var(e) = ∅) a ground expression. For any ground
expression we define ⟦e⟧ ∈ S to be the evaluation of e with respect to S.

A substitution over X is defined as a mapping σ ∶ X → Expr(X ). We denote the set
of all substitutions over X by Subs(X ). A ground substitution σ is a substitution where
each expression σ(x) is ground for each x ∈ X . Any substitution σ can be extended to a
mapping σ̂ ∶ Expr(X ) → Expr(X ) such that, for every e ∈ Expr(X ), σ̂(e) is the resulting
expression e[σ] of substituting each x ∈ Var(e) by the expression σ(x). For example, if
σ(x) = 2x and σ(y) = 3y, and e = x + y, then σ̂(e) = 2x + 3y. By using the extension σ̂,
we can define the composition substitution σ1 ○ σ2 of two substitutions σ1 and σ2 such that
σ1 ○ σ2(x) = σ̂1(σ2(x)) for each x ∈ X .

A valuation is defined as a substitution of the form ν ∶ X → S. We denote the set of
all valuations over X by Val(X ). Clearly, any valuation ν composed with a substitution σ
defines an expression without variables that can be evaluated as ⟦ν ○ σ(x)⟧ for any x ∈ X .

In this paper, we say that two expressions e1 and e2 are equal (denoted by e1 = e2) if
they are equal up to evaluation equivalence, that is, ⟦ν̂(e1)⟧ = ⟦ν̂(e2)⟧ for every valuation
ν ∈ Val(X ). Similarly, we say that two substitutions σ1 and σ2 are equal (denoted by σ1 = σ2)
if σ1(x) = σ2(x) for every x ∈ X .

Cost register automata. A cost register automaton (CRA) over a semiring S [3] is a
tuple A = (Q,Σ,X , δ, q0, ν0, µ) where Q is a set of states, Σ is the input alphabet, X is
a set of variables (we also call them registers), δ ∶ Q × Σ → Q × Subs(X ) is the transition
function, q0 is the initial state, ν0 ∶ X → S is the initial valuation, and µ ∶ Q → Expr(X ) is
the final output function. A configuration of A is a tuple (q, ν) where q ∈ Q and ν ∈ Val(X )
represents the current values in the variables of A. Given a string w = a1 . . . an ∈ Σ∗, the
run of A over w is a sequence of configurations: (q0, ν0) a1Ð→ (q1, ν1) a2Ð→ . . . anÐ→ (qn, νn) such
that, for every 1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi) and νi(x) = ⟦νi−1 ○ σi(x)⟧ for each x ∈ X . The
output of A over w, denoted by ⟦A⟧(w), is ⟦ν̂n(µ(qn))⟧.

The run of A over w can be equally defined in terms of ground expressions rather than
values. A ground configuration of A is a tuple (q, ς) where q ∈ Q and ς ∈ Subs(X ) is a ground
substitution. Given a string w = a1 . . . an ∈ Σ∗, the ground run of A over w is a sequence of
ground configurations: (q0, ς0) a1Ð→ . . . anÐ→ (qn, ςn) such that for 1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi),
ς0 = ν0 and ςi(x) = ς̂i−1(σi(x)) for each x ∈ X . We denote the output ground expression
of A over a string w by ∣A∣(w) = ς̂n(µ(qn)). Notice that, in contrast to ordinary runs,
ground runs keep ground expressions as partial values of the run. It is easy to see that
⟦A⟧(w) = ⟦∣A∣(w)⟧.

Copyless restriction and copyless CRA. We say that an expression e ∈ Expr(X ) is
copyless if e uses every variable from X at most once. For example, x ⋅(y+z) is copyless but
x ⋅y+x ⋅z is not copyless (because x is mentioned twice). Notice that the copyless restriction
is a syntactical constraint over expressions. Furthermore, we say that a substitution σ is
copyless if for every x ∈ X the expression σ(x) is copyless and Var(σ(x)) ∩ Var(σ(y)) = ∅
for every pair of different registers x, y ∈ X . Copyless substitutions, similar to copyless
expressions, are restricted in such a way that each variable is used at most once in the whole
substitution.

A CRA A is called copyless if for every transition δ(q1, a) = (q2, σ) the substitution σ is
copyless; and for every state q ∈ Q the expression µ(q) is copyless, where µ is the output
function of A. In other words, every time that registers from A are operated, they can be
used just once. In the following, we give some examples of copyless CRA.
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▸ Example 1. Let S be the max-plus semiring N−∞(max,+) and Σ = {a, b}. Consider the
function f1 that for a given string w ∈ Σ∗ computes the longest substring of b’s. This can
be easily defined by the following CRA A1 with two registers x and y.

x, y ∶= 0

max{x, y}

a
x ∶= 0
y ∶= max{x, y}

b
x ∶= x + 1
y ∶= y

A1 stores in the x-register the length of the last suffix of b’s and in the y-register the length
of the longest substring of b’s seen so far. After reading a b-symbol A1 adds one to x (the
b-infix has increased by one) and it keeps y unchanged. Furthermore, after reading an a-
symbol it resets x to zero and updates y by comparing the substring of b’s that has just
finished (i.e. the previous x-content) with the length of the longest substring of b’s (i.e. the
previous y-content) that has been seen so far. Finally, it outputs the maximum between x
and y.

One can easily check that the previous CRA satisfies the copyless restriction and, there-
fore, it is a copyless CRA. Indeed, each substitution is copyless and the final output expres-
sion max{x, y} is copyless as well.

▸ Example 2. Again, let S be the max-plus semiring N−∞(max,+) and Σ = {a, b,#}. Con-
sider the function f2 such that, for any w ∈ Σ∗ of the form w0#w1# . . .#wn with wi ∈ {a, b}∗,
it computes the maximum number of a’s or b’s for each substring wi (i.e. max{∣wi∣a, ∣wi∣b})
and then it sums these values over all substrings wi, that is, f2(w) = ∑ni=0 max{∣wi∣a, ∣wi∣b}.
One can check that the copyless CRA A2 defined below computes f2:

x, y, z ∶= 0

z +max{x, y}

# x, y ∶= 0
z ∶= z +max{x, y}

a x ∶= x + 1
b y ∶= y + 1

In the above diagram of A2, we omit an assignment if a register is not updated (i.e. it keeps
its previous value). For example, for the a-transition we omit the assignments y ∶= y and
z ∶= z for the sake of presentation of the CRA. Similarly, we also omit the assignment x ∶= x
and z ∶= z for the b-transition. One should keep in mind these assignments because of the
copyless restriction.

The copyless CRA A2 follows similar ideas to A1: the registers x and y count the
number of a’s and b’s, respectively, in the longest suffix without # and the register z stores
the partial output without considering the last suffix of a’s and b’s. When the last substring
wi over {a, b} is finished (i.e. there comes a #-symbol or the input ends), then A2 adds the
maximum number of a’s or b’s in wi to z (i.e. z ∶= z +max{x, y}).

Trim assumption. For technical reasons, in this paper we assume that our finite automata
and cost register automata are always trim, namely, all their states are reachable from
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some initial states (i.e., they are accessible) and they can reach some final states (i.e.,
they are co-accessible). It is worth noticing that verifying if a state is accessible or co-
accessible is reduced to a reachability test in the transition graph [19]; and this can be done
in NLogSpace. Thus, we can assume without lost of generality that all our automata are
trimmed.

3 A quantitative logic based on partitions

3.1 Regular selectors
In this subsection we extend regular expressions for selecting intervals from a string. Our
approach is similar to the one in [9, 12], but we restrict the selection to just a set of intervals
(i.e. spans in [9]) instead of relations of intervals.

Fix a string w ∈ Σ∗. An interval of w is a pair (i, j) such that 1 ≤ i ≤ j ≤ ∣w∣. We
write Int(w) for the set of all intervals of w. For an interval (i, j), we denote by w[i, j] the
substring between positions i and j, by w[⋅, j] the prefix of w until position j and by w[i, ⋅]
the suffix of w starting from position i. For the sake of simplification, we define w[⋅, i] and
w[i, ⋅] equal to ε whenever i ∉ {1, . . . , ∣w∣}.

A regular selector (RS) over Σ (or just selector or triple) is a triple (R,S,T ) where R,
S, and T are regular expressions over Σ. The set of all selectors over Σ is denoted by RSΣ.
We usually write R⟨S⟩T instead of (R,S,T ). The main motivation of a selector (R,S,T )
is to select intervals (i, j) from a string w by dividing w into w = xyz such that x, y, and z
match R, S, and T , respectively, and w[i, j] = y. Specifically, we say that an interval (i, j)
of a string w is selected by a triple R⟨S⟩T if, and only if, w[⋅, i − 1] ∈ L(R), w[i, j] ∈ L(S),
and w[j + 1, ⋅] ∈ L(T ). The set of all intervals of w selected by R⟨S⟩T is defined as:

Sel(w,R⟨S⟩T ) = { (i, j) ∈ Int(w) ∣ w[⋅, i−1] ∈ L(R) ∧w[i, j] ∈ L(S) ∧w[j+1, ⋅] ∈ L(T ) }

▸ Example 3. Let Σ = {a, b}. Suppose that we want to define all maximal intervals that
define substrings of b-symbols in a string. This can be defined by the following regular
selector:

((a + b)∗a + ε) ⟨b+⟩ (a(a + b)∗ + ε)

The purpose of a selector R⟨S⟩T is to extract all intervals that satisfy the regular ex-
pression S under the context defined by R and T . In our logic, we restrict the semantics
of selectors to consider just intervals that are maximal in terms of containment. More
precisely, we say that an interval (i1, j1) is contained in an interval (i2, j2) (denoted by
(i1, j1) ⊑ (i2, j2)) if, and only if, i2 ≤ i1 and j1 ≤ j2. The ⊑-relation basically defines a partial
order between intervals and we can talk about the ⊑-maximal intervals of a set. We write
Max⊑(I) to denote the set of all maximal intervals in I with respect to the partial order ⊑
for any set I of intervals. Given a selector R = R⟨S⟩T and a string w, we define the set of
intervals selected by R over w under maximal semantics by:

Max(w,R⟨S⟩T ) = Max⊑(Sel(w,R⟨S⟩T ))

That is, under the maximal semantics we select just intervals that are maximal with respect
to the partial order ⊑. This new semantics simplifies selectors from Example 3.

▸ Example 4. With the maximal semantics, we can easily define the the set of maximal
intervals that define substrings of b-symbols like in Example 3. By using the maximal
semantics we can define this set of intervals easily as follows:

(a + b)∗ ⟨b+⟩ (a + b)∗
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We usually do not need the context R and T when we are using the maximal semantics. For
instance, in the previous example R and S were equal to (a+ b)∗ and could be omitted. For
the sake of simplification, we usually omit R, T and the angular brackets whenever R and
T are both equivalent to Σ∗. We can simplify the above selector and just write b+ to select
the maximal intervals of b’s.

3.2 Maximal partition logic
For a fixed semiring S = (S,⊕,⊙,0,1) and an alphabet Σ we define the maximal partition
logic (MP). This is a logic for computing functions similar to weighted logics [7] but with a
different set of quantifiers that are parametrized by regular selectors. Formally, the formulas
of MP over a semiring S = (S,⊕,⊙,0,1) and an alphabet Σ are defined by the following
grammar:

ϕ ∶= s ∣ (ϕ⊕ ϕ) ∣ (ϕ⊙ ϕ) ∣ ⊕R. ϕ ∣ ⊙R. ϕ

where s ∈ S and R ∈ RSΣ is a regular selector. Similar as in [7], our formulas use constants
s ∈ S and moreover constants are the only atomic formulas in MP. Our logic also includes the
binary sum ⊕ and product ⊙ like it is common in weighted or quantitative logics [7, 14]. Of
course, the signature of these operators depends on the semiring that is chosen, for example
max{ϕ1, ϕ2} or ϕ1 +ϕ2 are MP-formulas for the max-plus semiring N−∞(max,+). The new
quantifiers here are the formulas of the form ⊕R. ϕ or ⊙R. ϕ. We say that ⊕R. and ⊙R.
are partition quantifiers. We stress again that the signature of these quantifiers depends on
the signature of the semiring. The idea here is that, over any input w ∈ Σ∗, R will select the
set of maximal intervals I of w and then ϕ will be computed over each substring w[i, j] for
(i, j) ∈ I. The outputs of ϕ over w[i, j] will be aggregated under the ⊕ or ⊙ operation. It
is important to remark that ϕ will be computed over a substructure of w and not over the
whole string. This differs from the classical logic semantics where an element, set or relation
is chosen and the subformulas are evaluated over the whole structure plus an assignment over
the variables. Here we have taken a different direction and we consider just the substructure
induced by the interval provided by the regular selector.

Formally, each MP-formula ϕ defines a function ⟦ϕ⟧ from Σ∗ to S. The semantics of
MP-formulas is defined recursively over any string w ∈ Σ∗ as follows:

⟦s⟧(w) ∶= s

⟦ϕ1 ⊕ ϕ2⟧(w) ∶= ⟦ϕ1⟧(w)⊕ ⟦ϕ2⟧(w)

⟦ϕ1 ⊙ ϕ2⟧(w) ∶= ⟦ϕ1⟧(w)⊙ ⟦ϕ2⟧(w)

⟦⊕R. ϕ⟧(w) ∶= ⊕
(i,j)∈Max(w,R)

⟦ϕ⟧(w[i, j])

⟦⊙R. ϕ⟧(w) ∶= ⊙
(i,j)∈Max(w,R)

⟦ϕ⟧(w[i, j])

for any MP-formulas ϕ, ϕ1, and ϕ2; and for any regular selector R over Σ. For the special
case when Max(w,R) = ∅, we define ⟦⊕R. ϕ⟧(w) = 0 and ⟦⊙R. ϕ⟧(w) = 1.

In the sequel we give some examples in order to understand the syntax and semantics of
the logic.

▸ Example 5. Suppose that we want to compute the number of b-symbols in a string and we
want to specify this function with MP-formulas over the max-plus semiring N−∞(max,+).
Here, we use max{⋅, ⋅} and + for the binary operators, and Max R. ϕ, ∑R. ϕ for the partition
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quantifiers. Then the number of b-symbols in a string can be computed easily with the
following formula:

ϕ1 ∶= ∑ b. 1

To understand ϕ1, we need to first understand the regular selector given by the simple
expression b. Recall that this is a shorthand for (a + b)∗⟨b⟩(a + b)∗. Thus, the regular
selector b is choosing all the maximal intervals with just one b-symbol, that is, all substrings
of the form b. Then for each b-symbol in the input the formula is outputting 1 and, by
aggregating them all, it is calculating the number of b-symbols in a string.

By definition for any fixed string u, a formula of the form ∑u. 1 counts how many times
the u-string appears in the input. It is interesting to compare how simple and readable is
this formula in comparison to any equivalent formula in other logics (e.g. weighted logics [7])
or other formalism (e.g. weighted expressions [20]) for computing function over strings.

MP also has the ability of defining regular properties in a simple way. For example, let
R be a regular expression and suppose one wants to output 1 if the input is definable by R
and 0 otherwise. This is defined by the expression ⊕ ε⟨R⟩ε. 1. Here, the prefix and suffix
of the selected interval are ε, thus the regular selector chooses the whole string depending
if it belongs to R. If the string belongs to R the formula outputs 1; otherwise it outputs 0.
Therefore, MP has a native use of regular expressions embedded in the language.

▸ Example 6. Suppose that one wants to compute the length of the maximum substring of
b-symbols. The following formula shows how to define this function in MP logic over the
semiring N−∞(max,+):

ϕ2 ∶= Max b+. ∑ b. 1

In the previous formula, the partition quantifier Max b+ is breaking the input into maximal
substrings of b-symbols and passing each substring to the subformula ∑ b. 1 that counts the
number of b-symbols in the substring. Finally we maximize over all maximal substrings of
b-symbols.

We want to highlight again how declarative is ϕ2 in comparison to other logics. Here the
words are partitioned into maximal substrings of b-symbols and the length of each substring
is counted. In the end it is maximized over all lengths.

The next example defines a more complicated function.

▸ Example 7. Let Σ = {a, b,#} and suppose that we want to compute the same function
as in Example 4, that is, for each subinterval between #-letters, we want the maximum
between its number of a- or b-symbols, and then sum these values over all intervals. This
complicated function can be easily defined by the following MP formula over the max-plus
semiring N−∞(max,+):

ϕ3 ∶= ∑ (a + b)+. max { ∑a. 1 , ∑ b. 1 }

One can easily understand the function from the definition of the MP-formula ϕ3. The first
quantifier ∑ (a + b)+ is dividing the word into maximal substrings of a- and b-symbols or,
in other words, substrings that are between #-symbols (or the prefix and the suffix). Then
for each of these substrings the subformula max { ∑a. 1 , ∑ b. 1 } is taking the maximum
between the number of a-symbols or b-symbols. In the end these values are summed over
all maximal substrings of a- and b-symbols.
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3.3 Design decisions behind MP
MP uses regular selectors for choosing intervals from the input and computing a subformula
over the selected substrings. Here we are taking two design decisions about this new logic:
(1) we decided to use regular expressions for selecting intervals and (2) we consider only the
maximal intervals. In the following we give evidence of how these decisions are related with
previous work.

Regular expressions have been used from the beginning for extracting intervals from
strings [1, 10]. For example, regular expressions are used in practice for matching sub-
strings from files or documents [10]. Similar to regular selectors, a RegExp-engine (like
egrep) parses a regular expression R and an input document D, and extracts all words from
D that match with R. RegExp-engines even use parentheses “(⋅)” for declaring that the
subword that matches the subexpressions between parentheses must be output. Further-
more, in RegExp-engines the parentheses semantics is greedy, namely, they select the larger
subword that matches the subexpression inside parentheses. This semantics is similar to
the maximal semantics of regular selectors with the exception that the greedy-semantics is
even more restrictive since the selected interval depends on how the input is parsed from
left-to-right [10]. Despite this fact, it is interesting that even a more restricted flavor of the
maximal semantics is already presented in practice which supports the decision of including
it for MP.

Recently, regular expressions for substring selection have been considered in the context
of information extraction [9, 12]. In [9], the authors propose a regular expression language
enhanced with variables, called regex, to extract relations of substrings from an unstructured
document. Regular selectors can be seen as a restrictive subfragment of regex, where only
one variable is used. We note that we could have used regex language or any other formalism
with the maximal semantics for selecting intervals from a string. However, we believe that
regular selectors are very simple, flexible and concise, and they include the best features of
previous works without loosing expressibility [9].

Finally, we could have also chosen MSO logic with two free variables for selecting intervals
instead of regular expressions (i.e. with respect to the normal semantics), namely, for any
MSO-formula ϕ(x, y) to extract the set Sel(w,ϕ(x, y)) of all intervals (i, j) over a string
w such that: w ⊧ ϕ(i, j). Of course, both formalism for selecting intervals are equivalent.
Namely, it is easy to show that for every MSO-formula ϕ(x, y) there exists a finite set of
regular selectors R1, . . . ,Rn such that ⋃ni=1 Sel(w,Ri) = Sel(w,ϕ(x, y)) and vice versa. Notice
that with this definition of selecting intervals by MSO formulas we can assume that formulas
additionally satisfy x ≤ y.

Regarding the maximal semantics of regular selectors, it is important to note that a
similar semantics was studied before. In [5] the authors define a subset of MSO formulas
with two free variables called rigid MSO-formulas. Formally, an MSO-formula ϕ(x, y) over
strings is called rigid if for all strings w ∈ Σ∗ and all positions i ∈ dom(w) there is at most
one position j ∈ dom(w) such that w ⊧ ϕ(i, j), and at most one j′ ∈ dom(w) such that
w ⊧ ϕ(j′, i); in other words, ϕ(x, y) defines two partial injective functions on dom(w). One
can easily check that intervals defined by a regular selector with the maximal semantics
are also definable by a rigid MSO-formula. Indeed, for any regular selector R suppose that
ϕR(x, y) is an equivalent MSO formula that defines the same set of intervals (i.e. with the
normal semantics). Then Max(w,R) = Sel(w,ϕ∗R(x, y)), where:

ϕ∗R(x, y) ∶= ϕR(x, y) ∧ ∀x′.∀y′. (ϕR(x′, y′) ∧ x′ ≤ x ∧ y ≤ y′)→ (x′ = x ∧ y′ = y)

The formula ϕ∗R(x, y) is restricting the intervals that satisfy ϕR(x, y) to be maximal. In
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particular, one can easily check that ϕ∗R(x, y) is indeed a rigid formula. This implies that
the maximal semantics can be expressed by rigid formulas. The next proposition shows that
rigid formulas can also be defined by sets of regular selectors with the maximal semantics.

▸ Proposition 8. For every regular selector R there exists a rigid formula ϕR(x, y) such that
Max(w,R) = Sel(w,ϕR(x, y)) for every w ∈ Σ∗. Furthermore, for every rigid formula ϕ(x, y)
there exists a set of regular selectors R1, . . . ,Rn such that Sel(w,ϕ(x, y)) = ⋃ni=1 Max(w,Ri)
for every w ∈ Σ∗.

4 Automata-based characterization of MP

In [17] (see Corollary 1) it was shown that the class of functions defined by copyless CRA
is not closed under reverse, that is, the run of copyless CRA is asymmetric with respect
to the input. Intuitively, this fact is contrary to the spirit of a logical characterization
for a computational model: a logic should express properties over the whole string and
its expressiveness should not depend on the orientation of the input. This implies that a
characterization of copyless CRA in terms of a logic is far to be possible. To solve this,
we introduce the subclass of bounded alternation copyless CRA (in short BAC) which is a
restricted variant of copyless CRA. We show that BAC have good closure properties and,
moreover, this is the right model to capture the expressiveness of maximal partition logic.

The alternation of an expression e ∈ Expr(X ) is defined as the maximum number of
switches between ⊕ and ⊙ operations over all branches of the parse-tree of e. Formally,
let ⊗ ∈ {⊕,⊙} and ⊗̄ be the dual operation of ⊗ in S. We define the set of expressions
Expr⊗0 (X ) with 0-alternation by Expr⊗0 = X ∪ S. For any N ≥ 1, we define the set of
expressions Expr⊗N(X ) as the ⊗-closure of Expr⊗̄N−1(X ), namely, Expr⊗N(X ) is the minimal
set of expressions that contains Expr⊗̄N−1(X ) and satisfies e1⊗ e2 ∈ Expr⊗N(X ) for all e1, e2 ∈
Expr⊗N(X ). We denote by ExprN(X ) = Expr⊕N(X ) ∪ Expr⊙N(X ) the set of all expressions
with alternation bounded by N .

We say that a copyless CRA A has bounded alternation if there exists N ∈ N such that
for every w ∈ Σ∗ it holds that ∣A∣(w) ∈ ExprN(X ), that is, the number of alternations of all
ground expressions output by A is uniformly bounded by a constant. A copyless CRA A is
called a bounded alternation copyless CRA (in short BAC) if A has bounded alternation.
All the examples of copyless CRA presented in this paper have bounded alternation. For
example, functions in Examples 1 and 2 are part of the BAC-class.

Bounding the alternation of expressions or formulas is a standard assumption in logic [16]
and here we used it to syntactically restrict the expression constructed by a copyless CRA.
One can easily check that this syntactical property can be verified in NLogSpace in the
size of the copyless CRA. Indeed, a copyless CRA has unbounded alternation iff there exists
a loop that alternates between ⊙ and ⊕ in its transition graph. Of course, the existence of
such loops can be determined by standard reachability tests in NLogSpace [19].

The fact that we can express the BAC automata in Examples 1 and 2 by MP-formulas in
Examples 6 and 7 , respectively, is not a coincidence. In the following theorem, we present
the main result of the paper.

▸ Theorem 9. Maximal partition logic and bounded alternation copyless CRA are equally
expressive, that is:

for every MP-formula ϕ there exists a BAC Aϕ such that ⟦ϕ⟧ = ⟦Aϕ⟧;
for every BAC A there exists a MP-formula ϕA such that ⟦A⟧ = ⟦ϕA⟧.
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Proof. We present here sketch proofs of the two directions. Due to the space limit, the full
proofs are moved to the appendix (available online).
From logic to automata. Let ϕ be a MP-formula. We sketch the definition of a BAC
A that specifies the same function as ϕ. The proof is by induction over the size of ϕ. The
interesting case is when ϕ = ⊗R⟨S⟩T. ψ where R⟨S⟩T is a regular selector and ψ is an
MP-formula for which there exists a BAC B such that ⟦ψ⟧ = ⟦B⟧. The main idea behind
the definition of A is to keep many copies of the automaton B and each copy is responsible
for evaluating the formula ψ on intervals defined by R⟨S⟩T . For ⊗-aggregating the outputs
of the B-copies, A uses one additional register x∗ that, each time an interval is closed, the
output of the B-copy is ⊗-operated with x∗ and then stored in x∗.

Let AR, AS , and AT be the finite automata recognizing the regular languages R, S, and
T , respectively. The first issue we have to deal with is that the number of B-copies cannot
depend on the input string w. We prove that, for every k-position in w, the number of
maximal intervals defined by R⟨S⟩T and containing k is uniformly bounded. Moreover this
bound is universal for all strings, i.e., it depends only on the size of AS . To see this, suppose
that I is the set of maximal intervals defined by R⟨S⟩T and containing k. Furthermore,
suppose that the size of I is bigger than the number of states in AS . If we assign to every
interval in I the state of AS in position k, then there are two intervals i1 and i2 with the
same state assigned. It is easy to see that we can merge these two intervals into one interval
that is selected by R⟨S⟩T but is bigger than i1 and i2. This is clearly a contradiction with
the fact that both i1 and i2 are maximal.

The second issue is to recognize the maximal intervals selected by R⟨S⟩T while A is
reading the input. The main observation here is that one can rewrite R⟨S⟩T into a new
regular selector that does not needs maximal semantics, i.e., there exists a regular selector
R′⟨S′⟩T ′ that defines with the normal-semantics all maximal intervals selected by R⟨S⟩T .
Thus, we can assume that R⟨S⟩T is already in this form and we focus on all selected intervals.

Now that A does not have to deal with checking whether an interval is maximal or not,
it has to decide whether an interval will be selected by R⟨S⟩T . Of course, A can keep track
of runs of AR, AS , and AT over w to find new potential intervals selected by R⟨S⟩T . The
problem is that, in the end, the intervals can turn out to be spurious (e.g. the remaining
suffix does not belong to the language defined by T ) and we cannot afford to keep all
potential intervals since the number of B-copies is bounded. To deal with this issue we use
Theorem 2 in [17] which shows that BAC are closed under regular-lookahead, that is, the
model can be extended with regular look-ahead and this does not add more expressibility to
the model. This extension allows BAC to make decisions based on whether the remaining
suffix of the input word belongs to a regular language or not. By using this extension, A
can determine in advance whether an interval is going to be selected by R⟨S⟩T and solve
the problem with the spurious intervals.

The final automaton A works as follows. Whenever A finds a new interval selected by
R⟨S⟩T , it starts evaluating a B-copy over this interval. With regular look-ahead it also
checks if an interval is closing. If that is the case, then the output of the B-copy in charge
of this interval is aggregated with the additional register x∗ and the registers in this B-copy
are reset to the values defined by the initial function of B. Finally, the output function of
A is defined by aggregating x∗ with all intervals closed in the last step of A.
From automata to logic. Let A = (Q,Σ,X , δ, q0, ν0, µ) be a bounded alternation copyless
CRA. We sketch the definition of the formula ϕA that defines the same function as A. The
proof is by induction over the alternation bound N of A.

The first step is to understand the ground expressions defined by A. Let g be the



12 Maximal partition logic: towards a logical characterization of copyless CRA

ground expression defined by the run of A on a string w. By applying the associativity and
commutativity of S, one can show that g can be rewritten into an expression g∗ of the form
⊗c∈C c ⊗⊗e∈E e for some operation ⊗ ∈ {⊕,⊙}, where C ⊆ S is a multiset of constants and
E is a multiset of expressions whose alternation is strictly lower than N . Interestingly, one
can define MP-formulas ϕ⊗C and ϕ⊗E each taking care of ⊗c∈C c and ⊗e∈E e, respectively. To
define ϕ⊗C , we use a set of regular selectors that chooses all 1-letter intervals where each
constant in C was generated by a transition of A. Here we define the selectors in such a
way that in each position we are able to retrieve the state and substitution used in the run
of A. The formula ϕ⊗C is then defined by aggregating the right constants (i.e. the ones in
C) used by substitutions of the run of A over w.

The formula ϕ⊗E requires more effort. For every expression e ∈ E we define a BAC Ae, a
modified variant of A, such that Ae outputs e on a substring w[ie, je]. We modify only q0,
ν0, and µ, and the other components X , Q and δ remain the same. Thus, the number of
new automata does not depend on the size of E but only on A. Given that the expressions
in E have alternation strictly less than N , then by induction we can find a formula ϕAe

for every automaton Ae. The main difficulty in the proof is to define regular selectors that
find the intervals (ie, je), where Ae or, more concretely ϕAe , must be applied. Indeed, it is
easy to define a set of expressions that find these intervals but the problem is the maximal
semantic, in particular, the set of intervals {(ie, je) ∣ e ∈ E} does not have to be a set of
maximal intervals. To solve this problem we define the intervals by rigid formulas instead
of using the maximal semantics. By Proposition 8, one can turn a rigid formula into a sum
of selectors that define the same set of intervals on every string.

Summing up, having the formulas ϕ⊗C and ϕ⊗E defined, it is easy to define the final formula
ϕA. Notice that for the base cases of the induction (i.e. when N = 0,1) we do not need the
formula ϕ⊗E and, therefore, ϕ⊗C includes the base case. Of course, there are some exceptional
cases not discussed in this proof-sketch because of space restrictions. The full proof includes
all these cases. ◂

Theorem 9 gives a logic-based characterization of bounded alternation copyless CRA.
This is useful to show new results in the automata model that are implications from the logic
counterpart. For example, one can easily show that MP is invariant under the orientation
of a word.

▸ Proposition 10. For every formula ϕ in MP there exists a formula ϕr such that for all
words ⟦ϕ⟧(w) = ⟦ϕr⟧(wr), where wr is the reverse word of w.

Interestingly, Proposition 10 and Theorem 9 implies that the BAC-class is closed under
reverse. Note that this result is unexpected if we try to prove it directly from the automata
model.

▸ Corollary 11. For every BAC A there exists a BAC Ar that computes the reverse function,
that is, ⟦A⟧(w) = ⟦Ar⟧(wr) for every w ∈ Σ∗.

The logic-based characterization of BAC and its good closure properties suggest that
these automata are a robust class in the world of weighted automata. In the next section,
we compare its expressibility with respect to weighted MSO and weighted automata.

5 Weighted MSO vs MP

In this section we compare MP with Weighted MSO, a quantitative logic that was proposed
as the logic counterpart of weighted automata. Recall that formulas of Weighted MSO [7]
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(WMSO) over a semiring S = (S,⊕,⊙,0,1) and an alphabet Σ are defined by the following
grammar (note that we use the modern syntax from [4, 14]):

θ ∶= ϕ ∣ s ∣ (θ ⊕ θ) ∣ (θ ⊙ θ) ∣ ⊕x. θ(x) ∣ ⊙x. θ(x) ∣ ⊕X. θ(X)

where ϕ is an MSO-formula over Σ, s ∈ S, x is a first-order variable, and X is a set of
variables. The syntax of WMSO is given by boolean formulas (for the MSO fragment) and
quantitative formulas (for the rest of the syntax). Let w = w1 . . .wn be a string over Σ and
σ a (x̄,w)-assignment. The semantics ⟦ϕ⟧(w,σ) of a boolean formula ϕ over w and σ is
equal to 1 if w ⊧ ϕ(σ) and 0 otherwise. The semantics of a quantitative formula θ over w
and σ is defined as follows.

⟦s⟧(w,σ) ∶= s

⟦(θ1 ⊗ θ2)⟧(w,σ) ∶= ⟦θ1⟧(w,σ)⊗ ⟦θ2⟧(w,σ) for ⊗ ∈ {⊕,⊙}

⟦⊗x. θ(x)⟧(w,σ) ∶=
n

⊗
i=1

⟦θ(x)⟧(w,σ[x→ i]) for ⊗ ∈ {⊕,⊙}

⟦⊕X. θ(X)⟧(w,σ) ∶= ⊕
I⊆[1,n]

⟦θ(X)⟧(w,σ[X → I])

▸ Example 12. One can compare WMSO with MP by defining WMSO formulas for the
functions in Examples 5 and 6. We start with the WMSO-formula for counting the number
of b-symbols in a string:

∑x.max{Pb(x) + 1,0} (1)

To understand formula (1), recall that in the semiring N−∞(max,+) the operations and
constants are defined as follows: 0 = −∞, 1 = 0, ⊕ = max and ⊙ = +. For any position i and
assignment x→ i, if i is labeled with b then Pb(x) evaluates to 0; otherwise Pb(x) evaluates
to −∞. Now it is easy to understand formula (1): we are summing 1 over all positions with
a b-symbol and 0 over all other positions.

To define the length of the maximum substring of b-symbols, as in Example 6, one can
write the following WMSO-formula:

Maxx.∑ y.max {(x ≤ y ∧ ∀z.(x ≤ z ∧ z ≤ y)→ Pb(z)) + 1,0} (2)

The formula (2) selects all pairs (x, y). The boolean subformula is satisfied if (x, y) is an
interval of b’s; then such a pair contributes 1, otherwise it contributes 0. For a fixed x the
formulas sums over all y that vary through all elements of the interval (x, y). Since we take
maximum over all variables x, we get the desired formula.

WMSO was proposed by Droste and Gastin as the logic counterpart of weighted automata
but it turns out to be more expressive. In [7] it is shown that by restricting the nesting
and alternation of semiring quantifiers ⊕x, ⊙x, and ⊕X one can capture exactly the
expressiveness of weighted automata. For more details we refer the reader to the paper [7].
We shall use their notation to define different fragments of WMSO. The fragment of WMSO
equally expressive to weighted automata is denoted WMSO[⊕X⊙1

x]. Furthermore, in [14]
it was shown that two natural fragments of weighted automata, namely, finitely ambiguous
weighted automata and polynomial ambigous weighted automata are equally expressive
to the fragments denoted respectively by WMSO[⊙1

x] and WMSO[⊕x⊙1
x]. By results

in [13, 14] this shows that in terms of expressiveness, these fragments are strictly contained
in each other:

WMSO[⊙1
x] ⊊ WMSO[⊕x⊙1

x] ⊊ WMSO[⊕X⊙1
x]
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We compare the expressiveness of MP with WMSO by exploiting the relation with co-
pyless CRA (Theorem 9). The first question is whether MP is more expressive than
WMSO[⊕X⊙1

x]. At a first sight, one could believe that this is possible, since the syntax of
MP is symmetric with respect to both semiring operations, that is, there is no syntactical
restriction on ⊕- and ⊗-quantifiers. Interestingly, in terms of expressiveness, MP is con-
tained in WMSO[⊕X⊙1

x]. We prove this by showing that functions definable by copyless
CRA are also definable by weighted automata. This result combined with Theorem 9 proves
the following proposition.

▸ Proposition 13. For every formula in MP there exists a formula in WMSO[⊕X⊙1
x]

defining the same function.

The previous upper-bound opens the question of what is a good lower-bound for the ex-
pressiveness of MP. An answer to this question is given in the next result which shows that
MP contains the fragment WMSO[⊙1

x]. We prove this result (see the appendix) by showing
that every function definable by a finitely ambiguous weighted automaton is definable by a
bounded alternation copyless CRA. This combined with the results in [14] and Theorem 9
proves the next proposition.

▸ Proposition 14. For every formula in WMSO[⊙1
x] there exists a formula in MP defining

the same function.

The examples presented in Section 3 tell us a bit more about the expressiveness of MP. For
example, it was shown in [13] that the function from Example 4 is not definable by any
finitely ambiguous weighted automata. This proves that WMSO[⊙1

x] is strictly contained
in MP. On the other hand, in [17] it is shown that there exists a function that is definable by
polynomial ambiguous weighted automata but it is not definable by any copyless CRA. This
shows that MP is strictly contained in WMSO[⊕X⊙1

x] and, moreover, is does not contain
WMSO[⊕x⊙1

x]. Summing up, we get the following diagram representing the expressiveness
of MP in terms of WMSO.

WMSO[⊙1
x] WMSO[⊕X⊙

1
x]

WMSO[⊕x⊙
1
x]

MP
⊊ ⊊

⊊ ⊊

⊈

We conjecture that MP is not contained in WMSO[⊕x⊙1
x], such a result would complete

the diagram. We guess that this can be shown by proving that the function from Example 2
is not definable by any polynomial ambiguous weighted automata.

6 Conclusions and future work

In this paper we proposed and investigated maximal partition logic. Our main result shows
that MP is a logic characterization of BAC, a natural restriction of copyless CRA. MP has
no syntactical restrictions and, in contrast to Weighted MSO, there is no division between
the boolean and the quantitative parts of the logic. A mild restriction is put in the semantics
of the logic since we allow only maximal intervals. Thanks to this semantic our formulas are
usually more readable and easy to write (see Example 3).

For future work we would like to extend MP and copyless CRA beyond semirings. It
seems that in our proofs we need the commutativity, associativity and the neutral element of
each operator separately, but we do not use the distributivity. For this reason we think that
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we could extend the semiring with additional operators and the results proved in this work
will still hold. The comparison of MP with WMSO shows that this logic is in the edge of
decidability. It lays between finite ambiguous weighted automata, a class of functions with
good decidability properties, and weighted automata for which most interesting problems are
undecidable. For this reason, we believe that for future work it is important to understand
the decidability properties of MP and copyless CRA.
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A Proof of Proposition 8

The construction from a regular selector to a rigid formula is already proven in the body of
the paper. For the opposite direction, consider the standard encoding of a word w and an
({x, y},w)-assignment σ over the alphabet Σ{x,y} = Σ × {0,1}2. More precisely, we say that
a word (w,σ) ∈ Σ∗

{x,y} encodes an ({x, y},w)-assignment σ if w is the projection of (w,σ)
over Σ and for every variable z ∈ {x, y} we have σ(z) = {i ∈ {1, . . . , ∣w∣} ∣ (w,σ)[z]i = 1},
where (w,σ)[z]i denotes the i-letter of the projection of (w,σ) over variable z. For the
sake of simplification, we denote by w(i, j) the encoding (w,σ) where σ(x) = i and σ(y) = j
and i ≤ j.

Now, let ϕ(x, y) be a rigid formula and let Aϕ be a deterministic finite automaton that
is equivalent to ϕ(x, y). More precisely, w ⊧ ϕ(i, j) if, and only if, there is an accepting run
of Aϕ on w(i, j). Let n be the number of states in Aϕ. We say that a sequence of nonempty
intervals (i1, j1), . . . , (im, jm) is nested if (ik, jk) ⊑ (ik+1, jk+1) for every 1 ≤ k ≤m−1, and the
inclusions are strict. Let (i1, j1), . . . , (im, jm) be a nested sequence of intervals selected by
ϕ(x, y). We show that since ϕ(x, y) is a rigid formula, then it must hold that m ≤ n. Indeed,
consider the runs of Aϕ on w(ik, jk). Every run associates a state to every position. Since
the intervals are nested, there is a position l that belongs to every interval. If two different
runs would associate the same state to the position l that would violate the assumption that
ϕ(x, y) is rigid. Thus, m ≤ n.

The previous argument shows that for intervals selected by ϕ(x, y) the depth of nesting
is at most n. This motivates the following sequence formulas for every 1 ≤ i ≤ n:

ϕi = ϕ(x, y) ∧ ¬ ⋁
1≤j<i

ϕj(x, y) ∧

∀x′.∀y′. (ϕ(x′, y′) ∧ x′ ≤ x ∧ y ≤ y′)→ (x′ = x ∧ y′ = y) ∨ ⋁
1≤j<i

ϕj(x′, y′),

Each formula ϕi defines intervals selected by ϕ(x, y) that have depth of nesting exactly i.
Obviously ϕ(x, y) = ⋁1≤i≤n ϕi(x, y). By definition each formula ϕi(x, y) selects maximal
intervals which concludes the proof.

B Proof of Theorem 9: from logic to automata

B.1 Union of regular selectors
A union of regular selectors (URS) over Σ is a set T of triples. The intervals selected by a
set of triples T over w ∈ Σ∗ under normal and maximal semantics is defined similar than for
a single triple:

Sel(w,T ) = ⋃t∈T Sel(w, t)
Max(w,T ) = Max⊑ (Sel(w,T ))

It is easy to see that URS can define a richer set of intervals than a single triple. For
example, the set {a⟨c⟩a, b⟨c⟩b} is not equivalent (in terms of selected intervals) to a single
triple. In fact, if a triple selects the interval (2,2) on strings aca and bcb, then it must also
select (2,2) on strings acb and bca which are not selected by the initial set. We conclude
that URS are more expressive than regular selectors.

B.2 Selector automata
We introduce the automaton counterpart of regular selectors. The approach is similar than
for RS; we divide the behavior of the automaton in three disjoint components and the
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intervals selected by the automaton are the one run in the middle component.
A selector automaton (SA) is a tuple S = (Q,Σ, δ, δε, q0, F ) such that Q = Q1 ⊎Q2 ⊎Q3 is

a set of state, i.e., Q is divided into three disjoint set of states (called components), q0 ∈ Q1
is the initial state, F ⊆ Q3 is the set of final states, δ ∶ Q × Σ ⇀ Q is a partial transition
function such that δ(Qi, a) ⊆ Qi for every a ∈ Σ∗ and i ∈ {1,2,3} , and δε ∶ Q1∪Q2 → Q2∪Q3
is the transition function between components (like ε transitions) such that δε(Qi) ⊆ Qi+1.
Note that each substructure (Qi,Σ, δi) defines a disjoint transition system where δi is equal
to δ when the domain is restricted to Qi. For a string w = a1 . . . an and an interval (i, j) of
w, we define an (i, j)-run ρ of S over w as a sequence of transitions:

q0
a1Ð→ . . . ai−1Ð→ qi−1

εÐ→ q0
i−1

aiÐ→ . . .
ajÐ→ qj

εÐ→ q0
j
aj+1Ð→ . . . anÐ→qn

such that δ(qk−1, ak) = pk for k ∈ {1, . . . , n} − {i, j + 1}, δ(q0
i−1, ai) = qi, δ(q0

j , aj+1) = qj+1,
δε(qi−1) = q0

i−1 and δε(qj) = q0
j . We say that an interval (i, j) of a string w is selected by S if

there exists an (i, j)-run of A over w as above and qn ∈ F . Informally, an interval (i, j) of w
is selected by S whenever w can be divided into u1u2u3 , each ui can be run over (Qi,Σ, δi)
and runs can be connected by the relation δε. Similar than for regular selectors, we denote
by Sel(w,S) the set of all intervals of w selected by S and by Max(w,S) the set of intervals
of w under the maximal semantics (i.e Max(w,S) = Max⊑(Sel(w,S))).

B.3 Equivalence between URS and SA
We say that a function f ∶ Σ∗ → 2N2

over Σ is a selector function if for every w ∈ Σ∗ and
(i, j) ∈ f(w) it holds that 1 ≤ i ≤ j ≤ ∣w∣. The following lemma shows that selector automata
and union of regular selectors define the same class of selector functions.

▸ Proposition 15. For any selector function f , the following conditions are equivalent:
1. f is equivalent to a union of regular selectors T .
2. f is equivalent to a selector automaton S.

Proof. Let T be a union of regular selectors. For each triple t = (R1,R2,R3) ∈ T one
can construct a sequence of finite automata Ai = (Qi,Σ, δi, qi0, Fi) for i ∈ {1,2,3} such
that L(Ri) = L(Ai). Then it is straightforward to show that the selector automaton St =
(Q1 ⊎ Q2 ⊎ Q3,Σ, δ1 ⊎ δ2 ⊎ δ3, δε, q1

0 , F3) with δε = F1 × {q2
0} ∪ F2 × {q3

0} is equivalent to
(R1,R2,R3). Finally, by taking the cross product of {St ∣ t ∈ T}, one can construct a single
selector automaton S that is equivalent to T .

For the other direction, given a selector automaton S = (Q,Σ, δ, δε, q0, F ) with Q =
Q1 ⊎Q2 ⊎Q3, one can pick pair of states (p1, p2) ∈ Q1 ×Q2 and (q2, q3) ∈ Q2 ×Q3 such that
δε(p1) = p2 and δε(q2) = q3 and define three disjoint finite automata:
1. Ap1 = (Q1,Σ, δ1, q0,{p1}),
2. Ap2,q2 = (Q2,Σ, δ2, p2,{q2}), and
3. Aq3 = (Q3,Σ, δ3, q3, F ).
where δi is the function δ restricted to Qi for i ∈ {1,2,3}. Then for each automaton Ap1 ,
Ap2,q2 , and Aq3 one can construct equivalent regular expressions Rp1 , Rp2,q2 , and Rq3 by
Kleene’s theorem. Clearly, the triple Rp1⟨Rp2,q2⟩Rq3 defines all intervals whose runs in
S pass from q0 to p1, from p2 to q2, and from q3 to a final state, respectively. That is,
Rp1⟨Rp2,q2⟩Rq3 is equivalent to the selector automaton (Q,Σ, δ,{(p1, p2), (q1, q2)}, q0, F ).
By taking the union of all triples Rp1⟨Rp2,q2⟩Rq3 for every (p1, p2) ∈ δε ∩ Q1 × Q2 and
(q2, q3) ∈ δε ∩ Q2 × Q3, we can define a union of regular selectors T that is equivalent to
S. ◂
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B.4 Reduction from maximal to normal semantics

The maximal semantics defined over regular selectors is useful for capturing intervals over
strings, but it is inconvenient for selector automata: a run must be compared with other
run to check if it is selecting a maximal interval or not. The next result shows that one can
always construct a selector automata under normal semantics that selects the same set of
intervals than a selector automata under maximal semantics.

▸ Proposition 16. For every selector automaton S, there exists a selector automaton S ′ such
that:

Max(w,S) = Sel(w,S ′)

for every string w ∈ Σ∗.

Proof. Let S = (Q,Σ, δ, δε, q0, F ) be a selector automaton where Q = Q1⊎Q2⊎Q3. The main
proof idea is to construct a new selector automaton S ′ that simulates S and in paralellel
runs all possibles intervals where the interval (to be selected) could be contained. If there
is no interval bigger than the selected one, then S ′ outputs the interval. For checking the
maximality of an interval, S ′ will keep a set of possible runs that could interfere with the
current interval. Then S ′ will reject an interval (i, j) if there does not exist another interval
bigger than (i, j) and, thus, S ′ will accept only maximal intervals of S.

Let δi be the function δ restricted to Qi for i ∈ {1,2,3}. For any relation δi, we define
the function δ̂i ∶ 2Qi ×Σ→ 2Qi where δ̂i(C,a) = {q ∈ Qi ∣ ∃p ∈ C. δi(p, a) = q} for every C ⊆ Qi
and a ∈ Σ. Analogously, we define the function δ̂ε ∶ 2Q → 2Q where δ̂ε(C) = {q ∈ Q ∣ ∃p ∈
C. δε(p) = q} for every C ⊆ Q.

Now, we are ready to define the construction of the selector automaton S ′. We first
give the whole construction to later explain the meaning of each component. The selector
automata S = (Q′,Σ, δ′, δε′ , q′0, F ′) is defined as follows:

Q′ = Q′
1 ⊎Q′

2 ⊎Q′
3 are the set of states where:

Q′
1 = Q1 × 2Q1 × 2Q2

Q′
2 = Q2 × 2Q2 × 2Q2

Q′
3 = Q3 × 2Q2 × 2Q3

δ′ = δ′1 ⊎ δ′2 ⊎ δ′3 ∶ Q′ ×Σ→ Q′ where:

δ′1((p,C1,C2), a) = (q,D1,D2) iff δ1(p, a) = q, D1 = δ̂1(C1, a), and
D2 = δ̂2(C2 ∪ δ̂ε(C1), a)

δ′2((p,C2,C
′
2), a) = (q,D2,D

′
2) iff δ2(p, a) = q, D2 = δ̂2(C2, a), and

D′
2 = δ̂2(C ′

2, a)

δ′3((p,C2,C3), a) = (q,D2,D3) iff δ3(p, a) = q, D2 = δ̂2(C2, a), and
D3 = δ̂3(C3, a) ∪ δ̂ε(D2),

δ̂′ε ⊆ Q′ ×Q′ such that:
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δ′ε((p,C1,C2)) = (q,D2,D
′
2) if δε(p) = q,

D2 = δ̂ε(C1) and D2 = C2

δ′ε((p,C2,C
′
2)) = (q,D2,D3) if δε(p) = q,

D2 = C2 ∪C ′
2 and D3 = δ̂ε(C ′

2)

q′0 = (q0,{q0},∅), and

F ′ = {(p,C2,C3) ∈ Q′
3 ∣ p ∈ F ∧ C3 ∩ F = ∅}.

In the previous construction, each transition system (Q′
i,Σ, δ′i) simulates in the first com-

ponent of a state a run of S. We call the state in the first component the current run.
The rest of the components of every state keep information of possible runs whose selected
interval could contained the interval of the current run. Specifically, (Q′

1,Σ, δ′1) stores in the
second component the last state of runs of (Q1,Σ, δ) (i.e. subset construction) and in a the
third component the last state of runs that already pass to (Q2,Σ, δ2), that is, runs whose
intervals were open. Then (Q′

2,Σ, δ′2) keeps in the second component the last state of runs
that open an interval at the same time than the current run and in the third component the
last state of runs that open their interval before the current run. We must save all runs that
open an interval at the same time than the current run given that, if another run captures
the same interval than the current run, this do not interfere with respect to the maximal
semantics. Finally, (Q′

3,Σ, δ′3) stores in the second component the last state of runs that
have not closed yet their interval and in the third component the last state of runs whose
potential selected interval contains the interval of the current run.

For the proof of correctness of S ′ (i.e. Sel(w,S ′) = Max(w,S) for all w ∈ Σ∗), follows
directly from a standard inductive argument over the run of S and S ′. ◂

B.5 Cost register automata with regular look-ahead
Let REGΣ be the set of all regular languages over Σ. A CRA-RLA is a tuple A =
(Q,Σ,X , δ, q0, ν0, µ) where Q, Σ, X , q0, ν0, and µ are defined as before and δ ∶ Q×REGΣ ⇀
Q × Subs(X ) is a partial transition function with finite domain restricted as follows: for a
fixed state q let δ(q,L1) = (q1, σ1), δ(q,L2) = (q2, σ2), . . . , δ(q,Lk) = (qk, σk) be all trans-
itions with q in the first coordinate and L1, . . . , Lk ∈ REGΣ. Then the languages L1, . . . , Lk
are pairwise disjoint (i.e. Li ∩Lj = ∅). Note that the last requirement forces that on a given
string the automaton A is deterministic. Given a string w = a1 . . . an ∈ Σ∗, the run of A over
w is a sequence of configurations:

(q0, ν0) L1Ð→ (q1, ν1) L2Ð→ . . . pnÐ→ (Ln, νn)

such that for 1 ≤ i ≤ n, δ(qi−1, Li) = (qi, σi), w[i, ⋅] ∈ Li and νi(x) = ⟦νi−1 ○ σi(x)⟧ for each
x ∈ X . The output of A over w is defined as usual, i.e. ⟦A⟧(w) = ⟦ν̂n(µ(qn))⟧. From the
restriction on the transition function it is easy to see each string w has exactly one run. The
extension of the classes of copyless and bounded alternation CRA-RLA are defined similarly.

B.6 Proof of Theorem 9 (Logic to automata)
For this direction, we show by structural induction over the size of the formula how to
construct for each MP-formula ϕ a BAC Aϕ such that ⟦ϕ⟧(w) = ⟦Aϕ⟧(w) for every w ∈ Σ∗.
Without lost of formality, we will say that ϕ is equivalent toAϕ or, also, that ϕ is computable
by Aϕ. For the base case, if ϕ = c where c ∈ S the proof is straightforward. For the induction,
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we suppose that for every MP-subformula ψ of ϕ there exists a BAC Aψ equivalent to ψ
and we show that the same holds for ϕ.

In the next lemma we prove the easy case when ϕ is the binary operation of two MP-
subformulas.

▸ Lemma 17. Let ⊗ be any of the two operations ⊕ or ⊙. If ϕ = ψ1 ⊗ ψ2 and each formula
ψi is computable by a BAC for i ∈ {1,2}, then ϕ is computable by a BAC.

Proof. Given disjoint BACs A1 = (Q1,X1, δ1, q
0
1 , ν

0
1 , µ1) and A2 = (Q2,X2, δ2, q

0
2 , ν

0
2 , µ2) that

computes ψ1 and ψ2, respectively, one can construct a BAC that runs A1 and A2 in parallel
(cross product of the states) and finally outputs the ⊗-operation of both outputs. Formally,
define A = (Q1 ×Q2,X1 ⊎X2, δ, (q0

1 , q
0
2), ν0, µ). The initial function ν0 is defined as ν0(x) =

ν0
i (x) whenever x ∈ Xi for i ∈ {1,2}. Then for every pair of transitions δ1(q1, a) = (q′1, σ1) and
δ2(q2, a) = (q′2, σ2) we define δ((q1, q2), a) = ((q′1, q′2), σ1 ⊎ σ2). Finally, the output function
µ is defined by µ((q1, q2)) = µ1(q1) ⊗ µ2(q2) By construction, it is straightforward to show
that A computes the same function as ϕ. ◂

The interesting case is when ϕ = ⊗R. ψ where R is a regular selector and ψ is any MP-
formula. We suppose that ψ is computable by a BAC Aψ and we show how to construct
a BAC that computes the same function as ϕ. For the sake of presentation, we divide this
construction in two steps. First, we define what we call an (⊗, f)-aggregation automaton
for a function f over strings and show that every (⊗, f)-aggregation automaton can be
computed by a BAC (Lemma 18) when f is defined by a BAC. The second step is to show
how to convert ϕ into an (⊗, f)-aggregation automaton (Lemma 19). The purpose of using
this “middle-step” model (i.e. (⊗, f)-aggregation automata) is to simplify the construction
of the final BAC. This will be clear during the proof.

For the rest of this section, let ⊗ be any of the two operations ⊕ or ⊙ and 0∗ its
respectively neutral element (i.e. s ⊗ 0∗ = 0∗ ⊗ s = s for all s ∈ S). The goal of an (⊗, f)-
aggregation automaton G for a function f ∶ Σ∗ → S is to select intervals from the input,
computes the function f over each interval and aggregates the outputs with the ⊗-operation.
For defining the selection mechanism of G, we use patterns (i.e. strings over {0,1}) to specify
a set of intervals over a string. More precisely, given a pattern b⃗ = b1 . . . bn ∈ {0,1}+ we define
the set of intervals I(b⃗) defined by b⃗ as follows: (i, j) ∈ I(b⃗) if, and only if, bi . . . bj ∈ {1}+ and
bi−1 = 0 (bj+1 = 0) whenever 1 < i (j < n, resp.). In other words, (i, j) ∈ I(b⃗) is a maximal
subsequence of contiguous 1’s in b⃗. Furthermore, for k ∈ N and b⃗ = b1 . . . bn ∈ ({0,1}k)∗ we
define the set of intervals I(b⃗) = ⋃i≤k I(πi(b⃗)) where πi(p) = b1(i) . . . bn(i) (i.e. the string
projected into its i-component).

For a function f ∶ Σ∗ → S an (⊗, f)-aggregation automaton (with regular look-ahead) is
a tuple G = (Q,Σ,N, δ, q0) such that Q is the set of states, Σ is the finite alphabet, N is
a positive number, δ ∶ Q × REGΣ ⇀ Q × {0,1}N is a partial transition function with finite
domain, and q0 is the initial state. Similar than for CRA with regular look-ahead, we suppose
that for a fixed state q, if δ(q,L1) = (q1, σ1), δ(q,L2) = (q2, σ2), . . . , δ(q,Lk) = (qk, σk) are all
transitions with q in the first coordinate, then the regular languages L1, . . . , Lk are pairwise
disjoint. Given a string w = a1 . . . an ∈ Σ∗, the run of G over w is a sequence of states and
transitions:

q0
L1/b1ÐÐ→ q1

L2/b2ÐÐ→ . . . Ln/bnÐÐ→ qn

such that δ(qi−1, Li) = (qi, bi) and w[i, ⋅] ∈ Li for every 1 ≤ i ≤ n. Let b⃗ = b1b2 . . . bn be the
sequence in ({0,1}k)∗ generated by the above run. Then the output of A over w ∈ Σ∗ is
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defined as follows:
⟦G⟧(w) = ⊗

(i,j)∈I(b⃗)
f(w[i, j])

Note that in the above definition, f ∶ Σ∗ → S could be any function from strings to S. As
the following results shows, any (⊗, f)-aggregation automaton can be defined by a BAC
whenever the function f is defined by a BAC as well.

▸ Lemma 18. Let G be an (⊗, f)-aggregation automaton and f ∶ Σ∗ → S is definable by a
BAC. Then there exists a BAC with regular look-ahead A such that ⟦G⟧(w) = ⟦A⟧(w) for
any w ∈ Σ∗.

Proof. Suppose that G = (Q,Σ,N, δ, q0) is an (⊗, f)-aggregation automaton andA = (P,Σ,X , γ, p0, ν0, µ)
is a BAC such that f is equivalent to ⟦A⟧. The idea of this proof is to construct a BAC A′
that for each input runs G for determining the valid intervals and, in parallel, runs A over
each interval produced by G. For aggregating the outputs of A, we use a new register x∗ that
collects the values ⟦A⟧(w[i, j]) for all intervals (i, j) selected by G. Finally, we show that the
constructed CRA is copyless and with bounded alternation. For the sake of presentation,
in this proof we will show the construction for N = 1. For N ≥ 2 the construction is similar
but with the overhead of keeping more copies of A in parallel.

LetA′ = (Q′,Σ,X ′, δ′, q′0, ν
′
0, µ

′) be a BAC such that each component is defined as follows:
Q′ = Q × (P ∪ {�}) is the set of states where � is a fresh element such that � ∉ P .
X ′ = X ∪ {x∗} is the set of registers where x∗ is a fresh register with x∗ ∉ X .
q′0 = (q0,�) is the initial state.
ν′0 is initialization assignment defined for every x ∈ X ′ as (recall that 0∗ is the neutral
element of ⊗):

ν′0(x) = { 0∗ if x = x∗
ν0(x) otherwise

µ′ is the output function defined for every (q, p) ∈ Q′ as:

µ′((q, p)) = { x∗ if p = �
x∗ ⊗ µ(p) otherwise ,

δ′ is the transition function defined for every (q, p) ∈ Q′ and a ∈ Σ. Suppose that
δ(q,L) = (q′, b) where b ∈ {0,1}. Depending on p and b, we have to distinguish four
different cases:

if p = � and b = 0, then we define δ′((q,�), L) = ((q′,�), σ′) such that σ′(x) = x for
every x ∈ X ′.
if p = � and b = 1, then we define δ′((q,�), L) = ((q′, p′), σ′) where γ(p0, a) = (p′, σ)
and for every x ∈ X ′:

σ′(x) = { x∗ if x = x∗
σ(x) otherwise

if p ∈ P and b = 0, then we define δ′((q, p), L) = ((q′,�), σ′) where σ′ is defined for
every x ∈ X ′ as follows:

σ′(x) = { x∗ ⊗ µ(r) if x = x∗
ν0(x) otherwise

if p ∈ P and b = 1, then we define δ′((q, p), L) = ((q′, p′), σ′) where γ(p, a) = (p′, σ)
and for every x ∈ X ′:

σ′(x) = { x∗ if x = x∗
σ(x) otherwise



F. Mazowiecki and C. Riveros 23

From the construction, it is straightforward to prove by induction over the size of the string
and by case analysis thatA′ computes the same function as G. Moreover, one can easily check
that A′ is copyless and has bounded alternation. In fact, A′ is copyless from the definition
of δ′ and µ′ and, if A has bounded alternation, then A′ also has bounded alternation given
that A′ always ⊗-operates x∗ with a register of A that is of bounded alternation. This
concludes the proof. ◂

The previous lemma shows that for every (⊗, f)-aggregation automaton G where f is
computable by a BAC, there exists a BAC with regular lookahead that computes the same
function. By using Theorem 2 from [17], we can conclude that there exists a BAC without
look-ahead that computes G. Thus, the last part of the proof is to show that any formula
ϕ = ⊗R. ψ can be computed by an (⊗, f)-aggregation automaton. The next lemma states
this formally.

▸ Lemma 19. Let ϕ = ⊗R. ψ be a MP-formula with R a regular selector and ψ a MP-
formula computable by a BAC. Then there exists an (⊗, f)-aggregation automaton G with f
computable by a BAC A such that ⟦ϕ⟧(w) = ⟦G⟧(w) for every w ∈ Σ∗.

Proof. Suppose that R = R⟨S⟩T is a BAC that computes the same function as ψ. By
Propositions 15 and 16, let S = (Q,Σ, δ, δε, q0, F ) where Q = Q1 ⊎Q2 ⊎Q3 be the selector
automaton equivalent to the regular selection R such that for every w ∈ Σ∗:

Max(w,R⟨S⟩T ) = Sel(w,S).

The last fact simplifies the construction since we do not need to take care of the maximal
semantics and we can focus on just the intervals selected by S.

Let A be a BAC that computes the function f . The plan is to construct, from A and S,
an (⊗, f)-aggregation automaton G′ that computes the same function as ϕ. As the reader
could already suspect, f will be defined by A and G′ will be responsible of running S. For
this purpose, we need to introduce a set of regular languages that will be used to predict
when S is going to select an interval. Let δi be the function δ restricted to Qi for i ∈ {1,2,3}.
Given a state p ∈ Q1 and q ∈ Q2 we define the following NFAs with ε-transitions:

S23
p = (Q,Σ, δ2 ⊎ δ3 ⊎ δε, p, F ) and
S3
q = (Q2 ⊎Q3,Σ, δ3 ⊎ δε, q, F )

Notice that S23
p and S3

q do not contain transitions that reaches the states p and q, respect-
ively. Intuitively, the language recognized by S23

p are all strings such that there is an interval
starting at the first position that will be selected by S if it is currently at p. The language
of S23

p will be used for verifying (by regular look-ahead) whether an interval will be open
or not. Similarly, the intuition behind S3

q are all strings such that a run of S that already
opened an interval and is in state q will closed it. S23

p will be used for deciding (by regular
look-ahead) whether an interval is closing or not.

Before going into the construction of the (⊗, f)-aggregation automaton, we need to state
some facts related to S and the partial runs that reaches Q2. Let w = a1 . . . an be a string
in Σ∗. A partial run ρ of S over w is a sequence q0

b1Ð→ . . . bmÐ→ qm such that bi ∈ Σ ∪ {ε},
w = b1 ⋅ b2 ⋅ . . . ⋅ bm and for every i ≤ m it holds that δ(qi−1, bi) = qi or δε(qi−1) = qi. Notice
that the definition of ρ is the standard definition of a run when we see A as an NFA with
ε-transition. Furthermore, from the restriction imposed to δ and δε one can check that at
most two bi can be equal to ε. For a run ρ like above we denote by ρf the state at the head
of the run (i.e. qm) in ρ and by PRunS(w) the set of all partial runs of S.
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The maximality of the intervals selected by S imposed some restriction on the set of
possible partial runs of S and the states at the head of the runs. For any w ∈ Σ∗, let
PRunQ2

S
(w) be the set of all runs in PRunS(w) that ends in Q2, that is, PRunQ2

S
(w) = {ρ ∈

PRunS(w) ∣ ρf ∈ Q2}. We make the following two claims about the set PRunQ2
S

(w):

▸ Claim 20. For every string w ∈ Σ∗, it holds that:
1. ∣PRunQ2

S
(w)∣ ≤ ∣Q2∣.

2. L(S3
ρf ) ∩L(S3

τf ) = ∅ for ρ, τ ∈ PRunQ2
S

(w).

Proof. We first show that set PRunQ2
S

(w) cannot contain two partial runs ρ and τ that end
in the same state, that is, it cannot happen that ρf = τf . Indeed, if ρ and τ end in the same
state, then one can extend w with a string u such that Sel(w ⋅u,S) will contain two intervals
(i1, j1) and (i2, j2) with (i1, j1) ⊑ (i2, j2) which contradict the maximality of the intervals
selected by S. Then each partial run in PRunQ2

S
(w) ends in a different state which implies

that ∣PRunQ2
S

(w)∣ ≤ ∣Q2∣. By the same argument, we can show that if p = ρf and q = τf for
ρ, τ ∈ PRunQ2

S
(w), then the languages L(S3

p) and L(S3
q ) must be disjoint. If not, then take

u ∈ L(S3
p) ∩L(S3

q ) and define the string w ⋅ u. By the definition of S3
p and S3

q , S will select
two intervals of w ⋅ u such that one will be contained in the other which is a contradiction
again with the maximality of the intervals selected by S. ◂

For the construction of G′, we use partial functions to encode the different threads of the
automaton S that are running in parallel. By the previous claim, we only need to consider
at most ∣Q2∣ different runs of S at each position of the string. Furthermore, the languages
L(S3

p) for each head state p are pairwise disjoint. Formally, we define the set H of all the
partial functions h ∶ {1, . . . , ∣Q2∣}→ Q2 such that L(S3

h(i))∩L(S3
h(j)) = ∅ for all i, j ∈ dom(h).

For any h ∈ H we define the tuple h⃗ ∈ {0,1}∣Q2∣ such that, for every i ≤ ∣Q2∣, h⃗(i) = 1 iff
i ∈ dom(h) . The idea here is that the range of h will track the head states of runs currently
in Q2 and the domain of h (specifically, h⃗) will be the pattern-symbols generated by G′.

We have all the ingredients to define the (⊗, f)-aggregation automaton G′ that computes
the same function as ϕ. Specifically, for f = ⟦A⟧ let G′ = (Q′,Σ, ∣Q2∣, δ′, q′0) be an (⊗, f)-
aggregation automaton where each component is defined as follows.

Q′ = Q1 ×H is the set of states.

q′0 = ({q0}, h∅) where h∅ is the partial function in H with empty domain (i.e. dom(h∅) =
∅).

δ′ is the transition function defined for every (q, h) ∈ Q′ and a ∈ Σ as follows. Let
i∗ = min{i ∣ i ∉ dom(h)}, that is, i∗ is an unused entry in h. For each state (p, h) ∈ Q′

and each letter a ∈ Σ we define the following transitions (with regular look-ahead):

If i ∈ dom(h) and:
L = L(a ⋅Σ∗) ∩ L(S23

p ) ∩ L(S3
h(i))

(i.e. L is verifying that a is the next letter, there is an interval starting at this
position, and the interval marked at the i-position in the pattern should be closed),
then δ′((p, h), L) = ((p′, h′), h⃗′) such that δ(p, a) = p′, dom(h′) = (dom(h) / {i})∪{i∗}
and for every j ∈ dom(h′):

h′(j) = { δε(p) if j = i∗
δ(h(j), a) otherwise
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If i ∈ dom(h) and:
L = L(a ⋅Σ∗) ∩ L(S23

p )C ∩ L(S3
h(i))

(i.e. L is verifying that a is the next letter, there is no interval starting at this
position, and the interval marked at the i-position in the pattern should be closed),
then δ′((p, h), L) = ((p′, h′), h⃗′) such that δ(p, a) = p′, dom(h′) = (dom(h) / {i}) and
h′(j) = δ(h(j), a) for every j ∈ dom(h′).

If:
L = L(a ⋅Σ∗) ∩ L(S23

p ) ∩ ⋂
i∈dom(h)

L(S3
h(i))C

(i.e. L is verifying that a is the next letter, there is an interval starting at this position
but there is no interval closing at this position), then δ′((p, h), L) = ((p′, h′), h⃗′) such
that δ(p, a) = p′, dom(h′) = dom(h) ∪ {i∗} and for every j ∈ dom(h′):

h′(j) = { δε(p) if j = i∗
δ(h(j), a) otherwise

If:
L = L(a ⋅Σ∗) ∩ L(S23

p )C ∩ ⋂
i∈dom(h)

L(S3
h(i))C

(i.e. L is checking that a is the next letter, there is no interval starting or closing at this
position), then δ′((p, h), L) = ((p′, h′), h⃗′) such that δ(p, a) = p′, dom(h′) = dom(h)
and h′(j) = δ(h(j), a) for every j ∈ dom(h′).

First of all, one can easily check that the regular look-ahead at each state is well-defined.
Indeed, by the definition of δ′ and Claim 20, the regular languages are disjoint for every
transition at a state (p, h) ∈ Q′. For showing that the G′ selects all the intervals selected
by S, one can easily prove by induction over the length of a string w that each interval in
Sel(S,w) is mentioned in the output pattern produced by G′. ◂

C Proof of Theorem 9: from automata to logic

C.1 Parse trees
We introduce standard notation for trees that will be useful during this proof. Let Σ be a
set of labels. An (unordered) labeled Σ-tree t is a finite function t ∶ nodes(t)→ Σ such that
nodes(t) is a finite prefix-closed subset of N∗, that is, w ∈ nodes(t) whenever w ⋅ i ∈ nodes(t)
for some i ∈ N. Additionally we assume that w ⋅ i implies w ⋅ (i − 1) ∈ nodes(t) for i > 0. We
say that the ε-word is the root of t and that w ⋅ i ∈ nodes(t) is a child of w. Further, we
write labels(t) to denote the set labels of a tree t. For any node w ∈ nodes(t), we denote
by t[w] the subtree rooted at w, i.e. the labeled tree t[w] ∶ nodes(t[w]) → Σ such that
t[w](i) = t(w ⋅ i) for every i ∈ nodes(t[w]). We usually write a{t1, . . . , tk} to denote a tree
whose root is labeled by a and t1, . . . , tk are the subtrees hanging from the root (i.e. for every
i ≤ k there exists j ∈ N such that t[j] = ti). We say that w ∈ nodes(t) is an internal node of
t if w ⋅ i ∈ nodes(t) for some i ∈ N. Otherwise, w is called a leaf of t. The set of all leaves of t
is denoted by leaves(t). We say that a tree is complete if any internal nodes has at least two
children. One can easily check that if t is a complete tree, then ∣nodes(t)∣ ≤ 2 ⋅ ∣ leaves(t)∣.
Finally, we denote by Trees(Σ) the set of all Σ-trees.

Let labS = S ∪ {⊕,⊙} ∪X be the a set of labels in S and variables X . A parse tree is a
complete labeled labS-tree p whose leaves are labeled by S∪X and internal nodes by {⊕,⊙}.
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We denote by Parse(X ) the set of all labS-parse trees. For any expression e ∈ Expr(X ), the
parse tree of e is a tree pe recursively defined as pe = e whenever e is equal to a constant or
variable, and pe = ⊗{pe1 ,pe2} whenever e = e1 ⊗ e2 where ⊗ ∈ {⊕,⊙}.

Conversely, any parse tree p can be converted into an equivalent expression exp(p). If
p is a single node then e = p otherwise if p = ⊗{p1, . . . ,pk} for ⊗ ∈ {⊕,⊙} then exp(p) =
⊗1≤i≤k exp(pi). So far we used ⊕ and ⊙ as binary operations thus the equivalent expressions
are not defined uniquely. We allow for this because this definition is unique up to the
equivalence of the expressions since ⊕ and ⊙ are commutative and associative. We define
the size of an expression e as the number of nodes in the parse tree pe.

▸ Example 21. Consider the expression e = ((x0 ⊙ (y ⊙ 2)) ⊕ 3) ⊕ (z ⊙ 4) where x, y, z ∈ X
and 2,3,4 ∈ S. One can easily check that the parse tree pe of e is the following:

⊕

⊕

⊙

x ⊙

y 2

3

⊙

z 4

Internal nodes of a parse tree can be merged by applying associativity and commut-
ativity of ⊕ and ⊙, respectively. Formally, for any label ⊗ ∈ {⊕,⊙} define the flattening
function flat⊗ such that flat⊗(⊛{p1, . . . ,pk}) is equal to {p1, . . . ,pk} whenever ⊗ = ⊛ and
⊛{p1, . . . ,pk} otherwise, for any label ⊛ ∈ {⊕,⊙} and trees p1, . . . ,pk. Then, given a
parse tree p we denote by p∗ the reduced parse tree constructed recursively as follows:
p∗ = ⊗{flat⊗(p∗1), . . . ,flat⊗(p∗k)} whenever p = ⊗{p1, . . . ,pk} and p∗ = p whenever p∗ is
equal to a variable or constant. By the construction of p∗, the label of any node of p∗ is
different to all root labels of its children, i.e. p∗(ε) ≠ p∗(i) for any i ∈ nodes(p∗) ∩ N. Or
equivalently if ⊗ ∈ {⊕,⊙} is a label of a internal node then it does not have a child labeled
with ⊗.

▸ Proposition 22. Let p be a parse tree. The expressions exp(p) and exp(p∗) are equivalent
and the alternation of these expressions is the same.

Proof. We prove this by induction on the depth of p. If the depth is 0 then p = p∗ by defin-
ition. Let p = ⊗{p1, . . . ,pk} and p∗ = ⊗{flat⊗(p∗1), . . . ,flat⊗(p∗k)}. Let p′ = ⊗{p∗1, . . . ,p

∗
k}.

By the induction assumption we know that exp(p) and exp(p′) are equivalent and the al-
ternation of these expressions is the same. To prove the proposition we need to show that
this also holds between exp(p′) and exp(p∗). Let p∗i = ⊛{pi,1, . . . ,pi,ki}. It suffices to prove
that for every i the parse trees p′ and pi,∗ = ⊗{p∗1, . . . ,flat⊗(p∗i ), . . . ,p∗k} define equival-
ent expressions with the same alternation. If ⊗ ≠ ⊛ then these parse trees are the same.
Otherwise pi,∗ = ⊗{p∗1, . . . ,pi,1, . . . ,pi,ki , . . . ,p

∗
k}. Then by definition

exp(p′) =⊗
j

exp(p∗j ) ≈⊗
j≠i

exp(p∗i )⊗ exp(p∗i ) =⊗
j≠i

exp(p∗i )⊗⊗
j

exp(pi,j) ≈ pi,∗

where ≈ is the relation of equivalent expressions. These equalities follow from the commut-
ativity and associativity of ⊗.

We show that p′ and pi,∗ have the same alternation. Formally the definition of altern-
ation was for binary operators ⊕ and ⊙. It is easy to generalize it for the ⊗ notation. We
define f⊕(e) = 1 if e = ⊙j ej , f⊙(e) = 1 if e = ⊕j ej and f(e) = 0 otherwise. The alternation
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Alt is defined as Alt(c) = 0 for every c ∈ S and Alt(⊗j ej) = maxj{Alt(ej) + f⊗(ej)} + 1 for
⊗ ∈ {⊕,⊙} and any expressions ej over S.

Alt(p′) = max
j

{Alt(exp(p∗j )) + f⊗(exp(p∗j ))} + 1 =

max{max
j≠i

{Alt(exp(p∗j )) + f⊗(exp(p∗j ))},Alt(exp(p∗i )) + f⊗(exp(p∗i ))} + 1

Since f⊗(exp(p∗i )) = 0 then this is equivalent to

max{max
j≠i

{Alt(exp(p∗j )) + f⊗(exp(p∗j ))},Alt(exp(p∗i ))} + 1 =

max{max
j≠i

{Alt(exp(p∗j )) + f⊗(exp(ej))},max
j

{Alt(pi,j) + f⊗(pi,j)}} + 1 = Alt(pi,∗)

◂

By Proposition 22 the alternation of an expression e is equivalent to the depth of its reduced
parse tree p∗e . From now, we will implicitly assume that parse trees are always in their
reduced form (i.e. p = p∗ for every p ∈ Parse(X̂ ∪Y)).

▸ Example 23. Recall the parse tree pe of the expression e. The following tree is the reduced
parse tree p∗e :

⊕

⊙

x y 2

3 ⊙

z 4

C.2 Main construction
Let A = (Q,Σ,X , δ, q0, ν0, µ) be a BAC automaton and let N be its bound on alternations.
Let (q0, ς0) a1Ð→ . . . anÐ→ (qn, ςn) be a sequence of ground configurations, where δ(qi−1, ai) =
(qi, σi), ς0 = ν0 and ςi(x) = ς̂i−1(σi(x)). The ground expression of this run is defined as
g = ς̂n(µ(qn)). We call the sequence ςi the substitution sequence.

The ground expression is built by composing the substitutions in a “bottom-up” fashion.
Next, we present an alternative definition where the substitution are composed top-down by
starting from the end. Let gn+1 = µ(qn). We define gi = σ̂i(gi+1) for 0 ≤ i ≤ n, where σ0 = ν0.
It is clear that g = g0. We call the sequence gi the ground sequence. In this definition
the expressions gi, for i > 0, do not have to be ground expressions. Since all expressions
µ(qn), σi are copyless then every expression gi is also copyless. Thus in every expression gi
there are no multiple occurrences of the same registers.

▸ Example 24. Consider a BAC automaton C, which is a modified version of the automaton
from Example 1.

x, y ∶= 0

y

a
x ∶= 0
y ∶= max{x, y}

b
x ∶= x + 1
y ∶= y
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Comparing to Example 1 the automaton C has the output function changed to µC(q) = y.
This way it outputs the longest sequence of b’s except for the last sequence which does not
precede the letter a. Since there is only one state each substitution is determined by a letter.
Let us denote the substitutions by σa, σb; and by σ0 the initial valuation. We present the
ground sequence of a run of C on the word bbab. Below each gi we draw its parse tree.
Notice that the ground sequence grows from the back by applying the substitutions to the
variables.

y

g5

y

g4

max

y x

g3

max

y +

x 1

g2

max

y +

1x 1

g1

max

0 +

10 1

g0
σbσaσbσbσ0

Let ⊗ ∈ {⊕,⊙}. For simplicity we write ⊗ for the other operation (i.e. {⊗,⊗} = {⊕,⊙})
and id⊗ to denote the identity of ⊗ in S (i.e. id⊕ = 0 and id⊙ = 1). Recall that for every
expression e we denote by pe its reduced parse tree and conversely for every parse tree p we
denote by exp(p) its corresponding expression. The parse trees of ground expression do not
have variable labels in the leaves. We denote by Root(e) ∈ {⊕,⊙, single} the label of the root
of the parse tree. If the tree has one node and its label is a constant or a variable then we use
single. By Proposition 22 we can assume that the parse trees are in their reduced form. That
is pe is either a single node labeled with a variable or a constant; or pe has a root labeled
with ⊗ ∈ {⊕,⊙} and pe = ⊗{p1, . . . ,pn, s1, . . . , sk, v1, . . . , vm}, where vi are variables, si are
constants and pi are subtrees such that Root(pi) = ⊗. Let us assume that pe is of the latter
form. We divide the expression e into three parts: SubExp(e) = {exp(p1), . . . , exp(pn)},
SubConst(e) = {s1, . . . , sk} and SubVar(e) = {v1, . . . , vm}. For constants and subexpressions
we use multisets to capture repetitions. Given a set P of parse trees, we denote by ⊗P
the ⊗-aggregation of the elements in P . Then we get the following equation:

e = (⊗SubExp(e))⊗ (⊗SubConst(e))⊗ (⊗SubVar(e)).

Since we work with copyless expressions, a set is enough for variables to have this equation.
For simplicity, if Root(e) = ⊗, we write S⊗{e} = ⊗SubConst(e) and P⊗{e} = ⊗SubExp(e),

that is, S⊗{e} is the aggregation of all constants in SubConst(e) and P⊗{e} is the aggrega-
tion of all subexpressions in SubExp(e). Notice that if the expression e is ground then:

e = S⊗{e}⊗P⊗{e}. (3)

This partition is crucial for the proof. The idea is to divide the function defined by A
into two parts. To do this we shall analyze the ground expressions of the runs represented
as in (3). Consider C from Example 24. The intuition of partitioning the ground expressions
g of a run of C is that Smax{g} aggregates some 0’s that appear during the run below the
root; and Pmax{g} aggregates the sums of the sequences of b’s.

For every expression e we define a subset of its variables Var⊗(e) ⊆ Var(e) as follows.

Var⊗(e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Var(e) if Root(e) = single
SubVar(e) if Root(e) = ⊗
∅ if Root(e) = ⊗
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Let us look at the sample ground sequence in Example 24. For most i we have Var(gi) =
Varmax(gi). The exceptional cases are for i = 1,2, where Var(gi) = {x, y} and Varmax(gi) =
{y}, because the variable x is not directly below the root. The intuition is that in g1 and
g2 the variable x cannot contribute new constants to the final expression S⊗{g0}; and it
cannot create new expressions for P⊗{g0} it only extends the old ones. We shall formalize
this intuition in Claim 27; but first we need to introduce some definitions.

The fact that ground expressions are built by composing from the back motivates a
definition track automata that help us keep track of the ground sequences. We define a
nondeterministic finite automaton T ⊗ that keeps track of the run of A. Consider a run of
A

(p0, ν0), . . . , (pn, νn)

where νi(x) = ⟦νi−1 ○ σi(x)⟧. Let gn+1, gn, . . . , g0 be the ground sequence of this run. The
idea is to have a finite automaton T ⊗, which has a unique run on the same word of the form:

(p0,Var⊗(g1),Var(g1)), . . . , (pn,Var⊗(gn+1),Var(gn+1)).

Formally, we define T ⊗ = (Q×P(X )×P(X ),Σ, δ⊗,Q0, F ) as the nondeterministic finite
automaton obtained from A. The transition relation is defined as follows:

((q,A,B), a, (p,A′,B′)) ∈ δ⊗

if there exists a substitution σ such that δ(q, a) = (p, σ) and A = ⋃x∈A′ Var⊗(σ(x)), B =
⋃x∈B′ Var(σ(x)). It remains to define the initial and accepting states of T ⊗. For every state
q ∈ Q let Aq = Var⊗(µ(q)), Bq = Var(µ(q)). We define the set of final states

F = {(q,Aq,Bq) ∣ for all q ∈ Q},

and the set of initial states

Q0 = {(q0,A,B) ∣ for all sets A,B ⊆ X}.

We call the automaton T ⊗ the track automaton of A. The states of track automata have
three components. We shall refer to them respectively as q-component, A-component and
B-component.

Consider a run of T ⊗ on a word w = w1 . . .wn.

(p0,A0,B0), (p1,A1,B1), . . . , (pn,An,Bn) (4)

where ((pi−1,Ai−1,Bi−1),wi, (pi,Ai,Bi)) ∈ δ⊗. By definition of T ⊗ for every i there exists a
substitution σi, such that δ(pi−1,wi) = (pi, σi). By definition of initial states in T ⊗ we know
that p0 = q0. Thus the run of A on w is:

(p0, ν0), . . . , (pn, νn) (5)

where νi(x) = ⟦νi−1 ○ σi(x)⟧. Since A is deterministic, this proves that for all runs of T ⊗
on a given word w the first component of the states is always deterministic. We show more
than that.
▸ Claim 25. The automaton T ⊗ is unambiguous and accepts Σ∗ and thus each word has its
unique run in T ⊗. Moreover, if gn+1, gn, . . . , g0 is the ground sequence defining the ground
expression for the run of A on w, then

Ai = Var⊗(gi+1), (6)
Bi = Var(gi+1) (7)
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Proof. Recall that gn+1 = µ(pn) and gi = σi ○ gi+1, where σ0 = ν0. We show (6, 7) by
induction down from n to 0, which proves that T ⊗ is unambiguous.

For the final configuration (pn,An,Bn) we have An = Apn = Var⊗(µ(pn)) and Bn = Bpn =
Var(µ(pn)) by definition. Let i < n and let δ(pi,wi+1) = (pi+1, σi+1). Then by definition
Ai = ⋃x∈Ai+1 Var⊗(σi+1(x)) and Bi = ⋃x∈Bi+1 Var(σi+1(x)). On the other side:

Var⊗(σi+1 ○ gi+2) = ⋃
x∈Var⊗(gi+2)

Var⊗(σi+1(x)) = ⋃
x∈Ai+1

Var⊗(σi+1(x)) = Ai

Var(σi+1 ○ gi+2) = ⋃
x∈Var(gi+2)

Var(σi+1(x)) = ⋃
x∈Bi+1

Var(σi+1(x)) = Bi

The equalities come from the induction assumption. Since gi+1 = σi+1 ○ gi+2 this proves that
Ai = Var⊗(gi+1) and Bi = Var(gi+1). It remains to prove that the automaton T ⊗ recognizes
Σ∗. Consider the run of A on w:

(p0, ν0), . . . , (pn, νn)

where νi(x) = ⟦νi−1 ○ σi(x)⟧ and gn+1, gn, . . . , g0 is the ground sequence. It is easy to check
that the sequence:

(p0,Var⊗(g1),Var(g1)), . . . , (pn,Var⊗(gn+1),Var(gn+1))

is an accepting run of T ⊗ on w. ◂

Let s, s′ ∈ Q × P(X ) × P(X ). By T ⊗s→s′ we denote the modified automaton T ⊗, where s
is the only initial state and s′ is the only accepting state. By R⊗

s→s′ we denote the regular
expression equivalent to T ⊗s→s′ . Recall that final states in T ⊗ are of the form sq =
(q,Aq,Bq). The automata T ⊗

(q0,A0,B0)→sq
form a partition of the automaton T ⊗ (up to the

automata that recognize the empty language). Since the automaton T ⊗ is unambiguous
and recognizes Σ∗ then the automata T ⊗

(q0,A0,B0)→sq
are also unambiguous and the languages

L(T ⊗
(q0,A0,B0)→sq

) form a partition of Σ∗. The regular expressions corresponding to these
languages shall be crucial for the final formula to extract the information about the run of
A.

First, let us come back to the definition of S⊗{e} and P⊗{e}. Previously we defined
these expressions assuming that Root(e) = ⊗. Let us give a general definition for all kinds
of expressions.

▸ Definition 26. We define two expressions based on e.

S⊗{e} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⊗SubConst(e) if Root(e) = ⊗
e if e is a constant
id⊗ otherwise

P⊗{e} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⊗SubExp(e) if Root(e) = ⊗
e if Root(e) = ⊗
id⊗ otherwise

By a case analysis of Definition 26 it is easy to see that if e is ground then e = S⊗{e}⊗P⊗{e}.
If Root(e) = ⊗ then we observed this in (3). Otherwise S⊗{e}⊗P⊗{e} reduces to e⊗ id⊗ or
id⊗ ⊗ e.
▸ Claim 27. Consider the runs on w from (4, 5), where δ(pi−1,wi) = (pi, σi) and gn+1, gn, . . . , g0
is the ground sequence of the run. Let us assume that Root(g) = ⊗. The following equalities
hold:

S⊗{gi} = S⊗{gi+1}⊗ ⊗
x∈Ai

(S⊗{σi(x)}),

P⊗{gi} = (σi ○P⊗{gi+1})⊗ ⊗
x∈Ai

(P⊗{σi(x)}).
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Proof. Set i. Recall that gi = σi ○ gi+1. First let us consider the case when Root(gi+1) = ⊗.
Let pgi+1 = ⊗{p1, . . . ,pn, s1, . . . , sk, v1, . . . , vm}. The parse tree pgi comes from pgi+1 ,
where one substitutes the variables x with the trees pσ(x) and then flattens the tree. The
variables are divided into two sets, Var⊗(gi+1) = {v1, . . . , vm}; and the remaining variables
in the subtrees pi. Notice that σi does not change the leaves si. By (6) Ai = {v1, . . . , vm}.
The expression S⊗{gi} aggregates previous constants S⊗{gi+1} with the new constants. It
remains to show that new constants come from S⊗{σi(x)} for every x ∈ Ai. Indeed, σi(x)
adds new constants only if the root of σi(x) is ⊗ or σi(x) is itself a constant. The new
constants are precisely S⊗{σi(x)}, which proves the first equality.

Similarly the substitution σi does not change the internal nodes, thus the expression
P⊗{gi} comes from extending the previous subtrees pi by applying σi to the variables in
the leaves of pi, this results in σi ○P⊗{gi+1}. They are aggregated with new subtrees, which
for every x ∈ Ai come from P⊗{σi(x)}. This proves the second equality.

Let us look at the remaining cases. Notice that since Root(g) = ⊗, then it is not
possible that Root(gi+1) = ⊗ for any i. The remaining case is when Root(gi+1) = single.
Then gi+1 is a single node. Since we assumed that Root(g) = ⊗ then this single node must
be a variable; moreover ∣Ai∣ = 1 by (6). Then by definition S⊗{gi+1} = P⊗{gi+1} = id⊗ and
S⊗{gi} = S⊗{σi(x)}, P⊗{gi} = P⊗{σi(x)}, where Ai = {x}. This concludes the proof of the
claim. ◂

From now on, we work with the runs (4,5) and we shall assume that Root(g) = ⊗. Recall
that g = g0, gn+1 = µ(pn) and σ0 = ν0. Applying iteratively the first equality from Claim 27
to S⊗{gi}, we get the following.

S⊗{g} = S⊗{g0} = S⊗{g1}⊗ ⊗
x∈A0

(S⊗{σ0(x)}) = ⋅ ⋅ ⋅ =

S⊗{gn+1}⊗ ⊗
0≤i≤n

(⊗
x∈Ai

(S⊗{σi(x)})) =

S⊗{µ(pn)}⊗ ⊗
0≤i≤n

(⊗
x∈Ai

(S⊗{σi(x)})) =

S⊗{µ(pn)} ⊗ ⊗
1≤i≤n

(⊗
x∈Ai

(S⊗{σi(x)})) ⊗ ⊗
x∈A0

ν0(x). (8)

Recall the definition of the substitution sequence ς0 = ν0 = σ0 and ςi(x) = ςi−1 ○ σi(x). The
substitution ςi defines the expressions in the registers after reading i letters. For simplicity
we assume that ς−1 = id⊗. Applying iteratively the second equality from Claim 27 we get
the following.

P⊗{g0} = (σ0 ○P⊗{g1})⊗ ⊗
x∈A0

(P⊗{σ0(x)}) =

(σ0 ○ σ1
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

ς1

○P⊗{g2})⊗ ⊗
x∈A1

(σ0

ς̄0

○P⊗{σ1(x)})⊗ ⊗
x∈A0

(P⊗{σ0(x)}) = ⋅ ⋅ ⋅ =

(ςn ○P⊗{gn+1})⊗ ⊗
0≤i≤n

(⊗
x∈Ai

(ςi−1 ○P⊗{σi(x)})) =

(ςn ○ P⊗{µ(pn)}) ⊗ ⊗
1≤i≤n

(⊗
x∈Ai

(ςi−1 ○ P⊗{σi(x)})) (9)

Notice that when aggregating the final expression in (9) we drop the case when i = 0. This
is because σ0(x) = ν0(x) is a constant for every x and thus by definition P⊗{σ0(x)} = id⊗.
Recall that by (3) we have g = S⊗{g}⊗P⊗{g}. Thus (8,9) give as a new representation of g.
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We show how to use this representation of g. We define the formula ψA in partition logic
that defines the same function on words as the automaton A. The definition is by induction
over N , i.e., the number of alternations in A. Recall that by (3) g = S⊗{g} ⊗ P⊗{g}. We
define a formulas that separately evaluate to S⊗{g} and P⊗{g}. The formula below is an
aggregation of many subformulas. Each subformula has some parameters determined by the
unique run of A on a word. Thus, as we shall see, there is at most one subformula different
from id⊗.

ψ⊗A = ⊗
s0,sq

⊗(ε)⟨R⊗
s0→sq

⟩(ε). S⊗
s0,sq

⊗P⊗
s0,sq

, (10)

where s0, sq vary through all initial and accepting states of the track automaton T ⊗. We use
the notation sq = (q,Aq,Bq) s0 = (q0,A0,B0) and in general si = (qi,Ai,Bi). For simplicity
we denote by Q⊗ the set of states of T ⊗, so si ∈ Q⊗. Since L(R⊗

s0→sq
) are a partition of Σ∗

then for a given word w this formula is equivalent to ⊗(ε)⟨R⊗
s0→sq

⟩(ε). S⊗
s0,sq

⊗ P⊗
s0,sq

for
some s0 and sq (the other subformulas evaluate to id⊗). We define S⊗

s0,sq
as follows.

S⊗
s0,sq

= S⊗{µ(q)}⊗ ⊗
s1,s2∈Q⊗,a∈Σ

(⊗(R⊗
s0→s1

)⟨a⟩(R⊗
s2→sq

). ⊗
x∈A2

S⊗{σ(x)})⊗ ⊗
x∈A0

ν0(x),

additionally we require for every pair s1, s2 that δ(q1, a) = (q2, σ), where qi are q-components
of si. Similarly, A2 is the A-component of s2. The intervals here are 1-letter words. Since
there is a unique run in T ⊗s0→sq

for a given word w, then for every wi there is a unique
(s1, a, s2) transition such that (R⊗

s0→s1
)⟨a⟩(R⊗

s2→sq
) selects wi. This determines the unique

transition δ(q1,wi) = (q2, σ) in the run of A when reading wi. It is easy to verify that this
formula outputs the same value as the expression S⊗{g} presented in (8). The difference is
that in (8) we aggregate constants with ⊗1≤i≤n⊗x∈Ai

, where i varies through all transitions
in the run. In the formula S⊗

s0,sq
we also select every transition but we group the transitions

by the states and letters that determine them.
The definition of the formula P⊗

s0,sq
requires more effort and we need to present some

definitions first. The remaining part of the proof is mostly devoted to define the formula
P⊗
s0,sq

.
We start from defining three different automata such that their ground expressions of

the runs are subtrees of the ground expressions of the runs in A with ⊗ in the root. For
every transition t = (p, a, p′, σ) ∈ δ and a register x ∈ X if Root(σ(x)) = ⊗ we define the
automaton A⊗[µ(t,x)] = (Q,Σ,X , δ, q0, ν0, µ(t,x)). It is the same automaton as A except
for the output function, which is defined as

µ(t,x)(q) =
⎧⎪⎪⎨⎪⎪⎩

σ(x) if q = p
id⊗ otherwise.

For every transition t = (p, a, p′, σ) if Root(σ(x)) = ⊗ then for every e ∈ SubExp(σ(x)) we
define the automaton A⊗[µ(t,x,e)] = (Q,Σ,X , δ, q0, ν0, µ(t,x,e)), where the output function
is defined as

µ(t,x,e)(q) =
⎧⎪⎪⎨⎪⎪⎩

e if q = p
id⊗ otherwise.

Similarly for every output function µ(q) if Root(µ(q)) = ⊗ then for every e ∈ SubExp(µ(q))
we define the automaton A⊗[µ(q,e)] = (Q,Σ,X , δ, q0, ν0, µ(q,e)), where

µ(q,e)(q) =
⎧⎪⎪⎨⎪⎪⎩

e if q = p
id⊗ otherwise.
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Each automaton with the modified output function recognizes a type of a subtree with ⊗ in
the root; or it outputs 0. Since A has alternation bounded by N then it is easy to see that
A⊗[µ(t,x,e)] and A⊗[µ(q,e)] have alternation bounded by N −1. The automata A⊗[µ(t,x)]
might have alternation N but we shall see that we need only the ones that have alternation
bounded by N − 1.
▸ Claim 28. Consider the run of A on w in (5), fix 1 ≤ i ≤ n and the transition ti =
(pi−1,wi, pi, σi) ∈ δ. The following equalities hold:
1. if Root(σi(x)) = single then ⟦ςi−1 ○P⊗{σi(x)}⟧ = id⊗;
2. if Root(σi(x)) = ⊗ then ⟦ςi−1 ○P⊗{σi(x)}⟧ = ⟦A⊗[µ(ti,x)]⟧(w[⋅, i − 1]);
3. if Root(σi(x)) = ⊗ then ⟦ςi−1 ○P⊗{σi(x)}⟧ =⊗e∈SubExp(σi(x)) ⟦A⊗[µ(ti,x,e)]⟧(w[⋅, i − 1]);
4. additionally if Root(µ(pn)) = ⊗ then ⟦ςn ○P⊗{µ(pn)}⟧ =⊗e∈SubExp(µ(pn)) ⟦A⊗[µ(pn,e)]⟧(w).

Proof. By definition if Root((σi(x))) = single then P⊗{σi(x)} = id⊗. This proves 1 from
the claim.

The automata A⊗[µ(ti,x)], A⊗[µ(ti,x,e)], A⊗[µ(pn,e)] differ from A only in the definition
of the output function. Thus for every run the values in registers are the same in all these
automata. In particular after reading the word w[⋅, i − 1] the values of the registers are
defined by the substitution ςi−1. Thus we can focus only on the output functions of these
automata. Similarly, the states are the same in all runs for these automata.

Suppose that Root(σi(x)) = ⊗. The automaton A⊗[µ(ti,x)] is in state pi−1 after reading
w[⋅, i−1] and its output function is defined as σi(x). Since Root(σi(x)) = ⊗ then P⊗{σi(x)} =
σi(x) by definition. This proves 2 from the claim.

Now, suppose that Rootσi(x) = ⊗. Again all automata A⊗[µ(t,x,e)] are in state pi−1
after reading w[⋅, i − 1]. The output function of A⊗[µ(ti,x,e)] is e. Since P⊗{σi(x)} =
⊗SubExp(σi(x)) this proves 3 from the claim. Here we use the fact that SubExp(σi(x)) is
a multiset, because there might be repetitions among the expressions.

Finally suppose that Root(µ(pn)) = ⊗. All automata A⊗[µ(pn,e)] are in state pn after
reading w and their output function is defined as e. Since P⊗{µ(pn)} = ⊗SubExp(µ(pn))
this proves the last part of the claim. Similarly, as in the previous case here we use the fact
that SubExp(µ(pn)) is a multiset. ◂

This gives us automata that work on prefixes of w to recognize parts of the expression
P⊗{g}. Combining Claim 28 with the representation of P⊗{g} in (9) we get the following.

P⊗{g} = ςn ○P⊗{µ(pn)}⊗ ⊗
1≤i≤n

(⊗
x∈Ai

(ςi−1 ○P⊗{σi(x)})) =

⊗
e∈SubExp(µ(pn))

⟦A⊗[µpn,e]⟧(w) ⊗ ⊗
1≤i≤n

⊗
x∈Ai

γi,x, (11)

where

γi,x =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

id⊗ if Root(σi(x)) = single
⟦A⊗[µ(ti,x)]⟧(w[⋅, i − 1]) if Root(σi(x)) = ⊗
⊗e∈SubExp(σi(x)) ⟦A⊗[µ(ti,x,e)]⟧(w[⋅, i − 1]) if Root(σi(x)) = ⊗,

where ti = (pi−1,wi, pi, σi) ∈ δ are the transitions in the run (5).
To define the final formula we shall use the induction assumption that for all automata

A⊗[µ(ti,x)], A⊗[µ(ti,x,e)], A⊗[µ(pn,e)] there already exists a formula in MP defining the
same function. As already mentioned some automata A⊗[µ(ti,x)] might have alternation N ;
however, for such automata we do not need formulas because they cannot appear in (11).
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Recall that g = S⊗{g}⊗P⊗{g}. The automaton A⊗[µ(ti,x)] outputs ground expressions with
⊗ in the root (or 0). If such an expression would have alternation N and would appear
in (11) then g would have alternation N + 1, because the root of g is ⊗. Towards the end
of this section we assume that the formulas ψA⊗[µ(ti,x)], ψA⊗[µ(ti,x,e)] are already defined by
induction. If the alternation of A⊗[µ(ti,x)] is N then we define ψA⊗[µ(ti,x)] = id⊗.

The remaining issue is to define the intervals for A⊗[µ(ti,x)], A⊗[µ(ti,x,e)] to define the
formula equivalent to ⊗1≤i≤n⊗x∈Ai

γi,x in (11). There, we use prefixes of w which are not
maximal intervals (exactly one of them is maximal). For this we need another modification
on BAC automata.

Previously we modified the output function of A, which resulted in automata defined on
prefixes of w. The second step is to modify the initial states and the initialization function
to get automata that work on infixes of w. We present the results for an arbitrary BAC
automaton B = (QB,Σ,X , δB, qB0 , νB0 , µB), but one should think of B as one of the automata
A⊗[µ(ti,x)], A⊗[µ(ti,x,e)]. For every transition t = (q, a, p, σ) ∈ δB consider the automaton
B[qt0, νt0] = (QB,Σ,X , δB, qt0, νt0, µB). It is the same automaton as B except for the initial
state defined as qt0 = p and the initialization function νt0 defined below.

νt0(x) =
⎧⎪⎪⎨⎪⎪⎩

⟦σ(x)⟧ if Var(σ(x)) = ∅
id⊗ otherwise.

It is easy to see that B[qt0, νt0] is also a BAC automaton and its alternation is bounded
by the alternation of B. Consider the runs of B and its track automaton T ⊗

B
on a word

w = w1 . . .wn.

(p0, ν0), . . . , (pn, νn), (12)
(p0,A0,B0), . . . , (pn,An,Bn). (13)

▸ Claim 29. Let i ≥ 0 be an index such that Bi = ∅, Bi+1 ≠ ∅. Then ⟦B⟧(w) = ⟦B[qt0, νt0]⟧(w[i+
1, ⋅]), where t = (pi,wi+1, pi+1, σi+1). If such an index i exists then it is unique; moreover
Bj = ∅ for every j < i.

Proof. The automata B and B[qt0, νt0] differ only in the initial state and the initial function.
The automaton B after reading w[⋅, i] is in state pi+1 which is also the initial state of B[qt0, νt0].
Thus the run of B[qt0, νt0] on w[i + 1, ⋅] is

(pi, νt0), (pi+1, ν
t
i+1) . . . , (pn, νtn),

where pi are the same states as in the run (12). Since the substitutions are the same as in
B then the ground expression of the run of B[qt0, νt0] on w[i+ 1, ⋅] is νt0 ○ gi+2, where gi is the
ground sequence of the run of B on w and νt0 is the initialization function of B[qt0, νt0].

On the other side by (7) Bi = Var(gi+1) and Bi+1 = Var(gi+2). Since Bi = ∅ then gi+1 is
a ground expression and g0 = gi+1. By definition we have Bi = ⋃x∈Bi+1 Var(σi+1(x)). This
proves that for every x ∈ Bi+1 we have Var(σi+1(x)) = ∅ and so g0 = gi+1 = νt0 ○ gi+2, which
proves the first part of the claim.

To prove that i is unique recall that Bj = ⋃x∈Bj+1 Var(σj+1(x)). Obviously if Bj+1 = ∅
then Bj = ∅. Thus there can be at most one index i such that Bi+1 ≠ ∅ and Bi = ∅. ◂

Let us combine the modifications of changing the initial function and state with changing
the output function. By A⊗[qt0, νt0, µ(t′,x)], A⊗[qt0, νt0, µ(t′,x,e)] we denote the cost register
automata, defined as A, with the initial state and initialization function changed as in
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A⊗[qt0, νt0] and the output functions changed as for A⊗[µ(t′,x)], A⊗[µ(t′,x,e)]. We denote the
track automata of the modified automata in the natural way, e.g. the track automaton of
A⊗[qt0, νt0, µ(t′,x)] is T ⊗[qt0, νt0, µ(t′,x)].

Claim 29 intuitively shows that the important part of the run is where the B-component
of the track automaton is nonempty. This motivates the following definition.

▸ Definition 30. Fix a set of registers B′ ⊆ X . For a given track automaton T ⊗ we define
the following restricted variant T ⊗,B′

: the initial states are (q0,A,B
′) for all A ⊆ X , where

q0 is the initial state of A.

The only difference between T ⊗,B′
and T ⊗ is that the B-component is fixed. Recall that

T ⊗ is unambiguous and recognizes Σ∗. The languages recognized by the automata T ⊗,B′

form a partition of Σ∗ (up to the empty language). Observe that if B′ ≠ ∅ then all states in a
run of T ⊗,B′

have the B-component nonempty. This follows from the last part of Claim 29.
We denote by R⊗,B′

the regular expression recognizing L(T ⊗,B′). For track automata of the
modified automata we use the natural notation, e.g. the corresponding regular language for
the track automaton T ⊗,B′[qt0, νt0, µ(t′,x)] is denoted R⊗,B′[qt0, νt0, µ(t′,x)].

Before defining the formula P⊗
s0,sq

we change the semantics of the selectors. As discussed
in Section 3 defining intervals with selectors is equivalent to defining intervals with an MSO
formula with two free variables. One can think of selectors as MSO formulas with two free
variables. To define P⊗

s0,sq
it is more convenient to select intervals from a word that could be

selected by a rigid formula, without the maximal semantics. Thus slightly abusing notation
we shall use selectors that select all intervals; and prove that the selectors correspond to
rigid formulas. By Proposition 8 every rigid formula can be expressed by a sum of formulas
with the maximal semantics; thus our selectors can be turned into sums of selectors with
maximal semantics.

We define P⊗
s0,sq

.

P⊗
s0,sq

= ⊗
e∈SubExp(µ(sq))

ψA⊗[µ(sq,e)] ⊗ ϕs0,sq
.

As explained for (10), the formula P⊗
s0,sq

is applied only when s0 and sq are the initial and
final state of the run of T ⊗ on the given word w. Let us recall the characterization of P⊗{g}
in (11).

P⊗{g} = ⊗
e∈SubExp(µ(pn))

⟦A⊗[µ(pn,e)]⟧(w)⊗ ⊗
1≤i≤n

⊗
x∈Ai

γi,x,

where pn is the final state of the run of T ⊗. By (10) in this setting the final state is
sq. The formula ⊗e∈SubExp(µ(sq)) ψA⊗[µ(sq,e)] is defined by induction because automata
A⊗[µ(sq,e)] have alternation at most N −1. The remaining formula ϕs0,sq will be equivalent
to ⊗1≤i≤n⊗x∈Ai

γi,x. Before we define ϕs0,sq let us recall the definition of γi,x from (11)

γi,x =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

id⊗ if Root(σi(x)) = single
⟦A⊗[µ(ti,x)]⟧(w[⋅, i − 1]) if Root(σi(x)) = ⊗
⊗e∈SubExp(σi(x)) ⟦A⊗[µ(ti,x,e)]⟧(w[⋅, i − 1]) if Root(σi(x)) = ⊗.

(14)

Notice that automata run on strict prefixes of the given word w. They run up to i − 1 and
i ≤ n, where n is the length of the word.
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Recall the shorthands for the states of track automata sq = (q,Aq,Bq), si = (qi,Ai,Bi).
We define selectors that we will use later.

(R⊗
s0→s1

⋅ a)⟨R⊗
s2→s3

⟩(b ⋅R⊗
s4→sq

), (15)

(ε)⟨R⊗
s0→s3

⟩(b ⋅R⊗
s4→sq

), (16)

for some fixed si ∈ Q⊗, states of the track automaton T ⊗; and a, b ∈ Σ. We additionally
require that (s1, a, s2) and (s3, b, s4) are transitions in T ⊗ and thus ta = (q1, a, q2, σ), tb =
(q3, b, q4, σ

′) are transitions in A for some substitutions σ,σ′. Observe that every interval in
a given word w, that is not a suffix, is selected by one of the selectors in (15, 16). This is
because these selectors reflect the run of T ⊗ divided into parts. We explain how (15) selects
infixes:

the expression R⊗
s0→s1

corresponds to the starting part of the run from the initial state
s0 to the state s1;
then there is the transition (s1, a, s2);
the expression R⊗

s2→s3
corresponds to the selected part of the run from the state s2 to

the state s3;
then there is the transition (s3, b, s4);
the expression R⊗

s4→sq
corresponds to the final part of the run from the state s4 to the

final state sq.
Similarly (16) selects prefixes. Since T ⊗ is unambiguous and recognizes Σ∗, then every inter-
val (that is not a suffix) is selected uniquely (recall that we do not use maximal semantics).

We start with the following formula

ϕ′s0,sq
=⊗
b∈Σ

⊗
s1,s2,s3,s4∈Q⊗

⊗
x∈A4

η, (17)

where

η =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

id⊗ if Root(σ′(x)) = single
⊗(ε)⟨Rs0→s3⟩(b ⋅Rs4→sq). ψA[µ(tb,x)] if Root(σ′(x)) = ⊗
⊗e∈SubExp(σ′(x))

⊗(ε)⟨Rs0→s3⟩(b ⋅Rs4→sq). ψA[µ(tb,x,e)] if Root(σ′(x)) = ⊗

where (s3, b, s4) is a transition in T ⊗ and tb = (q3, b, q4, σ
′) is its corresponding transition

in A for some substitution σ′. The formula η depends on s1, s2, s3, s4, b and x but for the
sake of readability we skip the indexes. The formula η corresponds to the formula γi,x (14).
As explained before the selectors (ε)⟨R⊗

s0→s3
⟩(b ⋅ R⊗

s4→sq
) select all prefixes uniquely. The

position of the letter b corresponds to the position i in γi,x.
Let us explain that ϕ′s0,sq

is equivalent to ⊗1≤i≤n⊗x∈Ai
γi,x. The aggregation of all

prefixes ⊗1≤i≤n is split into pieces: first with ⊗b∈Σ⊗s1,s2,s3,s4∈Q⊗ we parametrize prefixes
depending on the partial run of T ⊗; second (ε)⟨R⊗

s0→s3
⟩(b ⋅ R⊗

s4→sq
) selects all prefixes of

the given type. The formulas ψA[µ(tb,x)], ψA[µ(tb,x,e)] exist by the induction assumption.
Unfortunately, the formula ϕ′s0,sq

is not rigid (all selected intervals are prefixes), and we
need to improve ϕ′s0,sq

.
We divide formula ϕs0,sq into two subformulas defining ϕs0,sq = ϕprefixes⊗ϕinfixes. The

formulas ϕprefixes, ϕinfixes depend on s0 and sq, but we skip these indexes for readability.
The message of Claim 29 is that it suffices to run the automaton on the interval, where the
B-component is nonempty. The formula ϕinfixes is the subformula for automata that have
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the B-component empty at some point, and the formula ϕprefixes is for automata that have
always the B-component nonempty.

For two regular expressions R,R′ we denote by R∩R′ the regular expression recognizing
L(R) ∩L(R′). Let us define ϕprefixes.

ϕprefixes = ⊗
B⊆X ,B≠∅

⊗
b∈Σ

⊗
s1,s2,s3,s4∈Q⊗

⊗
x∈A4

η,

where

η =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

id⊗ if Root(σ′(x)) = single
⊗(ε)⟨Rs0→s3 ∩R⊗,B[µ(tb,x)]⟩(b ⋅Rs4→sq). ψA[µ(tb,x)] if Root(σ′(x)) = ⊗
⊗e∈SubExp(σ′(x))

⊗(ε)⟨Rs0→s3 ∩R⊗,B[µ(tb,x,e)]⟩(b ⋅Rs4→sq). ψA[µ(tb,x,e)] if Root(σ′(x)) = ⊗

where (s3, b, s4) is a transition in T ⊗ and tb = (q3, b, q4, σ
′) is a transition in A for some

substitution σ′. This formula is a modified variant of the formula ϕ′s0,sq
from (17). We

consider the cases of runs where Claim 29 could not be applied, i.e., all B-components
are nonempty. To ensure that this is the case we use regular expressions R⊗,B[µ(tb,x)],
R⊗,B[µ(tb,x,e)] corresponding to automata from Definition 30. They check that the B-
component is never empty on the selected intervals.

The formula ϕinfixes is also a modified variant of the formula ϕ′s0,sq
from (17). The first

modification is that instead of selecting the prefixes, we select the infixes with the selector
from (15)

(R⊗
s0→s1

⋅ a)⟨R⊗
s2→s3

⟩(b ⋅R⊗
s4→sq

).

The goal is to select the intervals, where the B-component is nonempty. Let ta be the
transition preceding the selected interval, and tb the transition after the selected inter-
val. In ϕ′s0,sq

we used automata A[µ(tb,x)],A[µ(tb,x,e)] on prefixes. On infixes we shall
use A⊗[qta0 , ν

ta
0 , µ(tb,x)],A⊗[q

ta
0 , ν

ta
0 , µ(tb,x,e)]. To select intervals with the B-component

nonempty we need to find the biggest position, where the B-component becomes empty.
By (R)⟨S⟩(T ) ∩ (R′)⟨S′⟩(T ′) we denote the selector (R ∩R′)⟨S ∩ S′⟩(T ∩ T ′).

ϕinfixes = ⊗
B⊆X

⊗
a,b∈Σ

⊗
s1,s2,s3,s4∈Q⊗

⊗
x∈A4

η,

where

η =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

id⊗ if Root(σ′(x)) = single
⊗(R⊗

s0→s1
⋅ a)⟨R⊗

s2→s3
⟩(b ⋅Rs4→sq)

∩ (Σ∗)⟨R⊗,B[qta0 , ν
ta
0 , µ(tb,x)] ∩RB⟩(Σ∗). ψ

A⊗[qta
0 ,νta

0 ,µ(tb,x)]
if Root(σ′(x)) = ⊗

⊗e∈SubExp(σ′(x))⊗(R⊗
s0→s1

⋅ a)⟨R⊗
s2→s3

⟩(b ⋅R⊗
s4→sq

)
∩ (Σ∗)⟨R⊗,B[qta0 , ν

ta
0 , µ(tb,x,e)] ∩RB⟩(Σ∗). ψ

A⊗[qta
0 ,νta

0 ,µ(tb,x,e)]
if Root(σ′(x)) = ⊗

where (s1, a, s2), (s3, b, s4) are transitions in T ⊗; ta = (q1, a, q2, σ), tb = (q3, b, q4, σ
′) are

transitions in A for some substitutions σ,σ′; and

RB =
⎧⎪⎪⎨⎪⎪⎩

Σ∗ if B ≠ ∅
{ε} otherwise.
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Additionally we require Var(σ(x)) = ∅ for every x ∈ B (if this is not true, we simply define
η = id⊗). Let us explain ϕinfixes step by step.

First let us assume that B ≠ ∅. Then we can ignore RB because it is equal to Σ∗. With
the expressions R⊗,B[qta0 , ν

ta
0 , µ(tb,x,e)] we assure that the B-component is nonempty on the

selected interval. With the additional assumption Var(σ(x)) = ∅ for every x ∈ B we assure
that the position of the letter a (in (15)) is the first position where the B-component is
empty. Thus by Claim 29 the output of A[µ(tb,x)],A[µ(tb,x,e)] on prefixes is equal to the
output of A⊗[qta0 , ν

ta
0 , µ(tb,x)],A⊗[q

ta
0 , ν

ta
0 , µ(tb,x,e)] on the corresponding suffixes.

Now let B = ∅. These are runs that have always the B-component empty. This happens
when the output function is an expression without registers. Then RB = {ε} is the language
containing only the empty word. Since we do not need to read anything to know the output,
we select the empty word ε as the interval.

We need to show two things. First, that the formulas ϕ′s0,sq
and ϕs0,sq = ϕprefixes ⊗

ϕinfixes are equivalent. Second, that the selectors in the final formulas are rigid formulas
(recall that we do not work with maximal semantics).
▸ Claim 31. The formulas ϕ′s0,sq

and ϕs0,sq are equivalent.

Proof. The formulas ϕ′s0,sq
, ϕs0,sq are aggregations of subformulas of the shape ⊗R. φ and

id⊗. The subformulas id⊗ do not affect the output since in both formulas everything is
aggregated with ⊗.

The remaining subformulas in ϕ′s0,sq
output the run of automata A[µ(tb,x)], A[µ(tb,x,e)]

on selected prefixes. The formula ϕs0,sq is split into two subformulas ϕprefixes and ϕsuffixes.
The formula ϕprefixes is a restricted variant of ϕ′s0,sq

. It aggregates all outputs that have
the B-component nonempty in the track runs.

The formula ϕinfixes is more involved, it aggregates the remaining outputs. For the
remaining runs we are interested in the biggest position in the word, where the B-component
is empty. We shall refer to this position by i. In the selector

(R⊗
s0→s1

⋅ a)⟨R⊗
s2→s3

⟩(b ⋅R⊗
s4→sq

).

the position i is labeled with a. By ta = (q1, a, q2, σ) we denote the transition from i to the
next position. The parameter B is used to guess the set of registers in the next position.

If B = ∅ then the output is defined only by the output function, and the output function
does not use registers. There we use the expression RB , which recognizes the language {ε}
in this case. By restricting to the empty interval we assure that we aggregate this output
exactly once.

If B ≠ ∅ then the regular expression R⊗,B[qta0 , ν
ta
0 , µ(tb,x)] assures that we select intervals,

where the B-component in the first position is our guessed set B. The additional condition
Var(σ(x)) = ∅ for every x ∈ B ensures that the B-component is empty in i, and moreover,
it is the first position with the B-component empty. We modify the initial states and initial
function of the automata A[µ(tb,x)], A[µ(tb,x,e)] to fulfill the assumptions of Claim 29. By
Claim 29 the runs of the modified automata on infixes output the same value as the automata
A[µ(tb,x)], A[µ(tb,x,e)]. For every run if there exists a position i, where the B-component
is empty for the first time, then it is also unique. Thus every output defined by a run of
A[µ(tb,x)], A[µ(tb,x,e)] is aggregated exactly once by the formula ϕinfixes. ◂

▸ Claim 32. The selectors in ϕprefixes and ϕinfixes are MSO rigid formulas.

Proof. Let ζ(x, y) be an MSO formula. Recall that the set of intervals selected with ζ(x, y)
on a given word w is the set {(i, j) ∣ w(i, j) ⊧ ζ(x, y)}. By convention the empty interval
between positions i and i + 1 is represented by (i + 1, i) . A formula ζ(x, y) is rigid if:
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1. for every i there is at most one j such that w(i, j) ⊧ ζ(x, y);
2. for every j there is at most one i such that w(i, j) ⊧ ζ(x, y).
Let us start with the selectors in ϕprefixes. There two types of selectors

(ε)⟨Rs0→s3 ∩R⊗,B[µ(tb,x)]⟩(b ⋅Rs4→sq),
(ε)⟨Rs0→s3 ∩R⊗,B[µ(tb,x,e)]⟩(b ⋅Rs4→sq).

For the sake of readability we shall focus only on the first type of selectors. The analysis
for the second type of selectors is similar. Let ζ(x, y) be an MSO formula equivalent to
one of the selectors and let w = w1 . . .wn be a given word. We prove that ζ(x, y) is a rigid
formula. The condition 2 is trivial because the left end of the selected intervals is always at
the beginning of the word. Let us prove condition 1, which in fact proves that each selector
selects only one interval.

Recall that by definition the set B is nonempty; the states s0, sq are the initial and final
states of the run of the track automaton of A; and tb = (q3, b, q4, σ

′). Also by definition of
R⊗,B[µ(tb,x)] the set B is the B-component in the first state of T ⊗,B[µ(tb,x)].

Let gn+1, . . . , g0 be the ground sequence of the run of A on w and let g′m+1, . . . , g
′
0

be the ground sequence of the run of A⊗,B[µ(tb,x)] on a selected interval w[⋅,m]. Re-
call that by (6),(7) we have equalities on A- and B-components of T ⊗: Ai = Var⊗(gi+1),
Bi = Var(gi+1). Then we have:

By definition of ϕprefixes we have x ∈ Am+1. Since Am+1 = Var⊗(gm+2), then σ′(x) is a
subexpression of gm+1.
By definition of A⊗,B[µ(tb,x)] we have g′m+1 = σ′(x).

Altogether this implies that g′m+1 is a subexpression of gm+1. By induction down from m+1
to 1 it is easy to show that g′1 is a subexpression of g1. Recall that the set B is the B-
component in the first state of T ⊗,B[µ(tb,x)]. This means that B = Var(g′1). Now, suppose
that ζ(x, y) is not a rigid formula and that there are two different intervals selected by
ζ(x, y). This means that there are two different ground sequences g′ and g′′ such that g′1
and g′′1 are subexpressions of g1. But B = Var(g′1) = Var(g′′1 ) and since B is nonempty then
the expression g1 is not copyless. This is a contradiction with the fact that A is copyless.

Now let us move to the selectors of ϕinfixes

(R⊗
s0→s1

⋅ a)⟨R⊗
s2→s3

⟩(b ⋅Rs4→sq) ∩ (Σ∗)⟨R⊗,B[qta0 , ν
ta
0 , µ(tb,x)] ∩RB⟩(Σ∗)

(R⊗
s0→s1

⋅ a)⟨R⊗
s2→s3

⟩(b ⋅Rs4→sq
) ∩ (Σ∗)⟨R⊗,B[qta0 , ν

ta
0 , µ(tb,x,e)] ∩RB⟩(Σ∗).

Let ζ(x, y) be an MSO formula equivalent to one of the selectors. For B = ∅ the formula is
trivially rigid, because RB = {ε}. Otherwise if the condition 1 would not hold, then like for
ϕprefixes it would violate the fact that A is copyless.

It remains to prove the condition 2. Recall that ta = (q1, b, q2, σ). We assumed that
B ≠ ∅ and by definition the selectors are defined only if Var(σ(x)) = ∅ for every x ∈ B. By
Claim 29 such a position is unique. ◂

Thus we have defined the formula P⊗
s0,sq

that defines the same functions as P⊗{g}; earlier
we defined S⊗s0,sq

corresponding to S⊗{g}; where g is the ground expression defined by the
run of A. By (3) the formula P⊗

s0,sq
⊗S⊗s0,sq

outputs ⟦g⟧, which is the output of A.
Recall that at some point we assumed that we consider only runs where the root of the

ground expression is ⊗. This gives us two formulas ψ⊕
A
and ψ⊙

A
.; and leaves the case of runs,

where the ground expression is a constant. For them we define the following formula.

ψsingle
A

= ⊗
s0,sq

⊗(ε)⟨Rs0→sq ⟩(ε). S⊕
s0,sq

.



40 Maximal partition logic: towards a logical characterization of copyless CRA

This is the same formula as ψ⊕
A

without the component P⊕
s0,sq

. Like before for every word
there is exactly one pair (s0, sq) for which the interval is selected. It is easy to verify that
the formula S⊕

s0,sq
outputs the unique constant that is the output of A. Notice that the

choice of the operator ⊕ over ⊙ is arbitrary, since there is only one constant to aggregate.
It remains to define the final formula

ψA = (⊕(ε)⟨R⊕⟩(ε). ψ⊕A)⊕ (⊕(ε)⟨R⊙⟩(ε). ψ⊙A)⊕ (⊕(ε)⟨Rsingle⟩(ε). ψsingle
A

)

where R⊕,R⊙,Rsingle are regular expressions that partition Σ∗ into three languages depend-
ing on the root of the ground expression defined by the run of A. The definition of finite
automata recognizing L(R⊕), L(R⊙), L(Rsingle) is very similar to the definition of track
automata T ⊗ and we leave it to the reader. It is straightforward that on a given word ψA
is equivalent to ψrA, where r is the root of the ground expression defined by the run of A.

To conclude notice that we used the induction assumption only to define P⊗
s0,sq

. In the
base steps of induction for N = 0,1 there is no alternation between the operators ⊙ and
⊕. Then we do not have to define the subformula P⊗

s0,sq
and we do not use the induction

assumption.

D Proof of Proposition 10

The proof is by induction over the size of a formula. For the basic case if ϕ = c then the
formula ϕ is trivially invariant under the orientation of the word. If ϕ = ϕ1⊗ϕ2 for ⊗ ∈ {⊕,⊙}
then using the formulas ϕr1, ϕr2 defined by induction assumption we define ϕr = ϕr1⊗ϕr2. For
the last case let φ =⊗ t. ψ, where t = R⟨S⟩T . We define ϕr =⊗ tr. ψr, where ψr is defined by
induction assumption; tr = T r⟨Sr⟩Rr; and Rr, Sr, T r are the regular languages recognizing
the reverse of languages of R,S,T . It is straightforward that ϕr is the reverse formula of ϕ.

E Proof of Proposition 13

We prove this proposition by showing that for every copyless CRA there exists a weighted
automaton that defines the same function. Since weighted automata were shown in [7] to
be equally expressive than WMSO[⊕X⊙1

x], by Theorem 9 this shows that MP is contained
in WMSO[⊕X⊙1

x].
The following result will be useful during this proof. It shows the form of a copyless

expression when it is rewrite as a sum of monomials.

▸ Lemma 33. For any copyless expression e, there exist an equivalent expression e′ of the
form:

e′ ≡
k

⊕
i=1

(ci ⊙
x∈Xi

x)

where X1, . . . ,Xk is a sequence of different sets over X and c1, . . . , ck is a sequence of values
over S for k ≥ 0.

Proof. The lemma is shown by induction on the size of e. For the base case, when e is equal
to a constant or a variable, the lemma trivially holds by taking e′ = e. For the inductive
case, suppose that e = e1 ⊗ e2 where ⊗ is either ⊕ or ⊙. By the inductive hypothesis we
know that there exist expressions e′1 and e′2 equivalent to e1 and e2, respectively, such that
for j ∈ {1,2}:

e′j ≡
kj

⊕
i=1

⎛
⎜
⎝
cji ⊙
x∈Xj

i

x
⎞
⎟
⎠
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where Xj
1 , . . . ,X

j
kj

is a sequence of different sets over X and cj1, . . . , c
j
kj

is a sequence of values
over S for kj ≥ 0. Given that e is a copyless expression, then we know that Var(e1)∩Var(e2).
Without lost of generality, we can assume that Xj

i ⊆ Var(ej) for j ∈ {1,2} and i ≤ kj . If not
and there exists Xj

i /⊆ Var(ej), then this implies that cji must be equal to 0 (i.e. Xj
i is not

contributing in e′j) and we can omitXj
i in e′j . Then sinceXj

i ⊆ Var(ej) and Var(e1)∩Var(e2),
this implies that:

X1
i1 ∩X

2
i2 = ∅ for every i1 ≤ k1 and i2 ≤ k2. (18)

Now we consider when ⊗ is either ⊕ or ⊙. If e = e1 ⊕ e2, then by considering e′ = e1 ⊕ e2 the
lemma is proved given that by (18) all sets of the form Xj

i are different for j ∈ {1,2} and
i ≤ kj . Otherwise, e = e1 ⊗ e2 and we get:

e′1 ⊙ e′2 =
k1

⊕
i=1

(c1i ⊙
x∈X1

i

x) ⊙
k2

⊕
i=1

(c2i ⊙
x∈X2

i

x)

=
k1

⊕
i1=1

k2

⊕
i2=1

(c1i1 ⊙ c
1
i2 ⊙
x∈X1

i1
∪X2

i2

x) = e′

The last derivation holds by (18), i.e., we do not need to consider repetitions in the mul-
tiplication of two monomials since X1

i1
∩X2

i2
= ∅. One can also check that all sets of the

form X1
i1
∪X2

i2
are different. Indeed, all sets X1

i1
are pairwise different and the same holds

for X2
i2
. This means by (18) that all sets X1

i1
∪X2

i2
must be different as well. Then e′ is

equivalent to e and it has the form stated in the lemma. ◂

Fix a semiring S and a finite alphabet Σ. A weighted automaton over Σ [20, 8] is a
tuple A = (Q,Σ,E, I,F ) where Q is a finite set of states, E ∶ Q × Σ ×Q → S is a weighted
transition relation, and I,F ∶ Q→ S is the initial and final function, respectively. Usually, if
E(p, a, q) = s, we denote this transition graphically by p a/sÐ→ q. A run ρ of A is a sequence of
transitions:

ρ = q0
w1/s1Ð→ q1

w2/s2Ð→ ⋯ wn/snÐ→ qn.

where wi ≠ 0 for all i ≤ n. We say that ρ is a run of A over a word w = a1a2 . . . an
if it also holds that I(q0) ≠ 0. Moreover, a run ρ like above is accepting if I(q0) ≠ 0
and F (qn) ≠ 0. In this case, the weight of an accepting run ρ of A over w is defined by
∣ρ∣ = I(q0)⊙∏n

i=1 si ⊙ F (qn). We define RunA(w) as the set of all accepting runs of A over
w. Finally, the weight of A over a word w is defined by

⟦A⟧(w) = ∑
ρ∈RunA(w)

∣ρ∣

where the sum is equal to 0 if RunA(w) is empty. The set L(A) = {w ∈ Σ∗ ∣ RunA(w) ≠ ∅}
is called the language of A.

A weighted automaton A is called unambiguous if ∣RunA(w)∣ ≤ 1 for every w ∈ Σ∗ and
is called finitely ambiguous if there exists a uniform bound N such that ∣RunA(w)∣ ≤ N
for every w ∈ Σ∗ [22, 13]. Furthermore, A is called polynomial ambiguous if the function
∣RunA(⋅)∣ is bounded by a polynomial on the input length [22, 13]. For the special case
when the number of runs of A are bounded by a linear function, we say that A is linear
ambiguous.

Proof of Proposition 13. We show that for every copyless cost register automaton A there
exists a weighted automaton W that recognizes the same function.
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By Lemma 33, any copyless expression e can be rewritten as an equivalent expression e′
of the form:

e′ ≡
k

⊕
i=1

(ci ⊙
x∈Xi

x)

where X1, . . . ,Xk is a sequence of pairwise different sets over X and c1, . . . , ck is a sequence
of values over S for k ≥ 0. Therefore, for any copyless expression e we denote by Mon(e)
the set of all pairs (X, c) ∈ 2X × S where c⊙⊙x∈X x is a monomial in the above expression
e′ of e.

Let A = (Q,Σ,X , δ, q0, ν0, µ) be a copyless cost register automaton. The proof idea is to
construct a weighted automaton W equivalent to A such that each run of W over a word w
guesses a possible monomial that results from distributing products inside sums in output
ground expression of A over w. By the semantics of weighted automata, the output of W
will be the sum of all products and this will correspond to the representation as a sum of
monomials of the output ground expression of A over w.

We define a weighted automatonW = (Q′,Σ,E′, I ′, F ′) that computes the same function
as A such that:

Q′ = Q × 2X ,
I ′(q, S) =⊙x∈S ν0(x) whenever q = q0 and 0 otherwise,
F ′(q, S) = c whenever (S, c) ∈ Mon(µ(x)) and 0 otherwise.
E′((q, S), a, (q′, S′)) = c iff δ(q, a) = (q′, σ) and there exists a set {(Sx, cx)}x∈S′ (i.e. the
set is indexed by elements in S′) where Sx ⊆ X and cx ∈ S such that:
1. {Sx}x∈S′ forms a partition of S,
2. (Sx, cx) ∈ Mon(σ(x)) for each x ∈ S′, and
3. c =⊙x∈S′ cx.

The idea of the transition relation E′ is to mimic the transition function δ and to keep just
the set of variables that contribute to a variable in S′.

First, we show that for any pairs S,S′ ⊆ X and a copyless substitution σ, then there
exists a unique set {(Sx, cx)}x∈S′ that satisfies Properties 1 and 2 above. In fact, given that
{Sx}x∈S′ forms a partition of S and (Sx, cx) ∈ Mon(σ(x)) for each x ∈ S′, then it must hold
that Var(σ(x))∩S = Sx and, thus, each Sx is uniquely determined by S, S′, σ. We conclude
that E′ is well defined in terms of the set {(Sx, cx)}x∈S′ .

Next, we prove that for every word w ∈ Σ∗ we have that A(w) = W(w) by showing
the following claim. For a word w over Σ and a state (q, S) ∈ Q′, let RunW(w, (q, S))
be the set of all runs of W over w that stops in (q, S). Furthemore, for any run ρ =
(q0, S0) a1/s1Ð→ ⋯ an/snÐ→ (qn, Sn) in RunW(w, (qn, Sn)), we denote by ⟦ρ⟧ = I ′(q0, S0) ⊙∏n

i=1 si
the partial cost of a run ρ of W over w = a1 . . . an.

▸ Claim 34. For any word w = a1 . . . an ∈ Σ∗, if (q0, ν0) a1Ð→ . . . anÐ→ (qn, νn) is the run of A over
w then for every S ⊆ X it holds that:

⊙
x∈S

νn(x) = ⊕
ρ∈RunW(w,(qn,S))

⟦ρ⟧

We show this claim by induction over the size of w. For the base case w = ε, consider any
set S ⊆ X . We know that the unique run in RunW(ε, (q0, S)) is the run ρ = (q0, S). Then
the claim holds by definition:

⟦ρ⟧ = I ′(q0, S) = ⊙
x∈S

ν0(x)
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Now, suppose that the claim holds for any word w = a1 . . . an of size n and consider the word
w ⋅ a for any a ∈ Σ. Take the run (q0, ν0) a1Ð→ . . . anÐ→ (qn, νn) aÐ→ (q, ν) of A over w and a set
S ⊆ X . One can easily derive the following equivalence:

⊕
ρ∈RunW(wa,(q,S))

⟦ρ⟧ = ⊕
R⊆X

E′((qn,R), a, (q, S))⊙
⎛
⎝ ⊕
ρ′∈RunW(w,(qn,R))

⟦ρ′⟧
⎞
⎠

= ⊕
R⊆X

E′((qn,R), a, (q, S))⊙ (⊙
x∈R

νn(x))

The first equivalence holds by factorizing the set RunW(wa, (q, S)) under the last transition
in a run and the last equivalence holds by applying the inductive hypothesis over the state
(qn,R).

The next step is to unfold the last expression by using the definition of E′((qn,R), a, (q, S)).
Suppose that δ(qn, a) = (q, σ). Given that S is fixed and σ is determined by qn, a, and q

(i.e. is also fixed), we know that for each set R, a set {(SRx , cRx )}x∈S is uniquely determined
by S, R, and σ. Thus, by the definition of E′((qn,R), a, (q, S)) we get that:

⊕
R⊆X

E′((qn,R), a, (q, S))⊙ (⊙
x∈R

νn(x)) = ⊕
R⊆X

⊙
x∈S

⎛
⎝
cRx ⊙ ( ⊙

y∈SR
x

νn(y))
⎞
⎠

Take any variable x∗ ∈ S. Then the last expression can be factorize by each monomial
(P, c) producing the following expression:

⊕
R⊆X

⊙
x∈S

⎛
⎝
cRx ⊙ ( ⊙

y∈SR
x

νn(y))
⎞
⎠

= ⊕
(P,c)∈Mon(σ(x∗))

c⊙ (⊙
z∈P

νn(z)) ⊙

⎛
⎝ ⊕
R⊆(X−P )

⊙
x∈(S−x∗)

⎛
⎝
cRx ⊙ ( ⊙

y∈SR
x

νn(y))
⎞
⎠
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕP

Note that by a monomial (P, c) for a variable x∗ is independent of all the other monomials
for any variable x ∈ (S − x∗). This implies that each subexpression ϕP is equal for every
monomial (P, c) of σ(x∗).

⊕
R⊆X

⊙
x∈S

⎛
⎝
cRx ⊙ ( ⊙

y∈SR
x

νn(y))
⎞
⎠

=
⎛
⎝ ⊕
(P,c)∈Mon(σ(x∗))

c⊙ (⊙
z∈P

νn(z))
⎞
⎠
⊙

⎛
⎝ ⊕
R⊆(X−Var(σ(x∗)))

⊙
x∈(S−x∗)

⎛
⎝
cRx ⊙ ( ⊙

y∈SR
x

νn(y))
⎞
⎠
⎞
⎠
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By applying the last factorization recursively, one get the desire proof:

⊕
R⊆X

⊙
x∈S

⎛
⎝
cRx ⊙ ( ⊙

y∈SR
x

νn(y))
⎞
⎠

= ⊙
x∈S

⎛
⎝ ⊕
(P,c)∈Mon(σ(x))

c⊙
⎛
⎝⊙y∈P

νn(y)
⎞
⎠
⎞
⎠

= ⊙
x∈S

ν(x)

◂

F Proof of Proposition 14

For this proof we show that any finitely ambiguous weighted automata (see Section E) can be
defined by an MP-formula. Since finitely ambiguous weighted automata were shown in [14]
to be equally expressive than WMSO[⊙1

x], this will show that WMSO[⊙1
x] is contained

in MP.
To show that any finitely ambiguous weighted automaton can be defined by an MP-

formula, we use the results in [13] and [3] combined with Theorem 9. Let A be a fi-
nitely ambiguous weighted automaton. In [13] it was shown that any finitely ambiguous
weighted automaton A can be written as a disjoint union of unambiguous weighted auto-
mata A1, . . . ,Ak such that, for every word w ∈ Σ∗, it holds that:

⟦A⟧(w) = ⟦A1⟧(w)⊕⋯⊕ ⟦Ak⟧(w)

In [3], it was shown that every unambiguous weighted automaton Ai is equivalent to a
copyless CRA Bi that uses just the ⊙-operations. In particular, Bi is a bounded alternation
copyless CRA with just one alternation. By Theorem 9, we know that each Bi is equivalent
to an MP-formula ϕi. Then it is straightforward to show that A is equivalent to the formula
ϕ1 ⊕⋯⊕ ϕk.
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