
A Worst-Case Optimal Join Algorithm
for SPARQL

Aidan Hogan2,3, Cristian Riveros1,3, Carlos Rojas1,3, and Adrián Soto1,3

1 Pontificia Universidad Católica de Chile
2 DCC, Universidad de Chile

3 Millenium Institute for Foundational Research on Data

Abstract. Worst-case optimal multiway join algorithms have recently
gained a lot of attention in the database literature. These algorithms
not only offer strong theoretical guarantees of efficiency, but have also
been empirically demonstrated to significantly improve query runtimes
for relational and graph databases. Despite these promising theoreti-
cal and practical results, however, the Semantic Web community has
yet to adopt such techniques; to the best of our knowledge, no native
RDF database currently supports such join algorithms, where in this
paper we demonstrate that this should change. We propose a novel pro-
cedure for evaluating SPARQL queries based on an existing worst-case
join algorithm called Leapfrog Triejoin. We propose an adaptation of this
algorithm for evaluating SPARQL queries, and implement it in Apache
Jena. We then present experiments over the Berlin and WatDiv SPARQL
benchmarks, and a novel benchmark that we propose based on Wikidata
that is designed to provide insights into join performance for a more di-
verse set of basic graph patterns. Our results show that with this new join
algorithm, Apache Jena often runs orders of magnitude faster than the
base version and two other SPARQL engines: Virtuoso and Blazegraph.

1 Introduction

Since its initial standardisation over a decade ago, the SPARQL query language
has enjoyed broad adoption, having been implemented in a wide variety of en-
gines (e.g., [1,16,23,30]) and supported by hundreds of public endpoints on the
Web [8], the most prominent of which receive thousands or even millions of
queries per day [14,22]. Despite these successes, however, there remains room
for improvement. Though current SPARQL implementations now work well for
processing large workloads of relatively simple queries [22], as we show in later
experiments, they still struggle when evaluating queries with more complex joins;
we argue that this is due, in part, to the fact that prominent SPARQL engines
rely on traditional join algorithms that have not changed for over a decade.

On the other hand, a new family of join algorithms has received much at-
tention in the recent database literature: the state-of-the-art for join evaluation
has moved away from pairwise join evaluation [29], towards multiway join eval-
uation where an arbitrary number of joins can be evaluated at once. One of the

main benefits of the multiway approach is to minimise the number of interme-
diate results generated. In fact, a variety of modern multiway join algorithms
– including, for example, Leapfrog Triejoin [31], Minesweeper [25], Tetris [21],
CacheTrieJoin [19], etc. – have been proven to be worst-case optimal [26,27],
meaning that the runtime of the algorithm is bounded by the worst-case cardi-
nality of the query result (i.e. the AGM bound [11]); this theoretical guarantee
implies that no other join algorithm can exist that is asymptotically faster for
all database instances. Several systems (e.g. Logicblox [9] and Emptyheaded [4])
have further implemented these worst-case optimal strategies and demonstrated
their superior performance in practice for evaluating queries with complex joins.

A natural idea, then, is to leverage worst-case optimal join algorithms for
evaluating basic graph patterns, which form the core of SPARQL queries. How-
ever, though work has been done on adopting such algorithms for graph queries
and analytics [28,4,20], to the best of our knowledge, no such work has addressed
the evaluation of SPARQL basic graph patterns.

In this paper, we aim to fill this gap by investigating the benefits of worst-case
optimal join algorithms for evaluating basic graph patterns. Given our goal that
worst-case optimal join algorithms be widely adopted on the Semantic Web in the
near future, we select Leapfrog Triejoin (LFTJ) [31] as our base algorithm since
it is relatively straightforward to adapt to the case of SPARQL while still pro-
viding worst-case optimal guarantees. We propose some adaptations of the LTFJ
algorithm for the SPARQL setting, proving that these adaptations do not affect
the theoretical guarantees of the algorithm. We discuss how the resulting algo-
rithm can be integrated and optimised within a native RDF store that supports
multiple index orders and cardinality-based join ordering, reducing the cost of
adoption. Analogously, we create a fork of Apache Jena (TDB) [1] that supports
worst-case join evaluation, and proceed to evaluate its performance against the
unmodified version of the engine, as well as two other prominent SPARQL en-
gines: Virtuoso [16] and Blazegraph [30]. We run experiments on the Berlin [13]
and WatDiv [6] SPARQL benchmarks, and thereafter on a novel benchmark
based on Wikidata [32] from which we generate a large set of SPARQL basic
graph patterns exhibiting a variety of increasingly complex join patterns. Our
results show that our fork of Apache Jena can reduce the runtimes of queries
with non-trivial joins by orders of magnitude versus the baseline systems.

2 Preliminaries

We introduce some brief preliminaries for RDF and SPARQL used throughout
and thereafter discuss the central notion of worst-case optimal joins.

RDF: RDF is the graph-based data model at the heart of the Semantic Web.
RDF terms can be IRIs (I), literals (L) or blank nodes (B). A triple ps, p, oq P
IBˆIˆIBL is called an RDF triple, where s is called the subject, p the predicate,
and o the object.4 An RDF graph is a set of RDF triples.

4 We use IB as a shortcut for IYB, etc.

SPARQL: SPARQL is the standard query language for RDF [3]. Let V be a
set of variables. A tuple t P ILV ˆ IV ˆ ILV is called a triple pattern. Blank
nodes in triple patterns can be considered as query variables for our purposes.
A set of triple patterns is called a basic graph pattern. We denote by varptq and
varpP q the set of variables found in a triple pattern t and basic graph pattern
P , respectively. We call a variable ?x P varpP q a join variable if it appears in
two or more triple patterns of P , and a lonely variable otherwise.

The semantics of SPARQL queries is defined in terms of mappings. A map-
ping µ is a partial function µ : V Ñ IBL. The domain of µ, denoted dompµq,
is the set of variables on which µ is defined. Given a triple pattern t, we de-
note by µptq the image of the triple pattern t under µ: the triple obtained
by replacing the variables in t according to µ. We say that two mappings
µ1 and µ2 are compatible, denoted µ1 „ µ2, iff µ1p?xq “ µ2p?xq for every
?x P dompµ1q X dompµ2q. Given sets of mappings Ω1 and Ω2, we then define
their join as Ω1 ’ Ω2 “ tµ1 Y µ2 | µ1 P Ω1, µ2 P Ω2, and µ1 „ µ2u.

We can now define the evaluation of a triple pattern and a basic graph pattern
over an RDF graph G (the latter being defined as a join over its triple patterns):

JtKG “ tµ | varptq “ dompµq and µptq P Gu
Jtt1, . . . , tnuKG “ Jt1KG ’ ... ’ JtnKG

Letting µpP q denote the image of P under µ, with respect to the latter definition,
we can equivalently say that JP KG “ tµ | dompµq “ varpP q and µpP q Ď Gu.

SPARQL further offers a wide range of query operators that can be used to
combine or modify the results of basic graph patterns, such as union, optional,
filters, aggregates, property paths, etc. In this paper, we focus on optimising
the evaluation of basic graph patterns, which form the core of SPARQL queries;
other SPARQL operators can be supported by applying standard techniques
over the mappings generated from the query’s basic graph patterns.5 However,
there is the possibility for bespoke methods that merge the evaluation of some
of these operators – in particular optional, property paths, named graphs, etc.
– with the evaluation of basic graph patterns by the proposed worst-case join
algorithm. We leave the exploration of such embedded optimisations for future
work. Furthermore, SPARQL assumes a default bag semantics, which preserves
duplicates [7]; though we evaluate sets of solutions for basic graph patterns,
such patterns alone never generate duplicate mappings, and thus our proposal
is compatible with bag semantics being applied in higher-level query operators.

Worst case optimality: A join algorithm is called worst-case optimal if it
satisfies the AGM bound [11], namely, if the running time over an instance G is
bounded by the worst-case output size over all instances of the same size as G.
Specifically, let P be a BGP and G an RDF graph. Consider the following linear

5 Other features like BIND, VALUES, SERVICE, etc., that generate or extend mappings
can be evaluated in the standard way.

program [11] adapted for the case of RDF and basic graph patterns:

minimize
ř

tPP xt ¨ logp|JtKG|q

subject to
ř

t:?xPvarptq xt ě 1 for each ?x P varpP q

xt ě 0 for each t P P

where xt is a variable for each t P P . If MINpP,Gq is the minimum for the above
optimization problem, then the AGM bound states that |JP KG| ď 2MINpP,Gq and
this bound is tight: there exists an RDF graph G1 of the same size as G where
|JP KG1 | is equal to 2MINpP,Gq up to a logarithmic factor. We call an evaluation
algorithm for a basic graph pattern worst case optimal if its running time is at
most 2MINpP,Gq up to a logarithmic factor. All of our algorithmic analysis is done
in data complexity where the size of the query is considered as fixed.

3 Related Work

Our goal is to optimise the evaluation of basic graph patterns in SPARQL.
Here we first discuss the standard evaluation methods used in popular SPARQL
engines, proposals of multiway joins for SPARQL, works on worst-case optimal
join algorithms, and a summary of the novelty of our present work.

Indexing: In order to efficiently evaluate triple patterns, SPARQL engines em-
ploy indexes that offer optimised access to the underlying data; such engines will
often build a complete index that can efficiently evaluate a triple pattern with
any combination of constants and variables [18]. A complete index is comprised
of multiple index orders, where a single index order with prefix lookups can be
used to evaluate multiple forms of triple pattern;6 for example, the index order
pos allows for directly evaluating triples patterns of the form p?, ?, ?q, p?, p, ?q,
p?, p, oq and ps, p, oq without filtering, but not ps, ?, ?q, which would require read-
ing all triples from the pos index and filtering those whose subject does not
match the triple pattern (a better choice would be an index order like spo or
sop). Some SPARQL engines build complete indexes for triples [33,23,10], while
others directly support named graphs by indexing quads [18,16]. In terms of in-
dexing implementations, one option is to apply standard data structures known
from relational databases, such as B+Tree indexes [18,23,16]; another option
is to develop RDF-specific techniques, such as nested data structures [33], bit
matrices [10], etc., that take advantage of the fixed arity of triples.

Pairwise joins: While a complete index allows individual triple patterns to be
evaluated efficiently, the evaluation of basic graph patterns requires applying
join algorithms over the mappings generated from triple patterns. The most
popular strategy for evaluating basic graph patterns is to use pairwise evaluation
joining two sets of mappings at a time. In left-deep plans, the results of a triple

6 Following [18], we use the notation ps|?, p|?, o|?q to denote eight forms of triple pat-
terns where, for example, p?, p, oq refers to the set of triple patterns with variable
subject, constant predicate and constant object: Vˆ Iˆ IL.

pattern are joined with the current results of all joins thus far; for example,
taking a basic graph pattern with four triple patterns, an example left-deep
evaluation would be pppt1 ’ t2q ’ t3q ’ t4q [18]. In bushy plans, two sets of join
results can also be joined, leading to more balanced query plans; for example,
ppt1 ’ t2q ’ pt3 ’ tnqq is an instance of a bushy plan [23]. To implement
such joins, SPARQL engines often use variants of well-known algorithms for
join evaluation in relational databases, such as nested-loop joins [18,23], hash
joins [23], and sort-merge joins [23]. An important aspect of optimising SPARQL
query plans is then to exploit the commutativity and associativity of joins to
find a query plan that minimises the number of intermediate results generated;
a common strategy is to rely on cardinality estimates [18,23,16].

Multiway joins: Multiway join algorithms perform joins over two or more sets
of mappings at once; a common strategy is to group, evaluate and join triple
patterns sharing a given variable as a single operation. Multiway join evaluation
can thus reduce the number of intermediate results that are generated. To the
best of our knowledge, few works have investigated multiway joins in the context
of SPARQL. One exception is the recent work of Galkin et al. [17], who propose
a join algorithm for SPARQL queries called SMJoin that groups blocks of star-
shaped joins (where a common join variable is present in the subject position)
and applies multiway joins over each block. Experimental results show that the
multiway join performs well for selective query patterns, but is outperformed
by a pairwise-join baseline for other types of queries (due to the latter applying
selectivity-based join reordering not available to SMJoin).

Worst-case optimal joins: Various works in the database literature have fo-
cused on worst-case optimal join algorithms [31,25,28,21,19], which have also
been implemented as part of commercial databases [9,4]. A subset of such works
have looked at the benefits of such algorithms for answering queries over graphs,
incorporating experiments for evaluating queries based on graph patterns in-
cluding cliques, trees, paths, etc. [28,4,19]; Aberger et al. [4] further provide
experiments for analytical queries on graphs, such as Pagerank and shortest
paths. While these works have provided evidence as to the value of worst-case
optimal join algorithms for graphs, they do not address the SPARQL setting.

Novelty: We propose a multiway join algorithm for evaluating basic graph pat-
terns in SPARQL based on Leapfrog Triejoin [31], modifying how it accesses
indexes to ensure better compatibility with current SPARQL implementations.
We prove that the adapted algorithm remains worst-case optimal, discuss its
implementation in Jena, and provide experimental results analysing its runtime
performance. Unlike the work of Galkin et al. [17], our multiway join algorithm
is agnostic to the position of a join variable in a triple pattern. More generally,
and to the best of our knowledge, this is the first work to explore the application
of a worst-case join algorithm for evaluating SPARQL basic graph patterns.

4 Leapfrog Join for Basic Graph Patterns

Our goal is to investigate the potential benefits of using a worst-case optimal
join algorithm on SPARQL query performance. Surveying the state-of-the-art
algorithms in the database literature [31,25,28,21,19,24], we opted to base our
algorithm on Leapfrog Triejoin algorithm (LFTJ) [31], mainly because it is the
most concise among all such algorithms [24], and thus a good starting point
for implementation within a SPARQL engine. We first present here a logical
version of LFTJ that we call Leapfrog Join (LFJ), which includes only the core
evaluation strategy on which LFTJ is based. LFJ can be divided into two main
phases: Leapfrog and variable elimination. We begin by discussing both phases
and give a running example of the algorithm. Later we propose a physical version
of Leapfrog Join, designed to be easily integrated with existing SPARQL engines,
mostly requiring adaptations at the index layer (see the discussion in Section 5).

Leapfrog: Unlike traditional join algorithms that evaluate triple pattern by
triple pattern, Leapfrog Join rather proceeds by evaluating variable by variable.
An important procedure in Leapfrog Join is to compute all non-trivial outputs of
a single variable; more formally, given an RDF graph G, a basic graph pattern
P and a variable ?x in varpP q we want to compute the following set:

LFGpP, ?xq “ tµ | dompµq “ t?xu and JµptqKG ‰ H for all t P P u .

In other words, we want to identify all single variable mappings µ such that, for
every t P P , the output of µptq over G is non-empty when ?x is replaced by µp?xq.
Intuitively, if µ P LFGpP, ?xq, then µ is a good candidate for a partial mapping
that can be extended to form an output mapping in JP KG. Note also that if ?x is
the only variable used in P (i.e., varpP q “ t?xu), then the set LFGpP, ?xq is the
same as computing the intersection of all sets JtKG. In Section 5, we will show
how to implement this function for one or more variables by exploiting standard
B+tree indexes while maintaining worst-case optimality.

Variable elimination: While the Leapfrog phase evaluates a single variable,
the variable elimination phase evaluates multiple variables. Given a basic graph
pattern P with varpP q “ tx1, . . . , xnu, an RDF graph G, and a variable order
Ovar “ ?x1, . . . , ?xm, Algorithm 1 shows the nested structure of the variable
elimination procedure, which constitutes the overall Leapfrog Join process. The
procedure iterates over each variable ?xi in order, extending the mapping µi with
a mapping µ P LFGpµipP q, ?xi`1q. Variable ?xi is fixed by extending µ with µi
(i.e. µi`1 “ µi Y µ; note that µi „ µ, so µi`1 is also a mapping); in this way,
variable ?xi is “eliminated” from P . The procedure moves on to eliminate the
next variable ?xi`1 analogously. After all variables ?x1, . . . , ?xm are eliminated,
the mapping µm´1Yµ is output, and the search for the next output is continued.

Figure 4.1 provides an example of variable elimination for a basic graph pat-
tern over an RDF graph. We assume the order ?x1 . . . ?x4; how such an order
is decided will be discussed later in Section 5.7 Pairwise evaluation with this
7 Such an order would be produced by SPARQL engines in practice if we had a graph

with many :father and :mother relations, outnumbering :winner relations.

Algorithm 1: Variable elimination for basic graph patterns

input : RDF graph G, BGP P , variable order Ovar “ ?x1 . . . ?xn
output: All mappings JP KG.

1 Function LFTJ-Eval pG,P,Ovarq

2 µ0 ÐH

3 foreach µ P LFGpµ0pP q, ?x1q do

4 µ1 Ð µ0 Y µ

5 foreach µ P LFGpµ1pP q, ?x2q do

6 µ2 Ð µ1 Y µ

7
. . .

8 foreach µ P LFGpµn´1pP q, ?xnq do

9 Output µn´1 Y µ // write to output and continue

G: :Nobel :Irene:winner

:Marie

:winner :mother

:Pierre

:winner :father

:Aage :winner

:Margrete

:mother

:Niels

:winner:father

P :

(?x1,:winner,?x2)
(?x1,:winner,?x3)
(?x1,:winner,?x4)
(?x2,:father,?x3)
(?x2,:mother,?x4)

LTFJ-EvalpG,P, ?x1 . . . ?x4q:

?x1

:Nobel

?x2

:Aage

:Irene

1

4

?x3

:Niels

:Pierre

2

5

?x4

NULL

:Marie

3

6

Fig. 4.1. Example of Leapfrog join for evaluating a SPARQL basic graph pattern

triple-pattern order would naively produce 53 “ 125 intermediary results con-
taining the Cartesian product of all five winners of the Nobel prize (as would the
multiway star-shaped join algorithm of Galkin et al. [17]). On the other hand,
under Leapfrog Join, variable elimination ensures that when, e.g., ?x2 is evalu-
ated, only those winners that have some father and some mother are considered.
The lower graph then shows the recursion order producing the final result(s).

5 A Physical Operator for Leapfrog Join

We implement Leapfrog Join (LFJ) in Apache Jena TDB version 3.9.0, which
implements nested-loop joins on top of B+tree indexes. We choose Jena as it is
one of the most widely-deployed (fully) open source SPARQL engines; however

the methods described can be generalised to other SPARQL engines. We now
explain the main modifications required to support LFJ in Jena.

Indexes for LFJ: The first modification needed to run LFJ was to extend the
index layer in Jena. Recall that a major phase in LFJ is to compute the set
LFGpP, ?xq given an RDF graph G, a basic graph pattern P and a variable ?x.
The next result shows that Leapfrog Join is a worst-case optimal join algorithm
whenever the computation of LFGpP, ?xq is done in a reasonable time.

Theorem 1. An implementation of Leapfrog Join is worst-case optimal if, for
every RDF graph G, basic graph pattern P , and variable ?x, the computation of
LFGpP, ?xq is done in time at most:

O
`

maxp min
tPP :?xPvarptq

|π?xpJtKGq|, 1q ¨ logp|G|q
˘

where π?xpJtKGq is the projection of JtKG over ?x.

The proof of Theorem 1 is given in Appendix A.
Calculating LFGpP, ?xq is the same as computing the intersection of all sets

JtKG; hence, one can use any adaptive intersection algorithm over n sets [15,12],
which satisfies the time restriction of Theorem 1. In particular, our implemen-
tation of LFJ uses the intersection algorithm proposed by Veldhuizen [31].

The algorithm of adaptive intersection assumes that each set π?xpJtKGq can
be navigated in increasing order. For this, we need an index IG such that for
every triple pattern t and every variable ?x in t, it provides a seek method
IGrt, ?xs . seekp:aq that outputs the least :b such that :b ě :a and JµptqKG ‰ H
for µ “ t?xÑ :bu, or NULL if no such :b exists; in other words, the seek method
jumps to the next non-trivial output for ?x in the order. To satisfy the bound
of Theorem 1, the seek method is required to take time logarithmic in the size
of G. Although the original LFTJ algorithm proposes to use tries for IG, such a
seek method can be supported using B+Trees adding all six orders over s, p and
o. Hence to Jena’s three default orders spo, pos, and osp, our implementation
adds three more orders: sop, pso, and ops. This roughly doubles the size of
the on-disk index and the number of update operations required to add/remove
triples, but (as shown later) offers gains in query performance with LFJ.8

Each index order is assigned a B+tree, where the seek method could then be
implemented by traversing the B+tree top-down from root to leaf in the standard
way. However, given that the seek method requests values in sequential order,
we use a stack to store the current node in the iteration, its leaf, and its parents;
when the next value is requested, we can read the next value in the order from
the leaf or, starting from there, search the B+tree upwards and then back down
in case that the next value is in another leaf. This bottom-up seek method offers

8 We currently consider querying over a single RDF graph; if we were to consider a
complete index on quads in order to support named graphs, the number of required
indexes would jump to 24. In such a case, however, practical steps can be taken to
reduce the number of indexes where, for example, some such orders will be rarely
accessed by real-world queries and can thus be removed.

constant amortized time when only one variable is unbound [31], logarithmic
time when two variables are unbound, and is more efficient in practice.

LFJ operator: We add a new LFJ join operator to Jena that takes a basic graph
pattern and evaluates it using our implementation of LFJ (per Algorithm 1).
Note that the original LFTJ algorithm applies some restrictions: (1) each relation
symbol must appear only once, (2) the order of attributes of the relations (triple
patterns in our case) must follow the global attribute order, (3) constants cannot
appear within the join query and (4) each attribute can appear at most once
in each relation (triple pattern in our case). The first restriction does not apply
for our implementation. Restrictions (2) and (3) are not required to maintain
worst-case optimality and are addressed by our indexes. The case of variables
occurring twice in a triple pattern requires some extra care, but can be addressed
with special indexes for triples repeating the same term in the given positions
(which are typically uncommon in RDF data), or using a fresh variable and
applying a low-level filter/intersection; we omit these details for brevity.

Variable order: The performance of LFJ is dependent on the chosen variable
order [5]; referring back to Figure 4.1, for example, a more efficient order would be
to swap ?x2 and ?x4, which would allow for more quickly rejecting the incomplete
mapping involving :Aage inG. In principle, the goal of finding a variable ordering
is similar to that for ordering triple patterns: in both cases, we wish to evaluate
highly-selective triple patterns/variables that help to filter mappings early on.
Along these lines, while specialised variable orderings have been proposed for
worst-case optimal join algorithms [5], we propose a solution based on Jena’s
existing triple ordering; this has the additional advantage of making experiments
between the baseline version of Jena and Jena with LFJ more comparable.

Given a triple-pattern order Otrip returned by Jena, we first choose join vari-
ables in order of appearance, and then select lonely variables in order of appear-
ance; for example, if Jena gives Otrip “ p?z, :p3, ?uq, p?x, :p2, ?zq, p?x, :p1, ?yq,
we will choose the variable order Ovar “ ?z, ?x, ?u, ?y since ?z is the first join
variable that appears in Otrip, and ?x is the second join variable that appears in
Otrip; given that ?u and ?y are lonely variables (appearing in one triple pattern),
they come after the join variables, again based on order of appearance. In fact,
as we now discuss, the order of lonely variables will not affect performance.

Enumerating mappings: Early experiments comparing Jena with and with-
out LFJ found that the performance of the former was sometimes orders of
magnitude worse than the latter. We identified the issue as relating to how
lonely variables are handled. To illustrate this issue, consider a graph pattern
P 1 containing only the first three triple patterns of P in Figure 4.1 such that
?x2, ?x3 and ?x4 are lonely variables. Applying the procedure of Algorithm 1,
after assigning ?x1 Ñ :Nobel, we still require 5ˆ 5ˆ 5 steps through the recur-
sion, repetitively evaluating the same partially-bound triple patterns. This final
recursion is unnecessary: since lonely variables are evaluated last, we know that
the final mappings must be extended by the Cartesian product of the non-trivial
outputs of the remaining lonely variables. To address this, assume a variable
order Ovar “ ?x1, . . . , ?xm, ?xm`1, . . . ?xn where ?x1, . . . , ?xm are join variables

and ?xm`1, . . . , ?xn are lonely variables. Assume also that t1, . . . , tk are the
triple patterns where ?xm`1, . . . , ?xn are mentioned (each such triple pattern
may mention one or more lonely variables). We eliminate ?x1, . . . , ?xm per Al-
gorithm 1, and for each partial solution µm generated, we compute the Cartesian
product µm ˆ Jµmpt1qKG ˆ . . . ˆ JµmptkqKG, requiring k (note that k ă n ´m)
additional calls to Jµmp¨qKG for each µm (rather than having to call LF a total

of 1`
řn´2
i“m

śi
j“m |LFGpµmpP q, ?xj`1q| times for each µm).

6 Experiments and Results

We now compare the performance of query evaluation for Apache Jena (TDB)
v.3.9.0 with LFJ, Apache Jena v.3.9.0 without LFJ, Virtuoso v.OS-7.2.7 [16] (one
of the most deployed engines in practice [8]), and Blazegraph v.2.1.4 [30] (used
by the Wikidata Query Service [22]). We run three sets of experiments using
the Berlin SPARQL Benchmark [13], the WatDiv Benchmark [6], and a novel
Wikidata Benchmark with complex graph patterns that we propose. We run all
experiments on a single machine with Ubuntu 16.04.5, Intel Xeon CPU E5-2609
v4@1.70GHz, Seagate 1TB Enterprise Capacity 2.5-Inch HDD, and 32GB RAM.
Code and configurations can be found online for reproducibility purposes [2].

6.1 Experiments on the Berlin SPARQL Benchmark

We first ran experiments over the Berlin SPARQL Benchmark (BSBM) [13],
comparing query runtimes for Jena with (denoted Jena-LFJ) and without (de-
noted Jena) the LFJ modifications. We run the Explore Use-Case of BSBM,
consisting of 12 queries using a mix of SPARQL 1.0 features, including optional,
union, filter, graph, etc. In Figure 6.2 we show the average time of each query in
logarithmic scale. These experiments were done by running 10,500 queries; we
found that on average each query took 49.3 ms for Jena-LFJ and 41.6 ms for
Jena. We conclude that the BSBM results show no clear trend to suggest that
one implementation outperforms the other. BSBM queries do not contain large
intermediary results and, thus, Jena-LFJ offers no improvement. Furthermore,
given that BSBM queries contain other features of SPARQL, the baseline of Jena
can use optimisations for other operators not currently available for Jena-LFJ
(in particular, pushing range filters, which appear in many BSBM queries).

6.2 Experiments on the WatDiv Benchmark

After reviewing the BSBM results, we still foresaw the need to run experiments
on queries with more complex and diverse basic graph patterns. We chose the
WatDiv benchmark [6] which is designed for this purpose. We generate 50 queries
for each of the 20 abstract patterns proposed in the benchmark. Executing the
50ˆ20 “ 1000 query instances and taking the average over all of them, Virtuoso
takes 64 s, Jena-LFJ takes 77 s, Blazegraph takes 99 s, and Jena takes 198 s. Box-
plots of runtimes for each specific query pattern are shown in Figures 6.3 and

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q11 Q12
100

101

102

103

T
im

e
(m

s)

Jena-LFJ Jena

Fig. 6.2. Plot of runtimes for queries of the Berlin Benchmark with log y-axis.

F1 F2 F3 F4 F5 L1 L2 L3 L4 L5
0

20

40

60

80

100

T
im

e
(m

s)

Jena-LFJ Jena Virtuoso Blazegraph

Fig. 6.3. Box plots of runtimes for queries L and F of the WatDiv Benchmark.

6.4. Unlike in the BSBM experiments, here Jena-LFJ is at least twice as fast as
Jena in terms of the overall query runtime and it also outperforms Blazegraph.
Indeed, these plots suggest that the running time of Jena-LFJ is much more
stable than other implementations; the interquartile difference is at most 40 ms.
Since this benchmark is oriented towards testing basic graph patterns, we can see
here that our implementation is competitive with respect to the other engines,
being slightly outperformed by Virtuoso. Despite this analysis, the runtimes of
these queries are still in the order of less than 100 ms, making it difficult to claim
that Jena-LFJ or Virtuoso is the best approach.

6.3 Experiments on the Wikidata Graph Pattern Benchmark

Though WatDiv contains more complex graph patterns than Berlin, it does not
contain (for example) graph patterns with cycles; furthermore, both benchmarks
are based on synthetic data with relatively simple schemata (e.g., BSBM and
WatDiv have 30 and 85 distinct predicates, respectively). In order to compare
the four engines for real data and a more diverse set of both acyclical and cyclical
graph patterns, we thus developed a new benchmark that we call the Wikidata
Graph Pattern Benchmark (WGPB).

S1 S2 S3 S4 S5 S6 S7
0

20

40

60

80

100

T
im

e
(m

s)

Jena-LFJ Jena Virtuoso Blazegraph

Fig. 6.4. Box plots of runtimes for queries S of the WatDiv Benchmark

?x ?p1 ?y .

?x ?p2 ?z

?x ?p1 ?y .

?x ?p2 ?z .

?x ?p3 ?u

?x ?p1 ?y .

?x ?p2 ?z .

?x ?p3 ?u .

?x ?p4 ?v

?y ?p1 ?x .

?z ?p2 ?x

?y ?p1 ?x .

?z ?p2 ?x .

?u ?p3 ?x

?y ?p1 ?x .

?z ?p2 ?x .

?u ?p3 ?x .

?v ?p4 ?x

?y ?p1 ?x .

?x ?p2 ?z

?y ?p1 ?x .

?x ?p2 ?z .

?x ?p3 ?u

?y ?p1 ?x .

?v ?p1 ?x .

?x ?p2 ?z .

?x ?p3 ?u

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p3 ?u .

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p3 ?u .

?u ?p4 ?v

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p2 ?x

?x ?p1 ?y .

?x ?p2 ?z .

?y ?p2 ?z

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p3 ?u .

?u ?p4 ?x

?x ?p1 ?y .

?x ?p2 ?u .

?z ?p3 ?y .

?z ?p4 ?u

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p3 ?u .

?x ?p4 ?u

?x ?p1 ?y .

?y ?p2 ?z .

?x ?p3 ?u .

?u ?p4 ?z

Fig. 6.5. Basic graph patterns and their associated diagram

Dataset: To generate the WGPB dataset, we take the Wikidata “truthy” dump
from 2018/11/15. This dump contains 3,303,288,386 triples. Given that our goal
is to develop queries on the graph structure of Wikidata, we remove labels,
aliases, and descriptions, leaving 969,496,651 triples with 5,419 unique predi-
cates. Given that we will later apply random sampling, we removed triples whose
predicate appeared fewer than 1,000 times to ensure that we avoid generating
trivial query instances. Finally, we also remove triples whose predicates appear
in more than 1,000,000 triples. The result, which we call the Wikidata Core
Graph (WCG), contains 82,923,234 triples with 2,101 distinct predicates.

Queries: To achieve a set of queries with diverse graph patterns, we create
instances of the 17 abstract basic graph patterns shown in Figure 6.5; we focus
on joins between subjects and objects as common in real-world queries [14]. For
each abstract pattern we instantiate 50 queries using random walks in WCG
per the given pattern; each instance replaces the predicate variables by the IRIs
found on the walk; for example, the first pattern ?x ?p1 ?y . ?x ?p2 ?z may
be instantiated as SELECT * WHERE{ ?x wdt:P57 ?y . ?x wdt:P166 ?z }.

Results with single join variable: We first present results for queries with
a single join variable (the top row of Figure 6.5), analysing the performance of

0

100

200

300

T
im

e
(m

s)

Jena-LFJ Jena Virtuoso Blazegraph

Fig. 6.6. Box plots of runtimes for queries with a single join variable

the Leapfrog procedure of LFJ. Executing the 50ˆ 9 “ 450 query instances, in
terms of overall query runtime across all patterns, Jena-LFJ takes 4.0 s, Jena
takes 14.0 s, Blazegraph takes 27.9 s, and Virtuoso takes 64.8 s. Figure 6.6 then
shows the detailed results per query pattern, where we focus the y-axis in on the
range of 0–300 ms for clarity. Here we see that Jena-LFJ is at least twice as fast
as Jena in terms of median or mean times, and can be 10–20 times faster than
the slowest engine for some queries. The most notable speedup occurs when join
variables appear in the object position, which may lead to many intermediate
results when a node with high in-degree (e.g., a country) is involved; in such
cases, LFJ performs better than other engines. One might consider that this
speedup may be attributable to the lack of the three additional orders of s, p
and o in the other engines. However, in the case of the best gains – i.e., joins in
the object position – Jena-LFJ is using the pos index, which is already included
in Jena; more generally, Jena uses index nested loop joins, which cannot benefit
from further index orders when evaluating BGPs/equijoins.

We further observe that the runtimes for Jena-LFJ are more stable, with the
maximum runtime never exceeding 55 ms; furthermore, within the 50 queries
of each abstract pattern, the standard deviation in runtimes for Jena-LFJ is
consistently around 9 ms, while Jena’s standard deviation is always over 20 ms,
and that of Virtuoso and Blazegraph is even higher, sometimes over 100 ms.

Results with multiple join variables: We now present results for queries
with multiple join variables (the bottom row of Figure 6.5). Given that the pre-
vious experiments test the performance of Leapfrog for intersecting results for
join variables in up to four patterns, our focus now is on the performance of
variable elimination. We thus select abstract graph patterns where each variable
appears in at most two triple patterns; such queries put as much emphasis as
possible on the performance of the variable elimination phase versus the Leapfrog
phase tested previously. Executing the 50 ˆ 8 “ 400 query instances, in terms
of the overall query runtime across all patterns, Jena-LFJ takes 12 s, Virtuoso
takes 37 s, Jena takes 112 s, and Blazegraph takes 35 s. Figure 6.7 again shows
the detailed results focusing on the same y-axis range for clarity. We again see

0

100

200

300

T
im

e
(m

s)

Jena-LFJ Jena Virtuoso Blazegraph

Fig. 6.7. Box plots of runtimes for queries with multiple join variables

that Jena-LFJ generally exhibits the most stable runtimes, clearly outperform-
ing Jena and Blazegraph for all patterns and Virtuoso for the first two patterns.
Comparing Jena-LFJ and Virtuoso for the latter six patterns (those with cy-
cles), Virtuoso is competitive with and sometimes even outperforms Jena-LFJ;
analysing further, we found that Virtuoso often chooses a better execution order
than Jena(-LFJ), where manually optimising the variable order in Jena-LFJ for
such cases results in much better performance than Virtuoso; this suggests that
the variable ordering of Jena-LFJ could be improved. Even with the current
variable ordering of Jena-LFJ, however, the clear gains in the first two patterns
vs. Virtuoso outweigh slight gains by Virtuoso in some of the latter six patterns,
as evidenced by the total runtimes mentioned previously (12 s vs. 37 s).

7 Conclusions

To the best of our knowledge, this is the first work to look at the benefits
of worst-case optimal join algorithms in a SPARQL setting. Based on our re-
sults, we believe that worst-case optimal joins should become widely adopted by
SPARQL engines in the near future; we also firmly believe that our results are
only a starting point in this line of research, and that there is still much room left
for maximising the potential benefits of such algorithms in a SPARQL setting.
Along these lines, we have released an open source fork of Apache Jena imple-
menting LFJ that can serve as a baseline for future experiments, and a novel
benchmark based on Wikidata that can be used for testing future developments
in a real-world setting. In terms of future work, we identify three main lines
of research, investigating: (i) the potential benefits of other worst-case optimal
join algorithms for SPARQL [31,25,28,21,19,24]; (ii) effective ways to optimise
the variable order [21,5]; (iii) optimisations that push the evaluation of other
SPARQL operators – particularly optional patterns, property paths, difference,
and named graphs – into the worst-case optimal process.

Acknowledgements This work was supported by the Millennium Institute for
Foundational Research on Data (IMFD) and by Fondecyt Grant No. 1181896.

References

1. Apache Jena. https://jena.apache.org/. Accessed on 2018-12-30.

2. Github project. https://gqgh5wfgzt.github.io/benchmark-leapfrog/.

3. SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query/. Ac-
cessed on 2018-12-30.

4. C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded:
A relational engine for graph processing. ACM Transactions on Database Systems
(TODS), 42(4):20, 2017.

5. M. Abo Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions asked frequently. In
Principles of Database Systems (PODS), pages 13–28. ACM, 2016.

6. G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified stress testing of RDF
data management systems. In International Semantic Web Conference (ISWC),
pages 197–212. Springer, 2014.

7. R. Angles and C. Gutiérrez. The Multiset Semantics of SPARQL Patterns. In
International Semantic Web Conference (ISWC), pages 20–36. Springer, 2016.

8. C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche. SPARQL web-
querying infrastructure: Ready for action? In International Semantic Web Con-
ference (ISWC), pages 277–293. Springer, 2013.

9. M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veld-
huizen, and G. Washburn. Design and implementation of the LogicBlox system.
In SIGMOD International Conference on Management of Data, pages 1371–1382.
ACM, 2015.

10. M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”Bit” loaded: a scalable
lightweight join query processor for RDF data. In World Wide Web (WWW),
pages 41–50, 2010.

11. A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational
joins. In Foundations of Computer Science (FOCS), pages 739–748. IEEE, 2008.

12. J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In
Symposium on Discrete Algorithms (SODA), pages 390–399. Society for Industrial
and Applied Mathematics, 2002.

13. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. International Journal
on Semantic Web and Information Systems (IJSWIS), 5(2):1–24, 2009.

14. A. Bonifati, W. Martens, and T. Timm. An analytical study of large SPARQL
query logs. PVLDB, 11(2):149–161, 2017.

15. E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersections, unions,
and differences. In Symposium on Discrete Algorithms (SODA). Citeseer, 2000.

16. O. Erling and I. Mikhailov. RDF Support in the Virtuoso DBMS. In Networked
Knowledge – Networked Media. Springer, 2009.

17. M. Galkin, K. M. Endris, M. Acosta, D. Collarana, M. Vidal, and S. Auer. SMJoin:
A Multi-way Join Operator for SPARQL Queries. In International Conference on
Semantic Systems (SEMANTICS), pages 104–111, 2017.

18. A. Harth and S. Decker. Optimized Index Structures for Querying RDF from the
Web. In Latin American Web Congress (LA-Web 2005), pages 71–80, 2005.

19. O. Kalinsky, Y. Etsion, and B. Kimelfeld. Flexible Caching in Trie Joins. In
International Conference on Extending Database Technology (EDBT), pages 282–
293. OpenProceedings.org, 2017.

20. O. Kalinsky, O. Mishali, A. Hogan, Y. Etsion, and B. Kimelfeld. Efficiently charting
RDF. CoRR, abs/1811.10955, 2018.

21. M. A. Khamis, H. Q. Ngo, C. Ré, and A. Rudra. Joins via geometric resolu-
tions: Worst case and beyond. ACM Transactions on Database Systems (TODS),
41(4):22, 2016.

22. S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. Getting
the Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowl-
edge Graph. In International Semantic Web Conference (ISWC), pages 376–394.
Springer, 2018.

23. T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. PVLDB,
1(1):647–659, 2008.

24. H. Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open
problems. In Principles of Database Systems (PODS), pages 111–124. ACM, 2018.

25. H. Q. Ngo, D. T. Nguyen, C. Re, and A. Rudra. Beyond worst-case analysis for
joins with minesweeper. In Principles of Database Systems (PODS), pages 234–
245. ACM, 2014.

26. H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms.
In Principles of Database Systems (PODS), pages 37–48. ACM, 2012.

27. H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New developments in the
theory of join algorithms. arXiv preprint arXiv:1310.3314, 2013.

28. D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra.
Join processing for graph patterns: An old dog with new tricks. In GRADES,
page 2. ACM, 2015.

29. R. Ramakrishnan and J. Gehrke. Database management systems. McGraw Hill,
2000.

30. B. B. Thompson, M. Personick, and M. Cutcher. The Bigdata R©RDF Graph
Database. In Linked Data Management., pages 193–237. 2014.

31. T. L. Veldhuizen. Leapfrog Triejoin: A simple, worst-case optimal join algorithm.
In ICDT, pages 96–106, 2014.

32. D. Vrandečić and M. Krötzsch. Wikidata: A free collaborative knowledgebase.
Comm. ACM, 57:78–85, 2014.

33. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic
web data management. PVLDB, 1(1):1008–1019, 2008.

A Proof of Theorem 1

Fix a basic graph pattern P , an RDF graph G, and ?x1, . . . , ?xn the chosen
variable order. Further assume that the computation of LFGpP

1, ?xq takes time
at most mintPP 1:?xPvarptq |π?xpJtKGq| ¨ logp|G|q for every basic graph pattern P 1

(for simplicity, we will omit the trivial empty case where there exists t P P 1

such that ?x P varptq and |π?xpJtKGq| “ 0 since the time taken will be simply
logp|G|q). Finally, for every RDF graph G1 we will say that G1 is of size less than
G whenever |JtKGi | ď |JtKG| for all t P P (recall that P is fixed).

The proof of Theorem 1 goes in two steps. First, we will bound the time of
Leapfrog Join by bounding the time Ti of each for-loop ?xi of Algorithm 1. Then
for each level ?xi we define a new RDF graph Gi of size less than G such that
Ti “ |JP KGi | ď 2MINpP,Gq. The proof will follow by taking the sum over all Ti.

Fix a variable ?xi and denote by x̄i´1 “ ?x1, . . . , ?xi´1 the order of variables
before ?xi (for the sake of simplification, in the sequel we consider x̄i also as a

set). We start by bounding the time of the for-loop in Algorithm 1 corresponding
to ?xi. For this, consider the following extension of LFG over x̄i´1:

LFGpP, x̄i´1q “ tµ | dompµq “ x̄i´1 and JµptqKG ‰ H for all t P P u

Clearly, the number of times that the for-loop of ?xi will be called is given
by |LFGpP, x̄i´1q|. Then for each µ P LFGpP, x̄i´1q the Leapfrog procedure
LFGpµpP q, ?xiq is called taking time at most mintPµpP q:?xiPvarptq |π?xipJtKGq| (omit-
ting the logp|G|q factor for the moment). If we call Ti the number of steps that
Algorithm 1 spends in the for-loop of ?xi, we have that:

Ti “
ÿ

µPLFGpP,x̄i´1q

min
tPµpP q:?xiPvarptq

|π?xipJtKGq|

One can easily check that the total time of Algorithm 1 is given by p
řn
i“1 Tiq ¨

logpGq. Therefore, if we bound Ti by the AGM bound of P and G, then the
worst case optimality of Leapfrog Join will be proven (recall that our analysis is
in data complexity, omitting factors that depend on the size of P).

To bound the size of Ti, we build an RDF graph Gi such that Ti “ |JP KGi
|

and the size of Gi is less that the size of G. Let K be a dummy value. To build
Gi define the set of mappings Ui such that µ P Ui if and only if there exists
µ1 P LFGpP, x̄i´1q such that:

1. µp?xq “ µ1p?xq for every ?x P x̄i´1,

2. 1 ď µp?xiq ď mintPµ1pP q:?xiPvarptq |π?xipJtKGq|, and

3. µp?xq “ K for every ?x P t?xi`1, . . . , ?xnu.

In other words, Ui contains all mappings built from mappings of LFGpP, x̄i´1q

and extended by assigning to ?xi any value less than the time for computing
LFGpµ

1pP q, ?xiq. From Ui we can build the RDF graph Gi as follows:

Gi “
ď

µPUi

µpP q.

By construction, note that the size of Gi is less than the size of G. Furthermore,
we have that Ti “ |JP KGi

|. Indeed, for each µ1 P LFGpP, x̄i´1q we will have
`

mintPµ1pP q:?xiPvarptq |π?xipJtKGq|
˘

different mappings in JP KGi
and vice versa.

To finish the proof, recall the linear program associated to P and G, and its
minimum value MINpP,Gq. Consider also the same linear program but now for
P and Gi. Given that Gi is of size less than G, then the minimization function
associated to the linear program of P and Gi always satisfies:

ÿ

tPP

xt ¨ logp|JtKGi |q ď
ÿ

tPP

xt ¨ logp|JtKG|q.

Therefore, we can conclude that MINpP,Giq ď MINpP,Gq and thus:

Ti “ |JP KGi
| ď 2MINpP,Giq ď 2MINpP,Gq

where the second inequality follows by the AGM bound. Given that each Ti
is bounded by 2MINpP,Gq we conclude that the overall time is bounded by n ¨
2MINpP,Gq ¨ logpGq and that Leapfrog Join is worst-case optimal.

	A Worst-Case Optimal Join Algorithmfor SPARQL

