
Quantitative Monadic Second-Order Logic
Stephan Kreutzer

Technical Universtiy Berlin
School of Elect. Eng. and Computer Science

stephan.kreutzer@tu-berlin.de

Cristian Riveros
The University of Oxford

Department of Computer Science
cristian.riveros@cs.ox.ac.uk

Abstract—While monadic second-order logic is a promi-
nent logic for specifying languages of finite words, it
lacks the power to compute quantitative properties, e.g.
to count. An automata model capable of computing such
properties are weighted automata, but logics equivalent to
these automata have only recently emerged.

We propose a new framework for adding quantitative
properties to logics specifying Boolean properties of words.
We use this to define Quantitative Monadic Second-Order
Logic (QMSO). In this way we obtain a simple logic which
is equally expressive to weighted automata. We analyse its
evaluation complexity, both data and combined complexity,
and show completeness results for combined complexity.

We further refine the analysis of this logic and obtain
fragments that characterise exactly subclasses of weighted
automata defined by the level of ambiguity allowed in the
automata. In this way, we define a quantitative logic which
has good decidability properties while being resonably
expressive and enjoying a simple syntactical definition.

I. INTRODUCTION

Using logics as specification languages for properties
of finite and infinite words or trees has a long history
in computer science. Of particular importance in this
context is Monadic Second-Order Logic (MSO), the
extension of first-order logic by quantification over sets
of positions in the input word (see e.g. [29], [11]).
The prominence of MSO as logic over words has many
causes: It is a very expressive and yet simple logic in
which many properties can be expressed very naturally.
In fact, Büchi’s classical theorem [6] states that a lan-
guage is recognisable by a finite state automaton if, and
only if, it is definable in MSO. Hence, MSO can define
precisely the regular languages and provides an elegant
specification mechanism for regular properties. Further-
more, the proof of the theorem is algorithmic which
implies that MSO formulas can effectively be compiled
into finite automata which can then be run in linear
time on any input word. Finally, MSO has very good
decidability properties and standard problems such as
satisfiability and therefore equivalence and containment
of formulas are decidable over finite words.

While MSO is an elegant and highly successful mech-
anism for specifying word languages, there are many ap-

plications where we are not only interested in accepting
or rejecting a word but in computing quantitative prop-
erties of words. Consider, for instance, an application
where a server provides a number of different services
which can be requested by clients. Let Γ be the set of
services provided. A word over Γ is then a sequence
of client requests. In this context, different services
may incur different costs and we may be interested in
computing the total cost of a word w ∈ Γ∗. Quantitative
properties of this form cannot be expressed in MSO or
by finite state automata.

Several authors have studied automata models that
allow to compute quantitative properties of words or
trees. An automata model that is capable of comput-
ing such properties is the model of weighted automata
(WA), essentially going back to Schützenberger [28].
Weighted automata are an extension of classical finite
state automata by weights. The main idea is that every
transition of the automaton is mapped to an element
of a fixed semiring such as the semiring of natural
numbers. A run of the automaton on a word is then
mapped to the product of its transitions and the value
of an automaton on a word is the sum over all runs.
By choosing a suitable semiring this allows to compute,
for example, the minimal costs of a run over a word or
similar quantitative properties of word languages as in
the example above.

Weighted automata have found numerous applications
in computer science such as in text and speech process-
ing, model-checking, image processing and many other
areas (see e.g. [14]). However, a logic corresponding to
weighted automata in the same way as MSO corresponds
to finite state automata has only recently been defined
by Droste and Gastin [13] with the introduction of
weighted monadic second-order logic. In full generality,
this logic is more expressive than weighted automata
and, therefore, they define a restricted version of it
by disallowing universal second-order quantification and
restricting universal first-order quantification to formulas
which define “recognisable step functions”, a semantic
property of formal power series.

While this logic provides a specification language for
all properties computable by weighted automata, it suf-
fers from its rather complicated definition, where valid
formulas are not defined by a grammar but checking
whether a formula belongs to this logic requires some
analysis of its behaviour. Even though it is decidable
whether a formula defines a recognisable step function,
this makes parsing and writing formulas much more
complicated than for plain MSO.

Another problem of weighted MSO and, also, of
weighted automata is its lack of decidability properties.
While weighted automata provide a powerful and ex-
pressive model for computing quantitative properties of
words, they are equally well-known for undecidability
of many elementary problems. For instance, equivalence
or containment of weighted automata is undecidable for
many semirings. Hence, any logic effectively equivalent
to weighted automata immediately inherits these proper-
ties. As equivalence and containment tests are important
problems (arising for instance in query optimisation) it
is interesting to define a logic for which these problems
become decidable.

In this paper, we propose a different form of weighted
or quantitative logic. The motivation for doing so is
two-fold: The first goal is to define a logic equivalent
to weighted automata which has a simple and purely
syntactical definition. The second goal is to refine this
logic so that a) the above problems become decidable but
in which b) we can still express interesting quantitative
properties in a natural way.
Our contributions. To achieve our goals we propose
a generic framework for adding quantitative properties
to any logic capable of expressing Boolean properties of
words. A crucial feature of our approach, distinguishing
it fundamentally from the weighted logics in [13], is
that we maintain a clear syntactical distinction between
quantifiers and operators defining Boolean properties of
words and those which evaluate into elements of the
semiring.

We use this framework to define Quantitative Monadic
Second-Order Logic, a highly expressive logic for the
specification of quantitative properties of words. More
precisely, let (S,⊕,⊙,0,1) be a semiring and let Γ be an
alphabet. The formulas of Quantitative MSO over S and
Γ (QMSO[S,Γ]) are defined by the following grammar.

θ ∶= ϕ ∣ s ∣ (θ⊕ θ) ∣ (θ⊙ θ) ∣ Σx. θ ∣ Πx. θ ∣ ΣX.θ

where ϕ ∈ MSO[≤, (Pa)a∈Γ], s ∈ S, x and y are first-
order variables and X is a set variable. We refer to
Π,Σ as semiring quantification to distinguish it from
the Boolean quantification inside the MSO-formulas ϕ.

Hence, in QMSO the semiring quantification is added
explicitly on top of MSO which will be useful in our
analysis below. In Section III, we define the semantics
of QMSO[S,Γ] formally.

In the same way that unrestricted weighted MSO is
too expressive, QMSO is also more expressive than
weighted automata. It turns out that the nesting of
product-quantification is a problem if we want to remain
within weighted automata. In Section IV, we therefore
study the fragment of QMSO, which we call Quanti-
tative Iteration Logic (QIL), where universal semiring
quantification can only be applied to formulas without
any semiring quantifiers. We show that QIL captures
exactly weighted automata. Here the fact that we dis-
tinguish between semiring and Boolean quantification
allows us to keep full MSO as part of the logic and we
can therefore still express naturally all regular properties
of words. We claim that with QIL we satisfy our first
goal of defining a logic for weighted automata that has
a simple syntactical definition and in which we can
naturally specify quantitative properties of words.

Having defined QIL, we study its evaluation com-
plexity in relation to counting complexity classes and
we show that QIL has FP data complexity whereas
its combined complexity is FPSPACE(poly)-complete.
As FPSPACE(poly) is strictly contained in FPSPACE,
QIL-evaluation is strictly below FPSPACE (compared
to MSO-evaluation which is in PSPACE-complete).

As explained above, any logic effectively equivalent
to weighted automata must have analogous undecidable
problems. To find a logic for which these problems be-
come decidable, we study the fragments of QIL obtained
by excluding some operators of the semiring level and
we relate them with classes of weighted automata.

The ambiguity of a non-deterministic weighted au-
tomaton is the maximal number of different accepting
runs an automaton can take on any input word (with
respect to the length of the word). Restricting the level
of ambiguity yields a natural hierarchy of subclasses
of weighted automata: (co-)deterministic WA, unam-
biguous WA, finitely ambiguous WA and polynomially
ambiguous WA. These classes have all been studied in
the literature and, for some semirings, it has been shown
to form a strict hierarchy [24].

It turns out that every class in this hierarchy corre-
sponds exactly to a natural fragment of QIL obtained
by excluding some of the operators ⊙,⊕,Π,Σ of the
semiring level (see Section V for details). We take the
fact that the obvious and natural fragments of QIL
correspond exactly to natural fragments of WA as further
evidence supporting our concept of quantitative logics.

Finitely ambiguous weighted automata form a sub-

2

class of WA with very good closure properties. As a
consequence of this classification of fragments of QIL
by classes of weighted automata we obtain a simple
fragment of QIL which corresponds to finitely ambigu-
ous WA and for which the containment and equivalence
problem are therefore decidable. This fragment is ob-
tained by disallowing nested products and sums and is
a very good candidate for achieving our second goal, a
quantitative logic with good decidability properties.

Having found such a logic, we aim at increasing
its expressive power while preserving decidability. In
Section VI, we study the fragments where we allow
a bounded number of nested products and sums. We
again obtain a characterisation of these fragments by
weighted automata but this time we have to use non-
standard models. We believe that these fragments are
promising logics combining good decidability properties
with reasonable expressive power which deserve further
investigation.

A. Related work

As mentioned before, QMSO follows the line of
Weighted Logic (WL) over words that has extensively
been studied in [13], [4], [15], [14]. Our logic has a
different syntax with respect to WL and we believe that
it is simpler as a specification language. In particular, we
make an explicit syntactical distinction between semiring
and Boolean quantification. This allows us to establish
a very strong connection between QMSO and weighted
automata as outlined above (see Section V for details).
The importance of the division between the boolean
and semiring level was mentioned implicitly in [4] and
highlighted as useful in [15]. However, both papers use
this division as a technical tool and do not make this
distinction explicit in the syntax as proposed in this
paper. As far as we are aware, this is the first paper
to make full use of this distinction.

Logics defining quantitative properties over structures
have also been studied in different contexts before, for
instance in [10], [9], [3], [7]. In [10], [9], cost monadic
logic has been introduced to define quantitative functions
over structures. This logic is restricted to functions
over natural numbers and its semantics is designed to
study “boundedness properties”. Extensions of Linear
Temporal Logic have been studied in [3], [7]. The logic
proposed in [3] is to reason about accumulative values
over Quantitative Kripke structures. In particular, the
logic is not allowed to (naturally) calculate quantitative
properties of the structure itself.

Non-standard models of weighted automata to capture
unrestricted WL were studied in [5], [18]. We consider

these models in Section VI to show the connection be-
tween different fragments of QMSO. In [5] and [18], no
connection between the logic and deterministic automata
was established. Furthermore, no connection between the
features of the model and the operators in the logic was
studied.

II. PRELIMINARIES

In this section, we summarise the notation and defini-
tions used for MSO-logic and weighted automata.
MSO. Let Γ be a finite alphabet. The syntax of MSO
over Γ is given by:

ϕ ∶= Pa(x) ∣ x ≤ y ∣ x ∈X ∣ (ϕ∨ϕ) ∣ ¬ϕ ∣ ∃x.ϕ ∣ ∃X.ϕ
where a ∈ Γ, x and y are first-order variables and X
is a set variable. As usual, we also allow universal
quantification ∀X,∀x that can be obtained from ∃X,∃x
and ¬ as well as the propositional operators ∧, →, and
↔ that can be obtained from ∨ and ¬.

Let w = w1 . . .wn ∈ Γ∗ be a word such that ∣w∣ = n.
We represent w as a structure ({1, . . . , n},≤, (Pa)a∈Γ)
where Pa = {i ∣ wi = a}. Further, we denote by
Dom(w) = {1, . . . , n} the domain of w as a structure.
Given a finite set V of first-order and second-order
variables, a (V,w)-assignment σ is a function that maps
every first order variable in V to Dom(w) and every
second order variable in V to 2Dom(w). Furthermore,
we denote by σ[x → i] the extension of the (V,w)-
assignment σ such that σ[x → i](x) = i and σ[x →
i](y) = σ(y) for all variables y ≠ x. The assignment
σ[X → I], where X is a second-order variable and
I ⊆ Dom(w), is defined analogously. Consider an MSO-
formula ϕ and a (V,w)-assignment σ where V is the
set of free variables of ϕ. We write (w,σ) ⊧ ϕ if (w,σ)
satisfies ϕ using the standard MSO-semantics.
Semirings and weighted automata. A semiring sig-
nature ξ ∶= (⊕,⊙,0,1) is a tuple containing two binary
function symbols ⊕,⊙, where ⊕ is called the addition
and ⊙ the multiplication, and two constant symbols 0
and 1. A semiring over the signature ξ is a ξ-structure
S = (S,⊕,⊙,0,1) where (S,⊕,0) is a commutative
monoid, (S,⊙,1) is a monoid, multiplication distributes
over addition, and 0 ⊙ s = s ⊙ 0 = 0 for each s ∈ S.
If the multiplication is commutative, then we say that
S is commutative. In this paper, we always assume
that S is commutative. Note that a semiring signature
is a tuple rather than a set to make it clear which
symbol serves as addition and which as multiplication.
For simplicity, we usually denote the set of elements S
by the name of the semiring S. As standard examples
of semirings we will consider the semiring of natural
numbers N(+, ⋅) = (N,+, ⋅,0,1), the min-plus semiring

3

N∞(min,+) = (N∞,min,+,∞,0), and the max-plus
semiring N−∞(max,+) = (N−∞,max,+,−∞,0) which
are standard semirings in the field of weighted automata.

Fix a semiring S and a finite alphabet Γ. A
weighted automata over S and Γ [27] is a tuple A =
(Γ,S,Q,E, I,F) where Q is a finite set of states,
E ∶ Q × Γ × Q → S is the transition relation, and
I,F ∶ Q→ S is the initial and final function, respectively.
Usually, if E(p, a, q) = s, we denote this transition
graphically by p a/sÐ→ q. Given a word w = w1 . . .wn over
Γ, a run ρ of A over w is a sequence of states and
transitions:

ρ = q0
w1/s1Ð→ q1

w2/s2Ð→ ⋯ wn/snÐ→ qn.

A run ρ like above is accepting if I(q0) ≠ 0, F (qn) ≠ 0,
and si ≠ 0 for every i ∈ [1, n]. In this case, the weight
∣ρ∣ of an accepting run ρ of A over w is defined by
∣ρ∣ = I(q0)⊙∏n

i=1 si⊙F (qn). We define RunA(w) as the
set of all accepting runs of A over w. Finally, the weight
of A over w is defined by ⟦A⟧(w) = ∑ρ∈RunA(w) ∣ρ∣
where the sum is equal to 0 if RunA(w) = ∅.

We say that a function f ∶ Γ∗ → S is definable by
a weighted automaton over S and Γ if there exists a
weighted automaton A such that f(w) = ⟦A⟧(w) for
every w ∈ Γ∗. We define the set of all functions definable
by a weighted automaton over S and Γ by WA where S
and Γ are understood from the context.
Proviso. In this paper, we always assume that Γ is a
finite alphabet and S is a generic commutative semiring
over the semiring signature ξ ∶= (⊕,⊙,0,1).

III. QUANTITATIVE LOGICS

In this section, we propose a new kind of logic in
the direction of Weighted Logic [13]. Our logic calls for
a different spirit in the syntax by making explicit the
division between the Boolean and the semiring world.

A. Quantitative Monadic Second-Order Logic

The main idea of this logic is to explicitly separate in
the syntax the quantitative properties from the qualitative
ones. Following this idea, we divide the syntax into
two levels. The first level of the logic consists of full
MSO formulas and we call it the Boolean level. We
choose MSO-logic in order to have the full expressibility
of word automata, but any Boolean logic over words
(like FO or LTL) can be used. Basically, with an MSO-
formula we can define a characteristic function over a
word, that is, a function that returns 1 or 0 depending on
whether the formula is true or false. In the second level
the semiring comes into play and one can define func-
tions using the characteristic functions and constants, and
operate them by using addition, multiplication, or first-

or second-order quantification over the semiring. This
level is called the semiring level.

Definition 3.1 (Syntax of QMSO[S,Γ]). The formulas
of Quantitative MSO over S and Γ (QMSO[S,Γ]) are
defined by the following grammar.

θ ∶= ϕ ∣ s ∣ (θ⊕ θ) ∣ (θ⊙ θ) ∣ Σx. θ ∣ Πx. θ ∣ ΣX.θ

where ϕ ∈ MSO[≤, (Pa)a∈Γ], s ∈ S, x and y are first-
order variables and X is a set variable.

Note that the syntax of QMSO[S,Γ] depends on the
signature ξ of the semiring, i.e. the operators ⊕, ⊙,
Σ, and Π depend on ξ. However, as this is uniquely
determined by S we refrain from listing ξ explicitly and
simply write QMSO[S,Γ] instead of QMSO[S, ξ,Γ].
To distinguish the quantification in the Boolean level
from the quantification in the semiring level, we will
refer to the operators ΣX,Σx as (second- and first-order)
sum quantification and to Πx as product quantification.
Note that we could also have introduced a universal
second-order quantifier ΠX.ϕ at the semiring level.
While such an operator might be interesting to study
and adds expressiveness, we refrain from doing so as it
has no influence on any of our results.

Definition 3.2 (Semantics of QMSO[S,Γ]). Let w =
w1 . . .wn ∈ Γ∗ where n = ∣w∣. For the first level, the
Boolean level ϕ, the semantics is the usual semantics of
MSO, i.e. for any assignment σ,

⟦ϕ⟧(w,σ) ∶= { 1 if (w,σ) ⊧ ϕ
0 otherwise.

The semantics of the semiring level is defined as follows.

⟦s⟧(w,σ) ∶= s

⟦(θ1 ⊕ θ2)⟧(w,σ) ∶= ⟦θ1⟧(w,σ) ⊕ ⟦θ2⟧(w,σ)
⟦(θ1 ⊙ θ2)⟧(w,σ) ∶= ⟦θ1⟧(w,σ) ⊙ ⟦θ2⟧(w,σ)

⟦Σx. θ⟧(w,σ) ∶= ⊕n
i=1 ⟦θ⟧(w,σ[x→ i])

⟦Πx. θ⟧(w,σ) ∶= ⊙n
i=1 ⟦θ⟧(w,σ[x→ i])

⟦ΣX. θ⟧(w,σ) ∶= ⊕I⊆[1,n] ⟦θ⟧(w,σ[X → I])
For the special case w ∶= ε we have that
⟦Πx. θ⟧(w,σ) ∶= 1 and ⟦Σx. θ⟧(w,σ) ∶= 0.

Example 3.3. Let Γ = {a, b} and consider the semiring
of natural numbers N(+, ⋅). Suppose the symbols a and b
are services provided by a server where service a costs 3
and service b costs 4. A word over Γ corresponds to a
sequence of services performed and we want to compute
the total cost of w, i.e. 3 ⋅ ∣w∣a+4 ⋅ ∣w∣b. This can naturally
be specified by the formula Σx. (3 ⋅ Pa(x) + 4 ⋅ Pb(x))
over N(+, ⋅).

4

In QMSO it is useful to have Boolean filtering that
gives some syntactic sugar to the logic. For a Boolean
formula ϕ ∈ MSO and Quantitative formula θ ∈ QMSO
we define: ϕ ↦ θ ∶= (ϕ ⊙ θ) ⊕ (¬ϕ). In words,
⟦ϕ↦ θ⟧(w) outputs ⟦θ⟧(w) whenever ϕ holds on w and
1 otherwise. In the following examples we give some
intuition of the expressive power of QMSO.

Example 3.4. Let Γ = {a, b, c} and consider the min-
plus semiring N∞(min,+). The following formula τ1
over N∞(min,+) defines the minimum of the number
of a’s and the number of b’s in a word.

τ1 ∶= min{ Σx. (Pa(x) ↦ 1) , Σx. (Pb(x) ↦ 1) }
Note that here Σx plays the rôle of product-
quantification and min the rôle of sum-quantification.
Recall that in the min-plus semiring the formula Pa(x)
evaluates to 1 ∶= 0 in case x points to a position labeled
by a and 0 ∶= ∞ otherwise. This implies that the Boolean
filtering (Pa(x) ↦ 1) is equal to 1 in an a-position and 0
otherwise. Therefore, formula Σx.Pa(x) ↦ 1 sums over
all a-positions and, then, τ1 takes the minimum between
the number of a’s and the number of b’s.

Example 3.5. Let Γ = {a, b} and N−∞(max,+) be
the max-plus semiring. In the following example the
operators Maxx and Σx play the rôle of the sum
and product quantification of the general setting, as the
signature of N−∞(max,+) is (max,+,−∞,0).

We want to specify the maximum length of all infix
sequences of b’s. We can easily define this quantitative
property in QMSO as follows:

Maxx. Max y. intb(x, y) ↦ (Σz. (x ≤ z ∧ z ≤ y) ↦ 1).
where intb(x, y) ∶= x ≤ y∧∀z.(x ≤ z∧z ≤ y) → Pb(z) is
an FO formula defining that (x, y) is an interval of b’s.

B. Fragments and Variants of QMSO

We introduce two variants of the Π-operator, the
forward-iterator (⋅)→ and the backward-iterator (⋅)←.
While both operators can already be expressed in
QMSO, they will be useful to characterize deterministic
and co-deterministic weighted automata (see Section V).
The difference between these two operators and the
operator Π is that it does not need a free variable in θ.
The semantics of these operators are:

⟦θ→⟧(w,σ) ∶=
n

∏
i=1

⟦θ⟧(w[1..i], σ)

⟦θ←⟧(w,σ) ∶=
n

∏
i=1

⟦θ⟧(w[i..n], σ)

where w[1..i] (w[i..n]) denotes the prefix (suffix) of w
at position i.

Note that all previous examples can also be defined
using the forward iterator (⋅)→. We illustrate a general
use of this operator with the next example.

Example 3.6. Let ϕ be a Boolean MSO-formula and
we want to determine how many prefixes of w satisfy ϕ.
The following formula τ2 over the semiring N∞(min,+)
defines this function: τ2 ∶= (ϕ↦ 1)→.

Fragments of QMSO. As usual in logic, we
will consider various fragments of QMSO obtained
by restricting the type and the nesting of opera-
tions allowed in the logic. For any subset Op ⊆
{⊕,⊙,Σx,Πx,ΣX ,

→ ,← } of operators in the semiring
level we denote by QMSO(Op) the restriction of
QMSO to the operators in Op. For example, we write
QMSO(ΣX ,Σx,Πx,⊕,⊙) (or just QMSO) for the full
logic, where we write ΣX for second-order and Σx for
first-order sum quantification.

Another type of fragment we consider is obtained
by restricting the alternation and nesting of operators
in the semiring level. For this, we specify the semir-
ing quantifier alternation of formulas in the obvious
way by a quantifier pattern, that is, by a word over
{ΣnX ,Σ

n
x ,Π

n
x ∣ n ∈ N∞}. Here, the index (⋅)n spec-

ifies the number of nested quantifiers in a block (or
any number if n = ∞). For instance, the fragment
QMSO(Σ∞

XΣ∞
x Π1

x,⊕,⊙) contains all QMSO-formulas
with any number of second-order sum quantifiers fol-
lowed by any number of first-order sum quantifiers
followed by non-nested product quantification. Note
that we do not require our formulas to be in prefix
normal form, so formulas in QMSO(Σ∞

XΣ∞
x Π1

x,⊕,⊙)
can contain more than one product quantifier, but no
two nested inside each other. For example, formula τ1 in
Example 3.4 can be defined in QMSO(Π1

x,⊕,⊙) (where
Σx plays the rôle of a product quantification). Often
we do not distinguish between first- and second-order
sum quantification and use ΣnX,x in the specification of
the quantifier pattern, meaning that we are allowed to
use n nested sum quantifiers of any type. Therefore, the
fragment QMSO(Σ∞

XΣ∞
x Π1

x,⊕,⊙) can more concisely
be denoted by QMSO(Σ∞

X,xΠ1
x,⊕,⊙). We often drop

the superscript ∞ and, e.g., just write Σx for Σ∞
x .

We also restrict the use of the (⋅)→ or (⋅)← operators
in the fragments studied in this paper. Specifically, if
(⋅)→ or (⋅)← are considered in a fragment of QMSO
(e.g. QMSO(→,⊕,⊙)) we suppose that these operators
cannot be nested.

Finally, some classes of weighted automata are char-
acterized by a restricted use of the ⊕ or ⊙ operators (see
Section V). Given an operator ⋆ ∈ {⊕,⊙} and any subset

5

Op of operators in the semiring level, we define the
fragment QMSO(Op,⋆b) such that θ ∈ QMSO(Op,⋆b)
whenever θ ∈ QMSO(Op,⋆), and for all subformulas
θ1 ⋆ θ2 of θ we have that θ1, θ2 ∈ QMSO(⊕,⊙). Infor-
mally, the ⋆-operator in QMSO(Op,⋆b) is restricted to
a “base level” between characteristic formulas (without
sum or product quantification). For example, τ2 in Ex-
ample 3.6 is in QMSO(→,⊕b,⊙) but τ1 in Example 3.4
is not in QMSO(Πx,⊕b,⊙) (as min is used outside Σx).

As usual we say that a function f ∶ Γ∗ → S is definable
by a QMSO(Op)-formula over S and Γ if there exists a
formula θ in QMSO(Op) such that f(w) = ⟦θ⟧(w) for
every w ∈ Γ∗. We define the set of all functions definable
in QMSO(Op) over S and Γ by QMSO(Op) where S
and Γ are understood from the context.

IV. QUANTITATIVE ITERATION LOGIC

The most important fragment of QMSO we study in this
paper is the QMSO(Σ∞

X,xΠ1
x,⊕,⊙)-fragment, which we

call Quantitative Iteration Logic (QIL). We will show
next that QIL captures exactly the expressiveness of
weighted automata provided that the semiring S is com-
mutative.

Theorem 4.1. A function f ∶ Γ∗ → S is definable by a
weighted automaton over S and Γ iff f is definable by a
formula in QIL, and this translation is effective. In other
words,

WA ≡ QIL .

The proof of Theorem 4.1 (postponed to the full ver-
sion due to space restrictions) resembles in part the proof
in [13] where the equivalence of weighted automata and
Weighted Logic is established. However, our proof is
somewhat different and the translation of the product
quantification has better complexity. In particular, only
one exponentiation is needed to construct the weighted
automaton that defines Πx. In [13], the construction is
more complicated and it induces a weighted automaton
of at least double exponential size.

Having defined QIL as a specification language for
weighted automata, we turn our attention to its com-
plexity, namely, its evaluation complexity as well as the
decidability of standard formula construction problems
such as equivalence and containment of formulas.

We start by studying the evaluation of QIL-formulas
over the natural numbers with respect to counting
complexity classes [30], [26]. Given a formula θ ∈
QIL[N(+, ⋅),Γ] and a word w ∈ Γ∗, we study the data
complexity and combined complexity of the functions
QIL-EVALUATIONθ and QIL-EVALUATION which re-
ceive as parameter a word w ∈ Γ∗ or a tuple (θ,w),
respectively, and output ⟦θ⟧(w).

To study the complexity of these functions, we
consider two counting complexity classes: FP and
FPSPACE(poly) [26]. Recall that FP (resp. FPSPACE)
is the class of functions computable in polynomial time
(resp. space). FPSPACE(poly) [26] is defined as the class
of functions in FPSPACE such that the output is of
polynomial size with respect to the input. Note that the
counting classes FP and FPSPACE are the analogs of the
classes PTIME and PSPACE of decision problems.

It is well-known that the data-complexity of MSO
over words is in PTIME and that its correspond-
ing combined complexity is PSPACE-complete. In the
next result, we show that its quantitative counterpart
QIL[N(+, ⋅),Γ] inherits similar complexity bounds but
this time in the counting world.

Theorem 4.2. For any formula θ ∈ QIL[N(+, ⋅),Γ]:
1) QIL-EVALUATIONθ is in FP.
2) QIL-EVALUATION is FPSPACE(poly)-complete.

Interestingly, the combined complexity of QIL is
strictly below FPSPACE given that it is known that
FPSPACE(poly) ⊊ FPSPACE [26].

We now turn to problems such as containment and
equivalence of formulas. For this purpose, we restrict
our analysis to the semirings N(+, ⋅) and N∞(min,+).
Equivalence and containment of formulas in QMSO are
the quantitative generalizations of the classical decision
problems in logics [7]. Formally, given two sentences
θ1, θ2 ∈ QMSO over S and Γ with a total order ≤, we
want to decide:
• Equivalence: ⟦θ1⟧(w) = ⟦θ2⟧(w) for all w ∈ Γ∗,
• Containment: ⟦θ1⟧(w) ≤ ⟦θ2⟧(w) for all w ∈ Γ∗.

The formalism of WA is well-known for its lack of
good decidability properties. Many interesting questions,
such as equivalence, containment, or even boundedness,
quickly become undecidable over useful semirings like
N(+, ⋅) and N∞(min,+). More precisely, it is a folklore
result that containment of WA over N(+, ⋅) is undecid-
able. Furthermore, in [25], [1] it was shown that the
equivalence and containment problem are undecidable
for WA over N∞(min,+). Combined with Theorem 4.1
this implies that containment of QIL is also undecid-
able over both semirings. These results can be made
stronger by showing that containment of the fragment
QMSO(ΣxΠ1

x,⊕,⊙) is undecidable in both cases.

Proposition 4.3. The following problems are undecid-
able:
1) Containment of formulas in QMSO(ΣxΠ1

x,⊕,⊙)
over N(+, ⋅).

2) Equivalence and containment of formulas in
QMSO(ΣxΠ1

x,⊕,⊙) over N∞(min,+).

6

As these results show, if we are interested in a logic for
quantitative properties with good decidability properties
for equivalence and containment, we will need to further
restrict the logic QIL. In the following sections we will
show the richness of our setting by analysing different
fragments of QIL and relate them to corresponding
classes of weighted automata.

V. CHARACTERIZATION OF DIFFERENT CLASSES OF
WEIGHTED AUTOMATA

Depending on restrictions imposed on the amount of
“ambiguity” allowed in the definition of weighted au-
tomata (WA), one can capture different classes of func-
tions over words [24]. Here, by ambiguity we mean
the maximum number of different accepting runs an
automaton can take on any input word. As an example,
it is known that there exists a weighted automaton that
cannot be defined as a deterministic weighted automaton
(DWA). Furthermore, unambiguous WA (unamb- WA),
finitely ambiguous WA (fin- WA), and polynomially
ambiguous WA (poly- WA) are different classes of WA
which define different classes of functions over words.
In [24], it is shown that for N∞(min,+) the containment
between these classes is strict:

DWA ⊊ unamb- WA ⊊ fin- WA ⊊ poly- WA ⊊ WA

Interestingly, all these classes can be characterized by
restricting QMSO, or rather QIL, to different sets of
operators. In the following subsections we explain each
class in detail and show how to capture it with a subset
of QIL.

A. Deterministic weighted automata

A weighted automaton A = (Γ,S,Q,E, I,F) is called
deterministic if (1) for every p ∈ Q and a ∈ Γ there exists
only one q ∈ Q such that E(p, a, q) ≠ 0 and (2) there
exists at most one state q0 ∈ Q such that I(q0) ≠ 0.
It is known that deterministic WA are less expressive
than WA (see [24]). Therefore, DWA forms a proper
subclass inside WA. We show next that this class can
be characterized by a subclass of QIL and the forward
iterator (⋅)→.

Theorem 5.1. A function f ∶ Γ∗ → S is definable by a
deterministic weighted automaton over S and Γ iff f is
definable by a formula in QMSO(→,⊕b,⊙). That is,

DWA ≡ QMSO(→,⊕b,⊙).

Compared to the Π-operator, the construction of the
automaton for a formula of the form θ→ (see the full
paper) is very simple. In particular, it is linear with
respect to the size of the weighted automaton for θ ∈

QMSO(⊕,⊙), in contrast to the exponential blow-up in
the construction for Π.

Another interesting class of WA are co-deterministic
WA (co- DWA). We say that a weighted automaton
A = (Γ,S,Q,E, I,F) is co-deterministic if the reverse
automata of A is deterministic. Formally, if (1) for every
q ∈ Q and a ∈ Γ there exists at most one p ∈ Q such
that E(p, a, q) ≠ 0 and (2) there exists only one state
qf ∈ Q such that F (qf) ≠ 0. Co-deterministic weighted
automata form a subclass incomparable to deterministic
weighted automata. The following theorem shows that
co- DWA can also be characterized but this time using
the backward iterator (⋅)←.

Theorem 5.2. A function f ∶ Γ∗ → S is definable by a
co-deterministic weighted automaton over S and Γ iff f
is definable by a formula in QMSO(←,⊕b,⊙). That is,

co- DWA ≡ QMSO(←,⊕b,⊙).

Recently, the determinization of WA has been exten-
sively studied [24], [23], [2], being still a main open
problem in this area. We think that the understanding of
the expressiveness of DWA (and the other classes) by
our logic could give clues towards a final solution for
this problem.

B. Unambiguous and finitely ambiguous WA

A weighted automaton A = (Γ,S,Q,E, I,F) is unam-
biguous if ∣RunA(w)∣ ≤ 1 for every w ∈ Γ∗, i.e. if there
exists at most one accepting run of A on w. We call
A finitely ambiguous if there is a constant N ∈ N such
that ∣RunA(w)∣ ≤ N for every w ∈ Γ∗. Clearly, if A is
unambiguous then it is finitely ambiguous with N = 1.

Unambiguous and finitely ambiguous weighted au-
tomata (unamb- WA and fin- WA, respectively) are
another proper subclasses of weighted automata ([24]).
As before, the expressiveness of both classes can be cap-
tured if we consider a subset of the operators of QMSO.

Theorem 5.3. A function f ∶ Γ∗ → S is definable
by an unambiguous (resp. finitely ambiguous) weighted
automaton over S and Γ iff f is definable by a formula
in QMSO(Π1

x,⊕b,⊙) (resp. QMSO(Π1
x,⊕,⊙)). That is,

unamb- WA ≡ QMSO(Π1
x,⊕b,⊙)

fin- WA ≡ QMSO(Π1
x,⊕,⊙).

The previous result relies on a careful construction of
the first-order Π-quantification and the disambiguation
theorem proved in [24]. As an example, this result
shows that the formula τ1 in Example 3.4 can be
computed by a finitely ambiguous weighted automaton
over N∞(min,+).

7

C. Polynomially ambiguous weighted automata

A weighted automaton A = (Γ,S,Q,E, I,F) is called
polynomially ambiguous if there exists a polynomial
p(x) such that ∣RunA(w)∣ ≤ p(∣w∣) for every w ∈ Γ∗.
Polynomially ambiguous WA (poly- WA) were studied
in [24], [23] and it was shown that they constitute another
proper subclass in the family of WA. Further, in [23]
an algorithm for deciding whether a polynomially am-
biguous WA is determinizable was given. Polynomially
ambiguous WA can also be captured by a subset of
QMSO as follow.

Theorem 5.4. A function f ∶ Γ∗ → S is definable by a
polynomially ambiguous weighted automaton over S and
Γ iff f is definable by a formula in QMSO(ΣxΠ1

x,⊕,⊙).
That is,

poly- WA ≡ QMSO(ΣxΠ1
x,⊕,⊙).

As in the previous characterizations, the translation
above is effective and both directions are interesting. In
particular, to go from a polynomial ambiguous WA to
a formula in QMSO(ΣxΠ1

x,⊕,⊙) we use a refinement
of the first order sum operator, which we call the ”split-
operator”, and a recursive decomposition of the automa-
ton by using a characteristic property already exploited
in [23]. As an example, the formula in Example 3.5
can be computed by a polynomial ambiguous weighted
automaton over N−∞(max,+).

D. A robust and decidable fragment of QIL

Recall that one motivation for studying fragments of
QIL in relation to classes of WA was the quest for a
logic for quantitative properties that has decidable prob-
lems such as equivalence and containment. In the context
of the previous section, we can rephrase this question in
terms of WA: which subclass of WA has good decid-
ability properties with respect to the containment and
equivalence problem? A subclass that gives a positive
answer to this question is the class of unamb- WA [7],
[20]. As a corollary we get the following result.

Corollary 5.5. The following problems are decidable:

1) Equivalence and containment problem of formulas
in QMSO(Π1

x,⊕b,⊙) over N(+, ⋅).
2) Equivalence and containment problem of formulas

in QMSO(Π1
x,⊕,⊙) over N∞(min,+).

We are not aware that the containment problem over
finitely ambiguous WA over N(+, ⋅) has been studied
before but we conjecture that it is decidable. A positive
answer over this problem would give a positive answer
for the logic QMSO(Π1

x,⊕,⊙) over N(+, ⋅).

VI. TOWARDS A ROBUST AND EXPRESSIVE
FRAGMENT OF QIL

The previous results show that QMSO(Π1
x,⊕,⊙)

can make a reasonable claim towards being a quan-
titative logic with good decidability properties. There-
fore, we take this logic as a starting point and
try to expand its expressive power by studying the
expressiveness of QMSO when we allow nesting
of sum-quantification (QMSO(Σx,⊕,⊙)) or product-
quantification (QMSO(Πx,⊕b,⊙)). The problem of
these fragments is that either there exists no restriction
in the ambiguity of WA that captures these fragments or
they go easily beyond the expressiveness of WA. How-
ever, they can still be captured by non-standard weighted
automata models. For the additive fragment, we show
that it is equally expressive as pure-nondeterministic
WA. On the other hand, we use the model of two-
way WA with nested pebbles [18], [5] to capture the
expressiveness of the multiplicative fragment. Further-
more, in both cases we show that the number of nested
quantifiers is directly related to a specific feature of the
corresponding weighted model.

A. Additive fragment

We start with the fragments QMSO(ΣX ,⊕,⊙)
and QMSO(Σx,⊕,⊙) where only sum-quantification
is allowed. First of all, note that these fragments
are equally expressive as QMSO(ΣX ,⊕,⊙b) and
QMSO(Σx,⊕,⊙b), respectively. In fact, for any for-
mula in QMSO(ΣX ,⊕,⊙) we can always “push”
single products to the ”base level“ of the formula
(by distributivity) and get an equivalent formula in
QMSO(ΣX ,⊕,⊙b). Thus, during this section we can
restrict our analysis, without loss of generality, to the
fragments QMSO(ΣX ,⊕,⊙b) and QMSO(Σx,⊕,⊙b).

Any fragment of WA studied in the previous section
can easily go beyond QMSO(Σx,⊕,⊙b) by using mul-
tiple products. For example, over N(+, ⋅) the function
2∣w∣ can be computed by a deterministic WA (actually
with a single state) but it is not difficult to show that
⟦θ⟧ ∈ o(2n) for any θ ∈ QMSO(Σx,⊕,⊙b).

Given the above reason, we consider in this section
a WA model that does not use products on its edges.
We call such automata pure-nondeterministic WA (also
known as multiplicity automata). Specifically, a pure-
nondeterministic weighted automaton over Γ and S is
a tuple A = (Γ,S,Q, δ, I, F) such that Q is the finite
set of control states, δ ⊆ Q × Γ × Q is the transition
relation, I ⊆ Q is the set of initial states, and F ∶ Q →
S is the final function. Note that neither the transitions
nor the initial states are weighted in this model. Given

8

a word w ∈ Γ∗, the set of accepting runs RunA(w)
is defined as usual except that the cost of a run ρ ∈
RunA(w) is defined by ∣ρ∣ = F (q) where q is the last
state in ρ. Finally, we define ⟦A⟧(w) (i.e. the weight
of A over w) as usual. We denote by PNWA the set
of all pure-nondeterministic WA and by poly- PNWA
the polynomial ambiguous subclass of these weighted
automata.

The following result shows the connection between
this pure-nondeterministic model and the fragments
QMSO(ΣX ,⊕,⊙b) and QMSO(Σx,⊕,⊙b).

Proposition 6.1. The following classes of PNWA and
subfragments of QMSO are equally expressive over
Γ and S:

PNWA ≡ QMSO(ΣX ,⊕,⊙b)
poly- PNWA ≡ QMSO(Σx,⊕,⊙b)

The previous result is not surprising given the re-
sults presented in the previous section. The interest-
ing part emerges when we focus on the fragment
QMSO(Σx,⊕,⊙b) and compare each formula with the
corresponding weighted automata in poly- PNWA. We
show that the number of nested Σ-quantifications coin-
cides with the “degree” of ambiguity of an equivalent
weighted automata in poly- PNWA. We formalize this
claim as follows. Given an automaton A ∈ poly- PNWA,
we can define the function rA ∶ N → N that counts the
maximum number of accepting runs of A over all words
of a given size (i.e. rA(n) = maxw∈Γn ∣RunA(w)∣).
Recall that rA ∈ O(nk) for some k ∈ N given that A
is polynomial ambiguous. Then we define the degree of
ambiguity of A by:

degree(A) ∶= min
k∈N

{ k ∣ rA ∈ O(nk)}.

In line with the previous definition, we denote by
polyk- PNWA the set of all pure-nondeterministic WA
with degree of ambiguity at most k ∈ N.

The next result shows the close connection between
the nesting of first-order Σ-quantification and the degree
of ambiguity of poly- PNWA.

Theorem 6.2. For all k ∈ N, the following classes of
PNWA and fragments of QMSO are equally expressive
over S and Γ:

polyk- PNWA ≡ QMSO(Σkx,⊕,⊙b).
In the proof of the above result we make a finer

analysis of the graph structure of polyk- PNWA to
decompose the weighted automata and construct induc-
tively an equivalent formula in QMSO(Σkx,⊕,⊙b). We
are not aware of any previous work that has made this
connection before.

The previous result sheds light on a new (infinite)
hierarchy of sub-classes of polynomial ambiguous WA
that are definable by reasonable fragments of QMSO
and could have good decidability properties.

B. Multiplicative fragment

In this subsection, we study the expressiveness of
QMSO when only products and Π-quantification are
used (i.e. ⊙ and Πx). Clearly, this fragment of QMSO
is no longer contained in WA. For example, the formula
Πx. Πy. 2 is not definable by any weighted automata
over N(+, ⋅). Indeed, this formula defines the function
f(w) = 2∣w∣

2

for every w ∈ Γ∗, but ⟦A⟧ ∈ O(2n) for
every weighted automata A.

In order to capture the expressive power of
QMSO(Πx,⊕b,⊙) we consider two-way weighted au-
tomata with k-nested pebbles (2WA-k) studied in [18],
[5]. We show that QMSO(Πx,⊕b,⊙) is equally expres-
sive than 2WA-k. Similar to the previous subsection, we
show that there is a close relation between the nesting
depth of Π-quantification and the number k of nested
pebbles.

A two-way weighted automaton with k-nested pebbles
is a finite state weighted machine that can move its
reading head in any of the two directions (left or right)
and can drop or lift pebbles over the input word for
marking. Pebbles are dropped in a nested discipline: at
any moment of a run if pebbles 1 to i are placed over
the word (0 ≤ i ≤ k), then the only pebble that can be
dropped is pebble (i + 1) and the only pebble that can
be lifted is pebble i. We briefly recall the definition of
2WA-k here but we refer to [18], [5] for details. For-
mally, a 2WA-k is a tuple A = (Γ,S,Q,E, I,F) where
Γ,S,Q, I,F are defined as usual and E is the transition
function from Q×(Γ∪{⊲,⊳})×{0,1}k×Q×{→,←, ↓, ↑}
to S. Here, symbols {⊲,⊳} denote left and right markers
of the beginning and end of a word, and {→,←, ↓, ↑} are
abbreviations to denote the possible actions of A after
reading a letter (move right, move left, drop pebble, or
lift pebble). The concepts of a configuration, a run and
the weight of a run of the automaton on a word w ∈ Γ∗

are defined in the usual way.
Similar to the previous sections, we also consider the

deterministic and unambiguous restrictions of 2WA-k
and we denote them by 2DWA-k and unamb- 2WA-k,
respectively. The special case when k = 0 are just two-
way weighted automata that do not use pebbles at all.

In the next result, we show that 2DWA-0 and
unamb- 2WA-0 coincide with the one-way class
of unamb- WA. By Proposition 5.3, this implies
that all these classes are equally expressive as

9

QMSO(Π1
x,⊕b,⊙) which further shows the robustness

of this class of functions for any commutative semiring.

Theorem 6.3. The following classes of WA and subfrag-
ments of QMSO are equally expressive over Γ and S:
1) 2DWA-0,
2) unamb- 2WA-0,
3) unamb- WA, and
4) QMSO(Π1

x,⊕b,⊙).

As far as we are aware, we are the first to point out
this equivalence between both models for any commu-
tative semiring. It is important to note, though, that the
above result does only hold for commutative semirings.
For non-commutative semirings, it is well-known that
2DWA-0 and unamb- WA are not equivalent.

Given the above characterization of 2DWA-0, a nat-
ural question for 2DWA-k arises: does there exist a
natural fragment of QMSO that captures two-way de-
terministic weighted automata with k-pebbles? The fol-
lowing theorem gives a positive answer to this question.
Furthermore, it shows a direct connection between the
number of nested pebbles used by 2DWA and the nesting
of first-order Π-quantification of its equivalent formula
in QMSO(Πx,⊕b,⊙).

Theorem 6.4. For every k ∈ N, there exists an effective
translation between the following classes of weighted
automata and subfragments of QMSO over S and Γ:
1) 2DWA-k,
2) unamb- 2WA-k, and
3) QMSO(Πk+1

x ,⊕b,⊙).

VII. CONCLUSION

The aim of this paper was to define a quantitative logic
with a simple and intuitive syntax that is equivalent to
weighted automata (WA). Moreover, as a second goal,
we aimed at defining a quantitative logic within the
framework of WA for which important computational
problems such as equivalence are decidable.

Towards these goals, we introduced a generic frame-
work for adding quantitative properties to any Boolean
logic over words. This allowed us to meet both aims.
With QIL we have introduced a simple logic equivalent
to WA. The explicit distinction between Boolean and
semiring quantification in our logic allowed us to give
the first logical characterisations of natural classes of
WA (defined in terms of the ambiguity of automata)
that have been studied in the literature before. As
a consequence, we obtained an interesting logic with
very good decidability properties defined by disallowing
nested sums. Motivated by the good properties this logic
enjoys, we started to relax the restriction to non-nested

operators by studying fragments of QMSO with bounded
nesting of product or sum. We believe that there is much
more potential in analysing these fragments further to
obtain more expressive quantitative logics with still good
decidability results. We leave this for future research.

REFERENCES

[1] S. Almagor, U. Boker, and O. Kupferman. What’s decidable
about weighted automata? In ATVA, pages 482–491, 2011.

[2] B. Aminof, O. Kupferman, and R. Lampert. Rigorous approx-
imated determinization of weighted automata. In LICS, pages
345–354, 2011.

[3] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman.
Temporal specifications with accumulative values. In LICS, pages
43–52, 2011.

[4] B. Bollig and P. Gastin. Weighted versus probabilistic logics. In
Developments in Language Theory, pages 18–38, 2009.

[5] B. Bollig, P. Gastin, B. Monmege, and M. Zeitoun. Pebble
weighted automata and transitive closure logics. In ICALP (2),
pages 587–598, 2010.

[6] J. R. Buchi. Weak second-order arithmetic and finite automata.
Mathematical Logic Quarterly, 6(1-6):66–92, 1960.

[7] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative
languages. ACM Trans. Comput. Log., 11(4), 2010.

[8] M. Chytil and V. Jákl. Serial composition of 2-way finite-state
transducers and simple programs on strings. In ICALP, pages
135–147, 1977.

[9] T. Colcombet. Regular cost functions, part i: Logic and algebra
over words. CoRR, abs/1212.6937, 2012.

[10] T. Colcombet and C. Löding. Regular cost functions over finite
trees. In LICS, pages 70–79, 2010.

[11] B. Courcelle and J. Engelfriet. Graph Structure and Monadic
Second-Order Logic. Cambridge University Press, 2012.

[12] M. Davis. Hilbert’s tenth problem is unsolvable. The American
Mathematical Monthly, 80(3):233–269, 1973.

[13] M. Droste and P. Gastin. Weighted automata and weighted logics.
Theor. Comput. Sci., 380(1-2):69–86, 2007.

[14] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted
Automata. Springer, 1st edition, 2009.

[15] M. Droste and I. Meinecke. Weighted automata and weighted
mso logics for average and long-time behaviors. Inf. Comput.,
220:44–59, 2012.

[16] J. Engelfriet and H. J. Hoogeboom. Mso definable string
transductions and two-way finite-state transducers. ACM Trans.
Comput. Log., 2(2):216–254, 2001.

[17] J. Engelfriet and S. Maneth. Two-way finite state transducers
with nested pebbles. In MFCS, pages 234–244, 2002.

[18] P. Gastin and B. Monmege. Adding pebbles to weighted
automata. In CIAA, pages 28–51, 2012.

[19] N. Globerman and D. Harel. Complexity results for two-way
and multi-pebble automata and their logics. Theor. Comput. Sci.,
169(2):161–184, 1996.

[20] K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the
equivalence problem for finitely ambiguous finance automata.
IJAC, 12(3):445, 2002.

[21] J. E. Hopcroft and J. D. Ullman. An approach to a unified theory
of automata. The Bell System Technical Journal, 46:1793–1829,
1967.

[22] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[23] D. Kirsten and S. Lombardy. Deciding unambiguity and sequen-
tiality of polynomially ambiguous min-plus automata. In STACS,
pages 589–600, 2009.

[24] I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding
unambiguity and sequentiality from a finitely ambiguous max-
plus automaton. Theor. Comput. Sci., 327(3):349–373, 2004.

10

[25] D. Krob. The equality problem for rational series with multiplic-
ities in the tropical semiring is undecidable. In ICALP, pages
101–112, 1992.

[26] R. E. Ladner. Polynomial space counting problems. SIAM J.
Comput., 18(6):1087–1097, 1989.

[27] J. Sakarovitch. Elements of Automata Theory. Cambridge
University Press, 2009.

[28] M. P. Schützenberger. On the definition of a family of automata.
Information and Control, 4:245–270, 1961.

[29] W. Thomas. Languages, automata, and logic. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, vol-
ume III, pages 389–455. Springer, 1997.

[30] L. G. Valiant. The complexity of enumeration and reliability
problems. SIAM J. Comput., 8(3):410–421, 1979.

[31] A. Weber. Finite-valued distance automata. Theor. Comput. Sci.,
134(1):225–251, 1994.

11

APPENDIX

A. Proofs Omitted in Section IV

Theorem 4.1. Let S be a commutative semiring and Γ be a finite alphabet. A function f ∶ Γ∗ → S is definable by
a weighted automaton over S and Γ if, and only if, f is definable by a formula in QIL[S,Γ]. In other words,

WA = QIL .

Proof: (⇒) Let A = (Γ,S,E, I,F) be a weighted automaton that defines the function f ∶ Γ∗ → S. For this
direction, we construct a formula θA ∈ QIL such that ⟦A⟧(w) = ⟦θA⟧(w) for all w ∈ Γ∗. The idea is similar to the
classical reduction from finite automata to MSO-logic [6]: we guess a run using second-order sum quantification,
check that this is a correct run using an MSO-formula, and then aggregate the cost of this run using the Π-operator.
For the sake of simplicity, in this proof we consider standard abbreviations of formulas that can be defined in
MSO-logic (actually, FO-logic) like first(x) ∶= ∀y. x ≤ y and last(x) ∶= ∀y. y ≤ x to denote the first and last
element of the linear order ≤, respectively, and succ(x, y) ∶= x ≤ y ∧ y /≤ x ∧ ∀z. (z ≤ x ∨ y ≤ z) to denote the
successor relation.

First of all, we define a formula partition(X1, . . . ,Xn) which defines a partition of the domain into n-subsets
X1, . . . ,Xn:

partition(X1, . . . ,Xn) ∶= ∀x.
n

⋁
i=1

(x ∈Xi ∧ ⋀
j≠i

x /∈Xj) .

Let T = {(p, a, q) ∈ Q × Γ × Q ∣ E(p, a, q) ≠ 0} be the set of non-zero transitions in A. Furthermore, let TI =
{(p, a, q) ∈ T ∣ I(p) ≠ 0} and TF = {(p, a, q) ∈ T ∣ F (q) ≠ 0} be the set of initial and final transitions, respectively.
Finally, let X̄ = (X1, . . . ,Xn) be an enumeration of variables in set {Xt ∣ t ∈ T}. Next we define the formula
runA(X̄) that checks if X̄ encodes a valid run of A:

runA(X̄) ∶= partition(X̄) ∧
⋀

(p,a,q)∈T

∀x. (x ∈X(p,a,q) → x ∈ Pa) ∧ (1)

∀x. ∀y.
⎛
⎝

succ(x, y) → ⋁
(p,a,q),(q,b,r)∈T

(x ∈X(p,a,q) ∧ y ∈X(q,b,r))
⎞
⎠
∧ (2)

∃x.
⎛
⎝

first(x) ∧ ⋁
(p,a,q)∈TI

x ∈X(p,a,q)

⎞
⎠
∧ ∃x.

⎛
⎝

last(x) ∧ ⋁
(p,a,q)∈TF

x ∈X(p,a,q)

⎞
⎠

(3)

Part (1) verifies that the labeling of the run is consistent with the letters in the word and Part (2) verifies that the
sequence of transitions is well matched. Finally, Part (3) checks that X̄ encodes an accepting run.

Next, we define the formulas that define the cost of the initial, final, and transition functions.

initial(X̄) ∶= ∑
(p,a,q)∈TI

(∃x. first(x) ∧ x ∈X(p,a,q)) ⊙ I(p)

final(X̄) ∶= ∑
(p,a,q)∈TF

(∃x. last(x) ∧ x ∈X(p,a,q)) ⊙ F (q)

transition(x, X̄) ∶= ∑
(p,a,q)∈T

(x ∈X(p,a,q)) ⊙E(p, a, q)

By encoding a run with variables for each transition in A, we are not coovering the case of an empty word.
However, this can be easily encoded with the following formula:

empty ∶= (∀x. x /≤ x) ⊙
⎛
⎝∑p∈Q

I(p) ⊙ F (p)
⎞
⎠

To conclude the construction, we can define our formula θA as follow:

θA ∶= ΣX̄ (runA(X̄) ⊙ initial(X̄) ⊙ (Πx. transition(x, X̄)) ⊙ final(X̄)) ⊕ empty

It is easily checked that A and θA define the same function.

12

(⇐) For this direction, we show by structural induction how to construct for each θ ∈ QIL a weighted automata
Aθ such that ⟦θ⟧(w) = ⟦A⟧(w) for every w ∈ Γ∗. This construction follows the same principles as the standard
Büchi construction [6] combined with the main ideas used in [13].

First of all, given a set V of first- and second-order order variables we consider the standard encoding of a
word w and an (V,w)-assignment σ over the alphabet ΓV = Γ × {0,1}∣V ∣. We say that a word (w,σ) ∈ ΓV
encodes an (V,w)-assignment σ if w is the projection of (w,σ) over Γ and for every variable v ∈ V we have
σ(v) = {i ∈ {1, . . . , ∣w∣} ∣ (w,σ)[v]i = 1} where (w,σ)[v]i denotes the i-letter of the projection of (w,σ) over
variable v.

Now, we show how to construct the weighted automata Aθ. For the Boolean level, the task is simple by using
Büchi’s theorem for MSO-logic over Γ.

Lemma A.1 ([6]). For every MSO-formula ϕ over Γ with free variables V there exists a deterministic finite
automaton Aϕ over ΓV such that for every word w ∈ Γ∗ and (V,w)-assignment σ we have:

(w,σ) ⊧ ϕ iff (w,σ) ∈ L(Aϕ)

Recall that a weighted automata A = (Γ,S,Q,E, I,F) is called deterministic if (1) for every p ∈ Q and a ∈ Γ
there exists only one q ∈ Q such that E(p, a, q) ≠ 0 and (2) there exists at most one state q0 ∈ Q such that I(q0) ≠ 0.
For the sake of simplification, when A is deterministic we write A = (Γ,S,Q, δ, q0, F) such that δ ∶ Q×Γ→ Q×S
and q0 ∈ I , and the semantic of A follows as usual.

From Lemma A.1 one can easily obtain a deterministic weighted automata A′ϕ such that ⟦ϕ⟧(w,σ) = ⟦A′ϕ⟧(w,σ)
for every word w ∈ Γ∗ and (V,w)-assignment σ. More specifically, let Aϕ = (ΓV ,Q, δ, q0, F) be the deterministic
automata that recognizes ϕ. Then consider A′ϕ = (ΓV ,S,Q, δ′, q0, F

′) such that:

• δ′(p, a) = (q,1) if δ(p, a) = q and δ′(p, a) = (q,0) otherwise, and
• F ′(q) = 1 if, and only if, q ∈ F .

Thus, one can easily show that A′ϕ define the same characteristic function as ϕ.
In the next step we consider QIL-formulas over the semiring level. We will first show how to translate formulas

without any semi-ring quantification. Interestingly, it turns out that any such formula can always be defined by a
deterministic weighted automata. This will be needed later, in the proof of Theorem 5.1.

Lemma A.2. For every formula θ of the semiring level of QIL without sum or product quantification and with
free variables V there exists a deterministic weighted automaton Aθ over ΓV such that for every word w ∈ Γ∗ and
(V,w)-assignment σ we have:

⟦θ⟧(w,σ) = ⟦Aθ⟧(w,σ)

Proof: Let θ be a formula on the semiring level with free variables V such that θ contains no sum or product
quantification. First, note that we can rewrite θ by distributing multiplication over addition and by using the
commutativity of ⊙ such that:

θ =
n

∑
i=1

⎛
⎝
si ⊙

ni

∏
j=1

θji
⎞
⎠

where si ∈ S and θji ∈ MSO. Without lost of generality, we can assume here that each MSO-formula θji has the
same set of free variables V .

By Lemma A.1, we can find a deterministic automaton Aθji for each formula θji ∈ MSO. Furthermore, we can
define a deterministic automaton Ai, for i ≤ n, such that:

(w,σ) ∈ L(Ai) iff (w,σ) ∈ L(
ni

⋂
j=1

Ai)

Let Ai = (ΓV ,Qi, δi, qi0, Fi). Consider a deterministic weighted automaton Aθ = (ΓV ,S,Q, δ, q0, F) such that:

Q =
n

⨉
i=1

(Qi ∪ {∅}) , q0 =
n

⨉
i=1

{qi0}, δ(q, a) = (
n

⨉
i=1

{δi(q(i), a)},1) , and F (q) = ∑
q(i)∈Fi

si.

13

where F (q) = 0 if q(i) ∉ Fi for all i ≤ n. Notice that Aθ is a deterministic weighted automata, runs all automata Ai
in parallel and outputs the sum of the intersection. Finally, it is easy to check that Aθ defines the same weighted
function θ.

Interestingly, the construction of Lemma A.2 shows that a weighted function defined by a formula θ without
semiring quantification divides ΓV into a finite number of equivalence classes such that all words inside an
equivalence class have the same value in S. In other words, this means that θ defines a recognizable step function
as defined in [13].

Next, we show how to translate general formulas of the semi-ring level into a weighted automata. We start with
the Π-operator.

Lemma A.3. Let θ(x) be a formula without any sum or product quantification. Let x /∈ V be a free first-order
variable and let V be the set of the other free variables. For τ = Πx. θ there exists a weighted automaton Aτ over
S and ΓV such that for every word w ∈ Γ∗ and (V,w)-assignment σ we have:

⟦τ⟧(w,σ) = ⟦Aτ⟧(w,σ)
Proof: Let A = (ΓV ∪{x},S,Q, δ, q0, F) be the deterministic weighted automata of Lemma A.2 that defines the

function ⟦θ⟧. For simplicity, we assume that V = ∅ and, therefore, Γ{x} = Γ × {0,1}. Furthermore, without loss of
generality we assume that δ is a complete function and - given that all weights in δ are equal to 1 - sometimes we
will abuse notation and use δ as a function from Q × Γ{x} to Q.

The main idea of the automaton A∗ that defines the function ⟦Πx. θ⟧ is to run A over a word in Γ by considering
two parallel runs: the first run is over the alphabet Γ×{0} and the second run non-deterministically guesses which
is the final state that a run that moves by reading Γ × {1} could reach. For each non-deterministic step we count
the value of this final state and at the end of the run we check if all guesses were correct.

More specifically, let A′ = (Γ,S,Q′,E′, I ′, F ′) be a weighted automata over S and Γ such that Q′ = Q × 2Q×Q,
I ′(q,∅) = 1 and 0 otherwise, and F ′(q,R) = 1 if R ⊆ {(q, q) ∣ q ∈ Q} and 0 otherwise. For the transition relation
E′, we have that E′((q1,R1), a, (q2,R2)) = s if there exists qf ∈ Q such that:
• F (qf) = s,
• δ(q1, (a,0)) = q2, and
• R2 = {(p2, q

′
f) ∈ Q2 ∣ ∃(p1, q

′
f) ∈ R1. δ(p1, (a,0)) = p2} ⋃ {(δ(p, (a,1)), qf)},

and 0 in any other case. Finally, it could happen that E′((q1,R1), a, (q2,R2)) = 0 but the triple
((q1,R1), a, (q2,R2)) satisfies the above list of properties. In this case we say that ((q1,R1), a, (q2,R2)) is a
valid transition in A′.

As explained previously, notice how the first component in Q′ maintains a run over Γ × {0}, and how qf is the
guessed state that will be reached at the end of the run. The second component in Q′ records this fact which is
checked at the final state where all the elements in the second component must be of the form (q, q) for some
q ∈ Q.

First, we claim that for every word there exists a unique accepting run with valid transitions in A′.
Claim A.4. For every word w = a1 . . . an ∈ Γ∗ there exists a unique run ρ of w:

ρ = (q0,∅) a1/s1Ð→ (q1, T1) a2/s2Ð→ ⋯ an/snÐ→ (qn, Tn),
such that each transition is valid, and I ′(q0, T0) ≠ 0 ≠ F ′(qn, Tn).

To prove this claim, first notice that there always exists at least one run for every word w ∈ Γ∗. In fact, A is a
deterministic and complete automata and by following the construction of A′ one can easily check that an accepting
and valid run always exists.

Now, suppose that for a word w = a1 . . . an there exists two runs ρ1 and ρ2 of w:

ρi = (q0, T
i
0)

a1/s
i
1Ð→ (q1, T

i
1)

a2/s
i
2Ð→ ⋯ an/sinÐ→ (qn, T in)

for every i ∈ {1,2} such that each transition is valid, and I ′(q0, T
i
0) ≠ 0 ≠ F ′(qn, T in). We show that ρ1 = ρ2. For

the sake of contradiction, assume that ρ1 ≠ ρ2 and let j ≤ n be the smallest position where both runs are different,
that is, (qj , T 1

j) ≠ (qj , T 2
j). First, we know that j ≠ 0 since T 1

0 = T 2
0 = ∅. Furthermore, we know by construction

of A′ that there exists q1
f , q

2
f ∈ Q such that q1

f ≠ q2
f and (q, qif) ∈ T ij for i ∈ {1,2} where q = δ(qj−1, (aj ,1)). This

14

means that (δ(q,w′), q1
f) ∈ T 1

n and (δ(q,w′), q2
f) ∈ T 2

n for w′ = (aj+1,0) . . . (an,0). Given that q1
f ≠ q2

f , this leads
us to a contradiction because we have that F ′(qn, T 1

n) = 0 or F ′(qn, T 2
n) = 0. Therefore, we conclude that ρ1 = ρ2.

With the previous claim, the proof is almost complete. Indeed, given the unique run ρ =
(q0,∅) a1/s1Ð→ ⋯ an/snÐ→ (qn, Tn) of w = a1 . . . an, it is straightforward to prove that actually ⟦θ⟧(w,σ[x→ i]) = si by
the construction of A′ and, thus:

⟦Πx. θ⟧(w,σ) =
n

∏
i=1

si = ⟦A′⟧(w,σ)

We turn now to the proof of operators ⊕ and ⊙ in the semiring level. It is well known that the addition and
product of two weighted automata over a commutative semiring is also definable by weighted automata [14], [13].
These results basically follow the standard construction of the union and intersection in finite automata theory. For
the sake of completeness and for future use, we sketch the proof of both operators in the next lemma.

Lemma A.5 ([13], [14]). Let τ1 and τ2 be formulas in the semiring level such that V is the set of free variables and
let A1,A2 be weighted automata defining the formulas. For τ = (τ1 ⋆ τ2) with ⋆ ∈ {⊕,⊙} there exists a weighted
automaton Aτ over S and ΓV such that for every word w ∈ Γ∗ and (V,w)-assignment σ we have:

⟦τ⟧(w,σ) = ⟦Aτ⟧(w,σ)

Proof: Let Aτ1 = (ΓV ,S,Q1,E1, I1, F1) and Aτ2 = (ΓV ,S,Q2,E2, I2, F2) with Q1 ∩Q2 = ∅ be the weighted
automata that define the functions ⟦τ1⟧ and ⟦τ2⟧, respectively. For the function τ1 ⊕ τ2, we define the weighted
automata A⊕ = (ΓV ,S,Q1 ∪Q2,E1 ∪E2, I1 ∪ I2, F1 ∪F2) where ∪ is used as the disjoint union of two functions.
Thus, one can easily proof that ⟦τ1 ⊕ τ2⟧(w,σ) = ⟦A⊕⟧(w,σ) for every w ∈ Γ∗ and (V,w)-assignment σ.

For the function τ1⊙ τ2, we define the weighted automata A⊙ = (ΓV ,S,Q1 ×Q2,E1 ×E2, I1 × I2, F1 ×F2) such
that:

• I1 × I2(q1, q2) = I1(q1) ⊙ I2(q2) and F1 × F2(q1, q2) = F1(q1) ⊙ F2(q2) for all (q1, q2) ∈ Q1 ×Q2, and
• E1 ×E2((p1, p2), a, (q1, q2)) = E(p1, a, q1) ⊙E(p2, a, q2) for all (p1, p2), (q1, q2) ∈ Q1 ×Q2 and a ∈ ΓV .

Similarly, one can easily proof that ⟦τ1 ⊙ τ2⟧(w,σ) = ⟦A⊙⟧(w,σ) for every w ∈ Γ∗ and (V,w)-assignment σ.
Finally, it is worth remarking that for this last construction it is crucial the fact that S is commutative.

The only operations left to prove is the construction of the automata for the sum first- and second-order quantifiers.
We first show how to translate an sum second-order quantifier over the semiring level. Let τ be a QIL-formula

and V ′ the set of free set variables of τ . Let X ∈ V ′ and let V ∶= V ∖ {X}. Let A = (ΓV × {0,1},S,Q,E, I,F)
be the weighted automaton over S and ΓV ∪{X} that defines τ . We can define a new weighted automaton A′ =
(ΓV ,S,Q,E′, I, F) as the projection of ΓV ′ onto ΓV such that E′(p, a, q) = E(p, (a,0), q) ⊕ E(p, (a,1), q) for
every p, q ∈ Q and a ∈ Γ.

Next, we show that for all w ∈ Γ∗ it holds that ⟦ΣXτ⟧(w) = ⟦A′⟧(w). Let w = a1 . . . an ∈ Γ and ρ be a run of
A′ over w. Then we have by definition that:

∣ρ∣ = I(ρs1) ⊙ (
n

∏
i=1

E′(ρsi , ai, ρei)) ⊙ F (ρen)

= I(ρs1) ⊙ (
n

∏
i=1

E(ρsi , (ai,0), ρei) ⊕E(ρsi , (ai,1), ρei)) ⊙ F (ρen)

= ∑
σ∈{0,1}n

I(ρs1) ⊙ (
n

∏
i=1

E(ρsi , (ai, σi), ρei)) ⊙ F (ρen)

where the last equality holds by the distributivity law of S. By the semantics of weighted automata we get that

⟦A′⟧(w) = ∑
ρ∈RunA′(w)

∣ρ∣ = ∑
σ∈{0,1}n

∑
ρ∈RunA′(w)

I(ρs1) ⊙ (
n

∏
i=1

E(ρsi , (ai, σi), ρei)) ⊙ F (ρen)

From the last equality we can see that the first sum ranges over all the ({X}, V,w)-assignments σ over X ∪V and
the second sum considers all the runs of A given σ, that is, the second sum is equal to ⟦A⟧(w,σ). Therefore, we
can conclude that ⟦τ⟧(w) = ⟦A′⟧(w) for all w ∈ Γ∗. This was to be shown.

15

The last step is to translate existential first-order quantification over the semiring. Let τ be a QIL-formula,
x be a free first-order variable over the semiring and let V the set of the other free variables of τ . Let A =
(ΓV × {0,1},S,Q,E, I,F) be the weighted automaton over S and ΓV ∪{x} that defines τ . The construction is
essentially the same as for the second-order case. The only difference is that once the automaton has taken a
transition corresponding to the position in x, it cannot guess a second position for x. Furthermore, the automaton
has to at least guess one position for x. To achieve this, we double the number of states where the first copy is
used before guessing the value of x and the second copy is used once x has been guessed.

Formally, let Q′ ∶= {q′ ∣ q ∈ Q} be a disjoint copy of Q. We define a new weighted automaton A′ = (ΓV ,S,Q∪
Q′,E′, I ′, F ′) as follows. I ′(q) = I(q) if q ∈ Q and I(q) = 0 if q ∈ Q′. F ′(q) = F (q) if q ∈ Q′ and otherwise
F (q) = 0. Finally,

• E′(p, a, q) = E(p, (a,0), q) if p, q ∈ Q and a ∈ Γ,
• E′(p′, a, q′) = E(p, (a,0), q) if p′, q′ ∈ Q′ and a ∈ Γ,
• E′(p, a, q′) = E(p, (a,1), q) for every p ∈ Q, q′ ∈ Q′ and a ∈ Γ and
• E′(p′, a, q) = 0 for all p′ ∈ Q′ and q ∈ Q.

It is easily seen that ⟦Σx. τ⟧(w) = ⟦A′⟧(w).

Theorem 4.2. For any formula θ ∈ QIL[N(+, ⋅),Γ]:

1) QIL-EVALUATIONθ is in FP.
2) QIL-EVALUATION is FPSPACE(poly)-complete.

Proof: (1) This result follows easily from the effective procedure given in Theorem 4.1 to translate any formula
θ ∈ QIL[N(+, ⋅),Γ] into a weighted automaton A = (Γ,N(+, ⋅),Q,E, I,F). Clearly, if θ is of constant size, then
A is also of constant size. Then for any input word w ∈ Γ∗ one can compute ⟦A⟧(w) efficiently by running A
over w [27]. This can be done in linear time with respect to ∣w∣ by converting A into its matrix representation
({Ma}a∈Γ, i, f) such that Ma ∈ NQ×Q and i, f ∈ NQ. Then it can be shown that for every word w = a1 . . . an ∈ Σ∗

it holds that ⟦A⟧(w) = i ⋅Ma1 ⋅ . . . ⋅Man ⋅ f . Given that A is of constant size then ({Ma}a∈Γ, i, f) is of constant
size and the product of i ⋅Ma1 ⋅ . . . ⋅Man ⋅ f can be done in time O(n).

(2) We start showing that QIL-EVALUATION is in FPSPACE(poly) by computing the output over the parsing tree
of the formula. Furthermore, we show that for every θ ∈ QIL and every w ∈ Γ∗ the size of the output ∣⟦θ⟧(w)∣ (i.e.
the size of its binary codification) is in O(∣θ∣ ⋅ ∣w∣). First, let ϕ be a formula in MSO and w ∈ Γ∗. Further, let V be
the finite set of first-order and second-order variables and σ an (V,w)-assignment. Then we have ⟦ϕ⟧(w,σ) = 1 iff
(w,σ) ⊧ ϕ. It is a folklore result that this problem is in PSPACE. Therefore, it can be computed with a polynomial
space machine and the output is of size 1.

Consider θ1, θ2 be formulas in QIL. In addition, let V bet the set of free variables of θ1, θ2, and σ a (V,w)-
assignment. Assume that ⟦θ1⟧(w,σ) and ⟦θ2⟧(w,σ) can be computed in polynomial space and the output is of
size c1 ⋅ ∣θ1∣ ⋅ ∣w∣ and c2 ⋅ ∣θ2∣ ⋅ ∣w∣, respectively, for some constants c1 and c2. Furthermore, assume that if θ1, θ2 are
in QMSO(⊕,⊙) then the output is of size c1 ⋅ ∣θ1∣ and c2 ⋅ ∣θ2∣, respectively. Next, we show by case analysis that
QIL-EVALUATION(θ,w) is in FPSPACE(poly).

• If θ = θ1 ⋆ θ2 with ⋆ ∈ {⊕,⊙}, we can compute the output ⟦θ⟧(w,σ) in polynomial space by first running the
polynomial space machine for θ1 over w and σ, and storing its polynomial size output o1 in memory. Then
we can run the polynomial space machine for θ2 with polynomial size output o2, and operate o1 ⋆ o2. The
complete process uses polynomial space and the output is polynomial size bounded:

∣o1 ⋆ o2∣ ≤ c1 ⋅ ∣θ1∣ ⋅ ∣w∣ + c2 ⋅ ∣θ2∣ ⋅ ∣w∣ ≤ max{c1, c2} ⋅ (∣θ1∣ + ∣θ2∣) ⋅ ∣w∣
For the specific case where θ1 and θ2 are in QMSO(⊕,⊙), it is straightforward to show that ∣o1 ⋆ o2∣ ≤
max{c1, c2} ⋅ (∣θ1∣ + ∣θ2∣).

• If θ = Πx. θ1 with θ1 ∈ QMSO(⊕,⊙), we can compute ⟦θ⟧(w,σ) in polynomial space by iterating over all
positions of w. The output o is always stored in memory and for each i ∈ {1, . . . , ∣w∣}, we run the polynomial
space machine for ⟦θ1⟧(w,σ[x → i]) and updates the output to o ⋅ ⟦θ1⟧(w,σ[x → i]). Given that o is of
polynomial space this can always be stored in memory. Moreover, we know that θ1 ∈ QMSO(⊕,⊙) and, thus,

16

we have:

∣⟦Πx. θ1⟧(w,σ)∣ ≤
∣w∣

∑
i=1

c1 ⋅ ∣θ1∣ ≤ c1 ⋅ ∣θ1∣ ⋅ ∣w∣.

• If θ = ΣX. θ1 with θ1 ∈ QIL we compute the value ⟦θ⟧(w,σ) in polynomial space by iterating over all
subsets of {1, . . . , ∣w∣} and maintaining the polynomial size output o in memory. For each I ⊆ {1, . . . , ∣w∣}, the
polynomial space machine computes ⟦θ1⟧(w,σ[X → I]) and updates the output to o + ⟦θ1⟧(w,σ[X → I]).
Notice that ⟦ΣX. θ1⟧(w,σ) ≤ 2∣w∣ ⋅ v for v = maxI⊆{1,...,∣w∣}(⟦θ1⟧(w,σ[X → I])). Therefore, the complete
process runs in polynomial space and we have:

∣⟦ΣX. θ1⟧(w,σ)∣ ≤ log(2∣w∣ ⋅ v) ≤ log(2) ⋅ ∣w∣ + c1 ⋅ ∣θ1∣ ⋅ ∣w∣ ≤ c1 ⋅ (∣θ1∣ + 1) ⋅ ∣w∣.
We conclude that QIL-EVALUATION is in FPSPACE(poly).

In the rest of the proof, we show that the problem is FPSPACE(poly)-hard. Towards this goal, we consider the
parsimonious reductions used in [26]: a function f is reducible to g in polynomial time (f ≤P g), if there is a
function h that is computable in polynomial time such that f(x) = g(h(x)) for all input x. We say that a function
g is complete for a class of functions C if g ∈ C and f ≤P g for all f ∈ C.

A quantified boolean formula (QBF) is a formula of the form:

α(y1, . . . , yn) = ∃x⃗1. ∀x⃗2. . . .∃x⃗n−1. ∀x⃗n. β(x⃗1, . . . , x⃗n, y1, . . . , ym)
where yi is a free boolean variable for i ∈ {1, . . . , n}, x⃗j is a vector of boolean variables for j ∈ {1, . . . , n}, and β
is a boolean formula. Given a boolean assignment σ ∶ {y1, . . . , yn} → {true, false}, we say that σ satisfies α (i.e.
σ ⊧ α) if α(σ(y1), . . . , σ(yn)) is true. We denote by Assign(y1, . . . , yn) the set of all assignments of y1, . . . , yn
into {true, false}. Consider the function ♮QBF such that:

♮QBF (α) = ∣{σ ∈ Assign(y1, . . . , yn) ∣ σ ⊧ α}∣
for every quantified boolean formula α as above. In [26], it was shown that ♮QBF is complete for FPSPACE(poly).

Next, we show how to reduce ♮QBF to QIL-EVALUATION. Let α be a formula as above and Γ = {a, b}. Take α
and build a formula ϕ(y1, . . . , yn) ∈ MSO similar to α by changing x to Pa(x) each time that x appears positively,
and ¬x to Pb(x) each time that x appears negatively for all variables x in β. Then define the formula θ ∈ QIL as
follows:

θ = Σy1. . . .Σyn. ϕ(y1, . . . , yn)

One can easily show that for w = ab it holds that ♮QBF (α) = ⟦θ⟧(w) which proves that QIL-EVALUATION is
FPSPACE(poly)-hard. Thus, we conclude that QIL-EVALUATION is FPSPACE(poly)-complete.

Proposition 4.3. The following problems are undecidable:
1) Containment of formulas in QMSO(ΣxΠ1

x,⊕,⊙) over N(+, ⋅).
2) Equivalence and containment of formulas in QMSO(ΣxΠ1

x,⊕,⊙) over N∞(min,+).

Proof: (1) We show this result by an easy reduction from a variant of the Diophantine equation prob-
lem [12]. More specific, let p(x1, . . . , xk) be a polynomial in k variables with integer coefficients. The equation
p(x1, . . . , xk) = 0 is called a Diophantine equation when only integer solutions are allowed. Then the problem
of determining whether there exists a non-negative integer solution to such an equation is well-known to be
undecidable [12]. Furthermore, for any two polynomials p1(x1, . . . , xk) and p2(x1, . . . , xk) in k variables with
non-negative coefficients one can easily derived that there exists no procedure to decide if for all n1, . . . , nk ∈ N it
holds that:

p1(n1, . . . , nk) ≤ p2(n1, . . . , nk)

We use this last problem to show that containment of formulas in QMSO(ΣxΠ1
x,⊕,⊙) over N(+, ⋅) is undecidable.

Towards this goal, let p(x1, . . . , xk) be a polynomial in k variables of the form:

p(x1, . . . , xk) =
m

∑
i=1

vi ⋅ x
c(i,1)
1 ⋅ . . . ⋅ xc(i,k)k

17

where vi ∈ N and c(i,j) ∈ N for all i ≤m and j ≤ k. Further, let Γ∗ = {a1, . . . , ak} be a finite alphabet of k different
letters. We show next how to construct a formula θp ∈ QMSO(ΣxΠ1

x,⊕,⊙) over N(+, ⋅) such that for every word
w ∈ Γ∗ it holds that:

p(∣w∣a1 , . . . , ∣w∣a1) = ⟦θp⟧(w) (4)

where ∣w∣ai denotes the number of ai’s in w. Then from the construction of θp (below) and Equation (4), the
undecidability of the containment of formulas in QMSO(ΣxΠ1

x,⊕,⊙) over N(+, ⋅) easily follows and we left this
to the reader.

Then it only left to show the construction of θp. For any variable xi ∈ {x1, . . . , xk} consider the formula in
QMSO(ΣxΠ1

x,⊕,⊙) over N(+, ⋅):
τxi ∶= Σz. Pai(z)

Basically, this formula counts the number of ai-letters in a word over Γ (i.e ⟦τxi⟧(w) = ∣w∣ai). Further, for any
c ∈ N consider the formula τ cxi

= ∏c
i=1 τxi . Clearly, this formula is also in QMSO(ΣxΠ1

x,⊕,⊙). With all these
ingredients we can easily define the formula θp as follows:

θp =
m

∑
i=1

vi ⋅ τ
c(i,1)
x1 ⋅ . . . ⋅ τ c(i,k)xk

From the definition of p(x1, . . . , xk) and θp it is straightforward to show that Equation (4) holds and the
undecidability of (1) is shown.

(2) These results follows easily from Theorem 5.4 and the undecidability of the equivalence problem between
polynomial ambiguous distance automata [1] (i.e. weighted automata over N∞(min,+)).

B. Proofs Omitted in Section V

Depending on restrictions imposed on the amount of “ambiguity” allowed in the definition of weighted automata,
one can capture different classes of functions over words [24]. Here, by ambiguity we mean the maximum number
of different accepting runs an automaton can take on any input word. As an example, it is well known that there
exists a weighted automaton that cannot be defined as a deterministic weighted automaton (DWA). Furthermore,
unambiguous weighted automata (unamb- WA), finitely ambiguous weighted automata (fin- WA), and polynomially
ambiguous weighted automata (poly- WA) are different classes of weighted automata which define different classes
of functions over words. In [24], it is shown that these classes are strictly contained in the following way:

DWA ⊊ unamb- WA ⊊ fin- WA ⊊ poly- WA ⊊ WA

Interestingly, all these classes can be characterized by restricting QMSO, or rather QIL, to different sets of operators.
In the following subsections we explain each class in detail and show how to capture the class with a subset of
QIL.

C. Deterministic weighted automata

It is well known that deterministic weighted automata are less expressive than weighted automata. As an example,
let Γ = {a} and let f1 ∶ Γ∗ → N∞ be the function such that f1(w) = ∣w∣ whenever w is of even length and f1(w) = 0
otherwise. Figure 1 shows the distance (i.e. N∞(min,+)) automaton that defines f1.

a/1

a/1

a/0

a/0

Figure 1: An unambiguous automaton for f1.

In [24], it is shown that f1 cannot be defined by any deterministic weighted automata over the min-plus semiring.
Therefore, DWA forms a proper subclass inside weighted automata. Surprisingly, this class can be characterized
by a subclass of QIL.

18

Theorem 5.1. Let S be a commutative semi-ring and Γ a finite alphabet. A function f ∶ Γ∗ → S is definable by a
deterministic weighted automaton over S and Γ if, and only if, f is definable by a formula in QMSOS,Γ(→,⊕b,⊙).
That is,

DWA ≡ QMSO(→,⊕b,⊙).

Proof: (⇒) Let A = (Γ,S,Q, δ, q0, F) be a deterministic weighted automaton that defines the function f ∶
Γ∗ → S. This direction works similar to the proof of Theorem 4.1, but here we use the fact that A is deterministic:
each time that we guess a run inside an MSO-formula, we know that this run will be unique by the determinism
of A. For this reason, we do not need to use external set quantification in our formula, or the Π-quantification.
Furthermore, in order to aggregate the weights of the transitions it is enough to use the forward operator which tell
us which is the last transition in order to add its weight. Next, we construct a formula τA ∈ QMSO(→,⊕b,⊙) such
that ⟦A⟧(w) = ⟦τA⟧(w) for every w ∈ Γ∗.

Similar to proof of Theorem 4.1, we define the set of non-zero transitions T of A and the enumeration X̄ =
(X1, . . . ,Xn) of variables in set {Xt ∣ t ∈ T}. Furthermore, in this proof we reuse formula runA(X̄) of the proof
of Theorem 4.1 that checks if variables X̄ encode an accepting run of A over a word w ∈ Γ. In particular, given
that A is deterministic, we know that whenever X̄ encodes a run, this must be unique.

In the following equations, we define the formulas for the weights of the transition and final function:

det-transition ∶= ∑
(p,a,q)∈T

(∃X̄. runA(X̄) ∧ (∃x. last(x) ∧ x ∈X(p,a,q))) ⊙ δ(p, a, q)

det-final ∶= ((∀x. x /≤ x) ⊙ F (q0)) ⊕

∑
p∈Q

⎛
⎝
∃X̄. runA(X̄) ∧

⎛
⎝
∃x. last(x) ∧ ⋁

q∈Q,a∈Γ

x ∈X(q,a,p)

⎞
⎠
⎞
⎠
⊙ F (p)

Notice that at the beginning of det-final we are considering the case when the input word is equal to ε. To conclude,
we define the formula τA in QMSO(→,⊕b,⊙) as follows:

τA ∶= (det-transition)→ ⊙ det-final

One can easily check that A and τA define the same function.
(⇐) Similar to the proof of Theorem 4.1, we show inductively on the syntax of a formula τ ∈ QMSO(→,⊕b,⊙)

how to construct a deterministic weighted automata Aτ . Actually, we can reuse some of the work of Theorem 4.1
by noticing that the construction of a weighed automaton for formulas without semi-ring quantification produces
a deterministic automaton (Lemma A.2) and the construction of the product ⊙ (Lemma A.5) preserves this
determinism. Then it is only left to show how to construct a deterministic weighted automaton from a formula
(θ)→. The following lemma shows how to do this last step.

Lemma A.6. Let θ be a formula without any sum or product quantification. For τ = (θ)→ there exists a deterministic
weighted automaton Aτ over S and Γ such that for every word w ∈ Γ∗ we have:

⟦τ⟧(w) = ⟦Aτ⟧(w)

Let A = (Γ,S,Q, δ, q0, F) be the deterministic weighted automata of Lemma A.2 that defines the characteristic
function ⟦θ⟧. By the construction of A, we know that δ is a function from Q×Γ into Q× {1}. As a consequence,
we use δ as a function from Q × Γ into Q in order to simplify the notation.

We define the deterministic weighted automaton A→ = (Γ,S,Q, δ′, q0, F
′) such that δ′(q, a) =

(δ(q, a), F (δ(q, a))) and F ′(q) = 1 for every q ∈ Q and a ∈ Γ. Clearly, A→ is deterministic and computes
the function (θ)→. In fact, given the unique run ρ = q0

a1/s1Ð→ q1
a2/s2Ð→ ⋯ an/snÐ→ qn of A→ over a word w = a1 . . . an,

we have that si = F (qi). This means that each transition ai/siÐ→ computes the weight in A of a prefix w[1..i], that
is, ⟦θ⟧(w[1..i]) = si. Then we have that:

⟦θ→⟧(w) =
n

∏
i=1

⟦θ⟧(w[1..i]) =
n

∏
i=1

si = ∣ρ∣

This was to be shown.

19

Compared to the Π-operator, the construction of the automaton for the (⋅)→-operator is very simple. In particular,
it is linear with respect to the size of the weighted automaton for a characteristic function, in contrast to the
exponential blow-up in the construction for Π.

Another interesting class of weighted automata are co-deterministic weighted automata. We say that a weighted
automaton A = (Γ,S,Q,E, I,F) is co-deterministic if the reverse automata of A is deterministic. That is, if (1)
for every q ∈ Q and a ∈ Γ there exists at most one p ∈ Q such that E(p, a, q) ≠ 0 and (2) there exists at most one
state qf ∈ Q such that F (qf) ≠ 0. Co-deterministic weighted automata (co- DWA) form a disjunct subclass with
respect to deterministic weighted automata. For example, consider the function f2 ∶ Γ∗ → N∞ with Γ = {a, b, c}
such that f2(cn ⋅ a) = n, f2(cn ⋅ b) = 0, and f2(w) = ∞ otherwise. One can prove that f2 is definable by a co-
deterministic automata like the one of Figure 2. However, there does not exist a deterministic weighted automata
that can specify f2.

c/1

c/0
a/0

b/0

Figure 2: Co-deterministic weighted automata for function f2.

The following theorem shows that co-deterministic weighted automata can also be characterized by a subset of
the operators of QMSO.

Theorem 5.2. Let S be a commutative semi-ring and Γ a finite alphabet. A function f ∶ Γ∗ → S is definable by a co-
deterministic weighted automaton over S and Γ if, and only if, f is definable by a formula in QMSOS,Γ(←,⊕b,⊙).
That is,

co- DWA ≡ QMSO(←,⊕b,⊙).

Proof: The proof is similar to the proof of Theorem 5.1. The only difference is that we have to apply the
same ideas in a backward manner and use the co-determinism of the weighted automaton. We leave this proof to
the reader.

D. Unambiguous and finitely ambiguous weighted automata

We say that a weighted automaton A = (Γ,S,Q,E, I,F) is unambiguous if ∣RunA(w)∣ ≤ 1 for every word w ∈ Γ∗,
i.e. if there exists at most one accepting run of A on w. We call A finitely ambiguous if there is a constant N ∈ N
such that ∣RunA(w)∣ ≤ N for every word w ∈ Γ∗. Clearly, if A is unambiguous then it is finitely ambiguous
with N = 1.

Unambiguous and finitely ambiguous weighted automata (unamb- WA and fin- WA, respectively) are other
proper subclasses of weighted automata. For example, the weighted automaton of Figure 1 is unambiguous.
Furthermore, in [24] it is shown that unambiguous automata form a proper subclass of finitely ambiguous automata
and, also, that finitely ambiguous automata form a proper subclass inside weighted automata. As before, the
expressiveness of both classes can be captured if we consider a subset of the operators of QMSO.

Theorem 5.3. Let S be a commutative semiring and Γ a finite alphabet. A function f ∶ Γ∗ → S is definable by
an unambiguous (resp. finitely ambiguous) weighted automaton over S and Γ if, and only if, f is definable by a
formula in QMSOS,Γ(Π1

x,⊕b,⊙) (resp. QMSOS,Γ(Π1
x,⊕,⊙)). That is,

unamb- WA ≡ QMSO(Π1
x,⊕b,⊙)

fin- WA ≡ QMSO(Π1
x,⊕,⊙)

First we prove the unambiguous case to then follow to finitely ambiguous case, which is a corollary of the former
and the results in [31], [24].

20

Proof: (⇒) Let A = (Γ,S,Q,E, I,F) be an unambiguous weighted automaton that defines the function
f ∶ Γ∗ → S. As before, this proof follows the same ideas of Theorem 4.1 and Theorem 5.1. Similar to the
deterministic case, there exists at most one accepting run of A for each word in Γ∗. Therefore, we can use the
same technique in Theorem 5.1 of guessing for each word a unique run and then use the Π-operator in order
to collect all the weights of this run. Next, we show how to define a formula τA ∈ QMSO(Π1

x,⊕b,⊙) such that
⟦A⟧(w) = ⟦τA⟧(w) for every w ∈ Γ∗.

As before (Theorem 4.1), we define the set of non-zero transitions T of A, the set of initial and final transitions
TI and TF , and the enumeration X̄ = (X1, . . . ,Xn) of variables in set {Xt ∣ t ∈ T}. Further, we reuse formula
runA(X̄) of the proof of Theorem 4.1 that checks if variables X̄ encode an accepting run of A over a word w ∈ Γ.
In particular, given that A is unambiguous, we know that whenever X̄ encodes a run, this must be unique.

Next, we define formulas to collect the transition, initial and final function weights:

unamb-transition(x) ∶= ∑
(p,a,q)∈T

(∃X̄. runA(X̄) ∧ x ∈X(p,a,q)) ⊙E(p, a, q)

unamb-initial ∶=
⎛
⎝
(∀x. x /≤ x) ⊙ ∑

q∈Q

I(q)
⎞
⎠
⊕

∑
(p,a,q)∈TI

(∃X̄. runA(X̄) ∧ (∃x. first(x) ∧ x ∈X(p,a,q))) ⊙ I(p)

unamb-final ∶=
⎛
⎝
(∀x. x /≤ x) ⊙ ∑

q∈Q

F (q)
⎞
⎠
⊕

∑
(p,a,q)∈TF

(∃X̄. runA(X̄) ∧ (∃x. last(x) ∧ x ∈X(p,a,q))) ⊙ F (q)

In formula unamb-transition(x), x is used to iterate over the transitions of the unique run encoded in X̄ and
collected the weight of each transition by using the Π-operator. Notice also that we are considering the case when
the input word is equal to ε at the beginning of unamb-initial and unamb-final. To conclude, we define the formula
τA in QMSO(Π1

x,⊕b,⊙) as follows:

τA ∶= unamb-initial ⊙ (Πx. unamb-transition(x)) ⊙ unamb-final

Similar to previous proofs, it is easily to check that A and τA define the same function.
(⇐) For this direction, all the work was done in the proof of Theorem 4.1 given that all constructions of operators

in QMSO(Π1
x,⊕b,⊙) preserve unambiguity of weighted automata. First, a formula θ on the semiring level can

be defined by a deterministic weighted automaton as was shown in Lemma A.2. Second, given two unambiguous
weighted automata A1 and A2 one can easily see that the product construction A1 ⊙ A2 of Lemma A.5 is also
unambiguous. Finally, for the Π-operator we prove in Claim A.4 that for every word w ∈ Γ there exists at most one
valid run in the automata A′ where A′ define Πx. θ(x). This means that A′ is unambiguous and, therefore, the
construction of Lemma A.3 produces only unambiguous weighted automata. Therefore, we conclude from the proof
of Theorem 4.1 that for every formula τ ∈ QMSO(Π1

x,⊕b,⊙) there exists an unambiguous weighted automata Aτ
such that ⟦ϕ⟧(w) = ⟦A⟧(w) for every w ∈ Γ∗.

Now, we consider the finitely ambiguous case. The following lemma is crucial for this proof.

Lemma A.7. [24], [31] Given a semiring S, every finitely ambiguous weighted automata can be defined by the
disjoint union of a finite number of unambiguous weighted automata. That is, for every finitely ambiguous weighted
automata A over S and Γ, there exists a finite number of unambiguous automata A1, . . . ,An such that for every
w ∈ Γ∗:

⟦A⟧(w) = ⟦A1 ⊕⋯⊕An⟧(w)

By using this lemma and the equivalence between unambiguous weighted automata and QMSO(Π1
x,⊕b,⊙), we

can easily show that fin- WA = QMSO(Π1
x,⊕,⊙). To prove the direction from fin- WA to QMSO(Π1

x,⊕,⊙),
one has to translate a finitely ambiguous weighted automaton into the finite set of unambiguous weighted automata,
translate each automata into a formula in QMSO(Π1

x,⊕b,⊙) and then take the addition ⊕ of all formulas. One can
easily prove that the resulting formula is equal to the initial finitely ambiguous weighted automaton. For the other

21

a/1, b/0 a/0, b/1
a/0, b/0

(a) Polynomially ambiguous

a/0, b/1

a/1, b/0

c/0

c/0

c/0

c/0

(b) Non-polynomially ambiguous

Figure 3: Example of polynomially and non-polynomially ambiguous weighted automata

direction, one simply has to notice that the construction of the ⊕-operator (Lemma A.5) between finitely ambiguous
weighted automata preserves finite ambiguity. Similarly, Π-operator and ⊙-operator also preserves ambiguity and
this shows that QMSO(Π1

x,⊕,⊙) ⊆ fin- WA.

E. Polynomially ambiguous weighted automata

We now introduce another operator, the / -operator, which does not change the expressive power of QMSO but
is often very useful in this section. Formally, if ϕ,ψ ∈ QMSO over a semi-ring S then we can build the formula
(ϕ / ψ). The semantics is defined as

⟦(ϕ / ψ)⟧(w,σ) ∶= ⊕
w=w1w2

(⟦ϕ⟧(w1, σ) ⊙ ⟦ψ⟧(w2, σ))

that is, we sum over all ways in which the word w can be split into two parts w1w2 and then evaluate the formulas
ϕ,ψ on the two parts respectively, taking the product of the results.

Example A.8. Let N∞(min,+) be the min-plus semiring and Γ = {a, b}. We want to define the length of the
minimum sequence of a’s between two b’s. Using the / -operator, we can express this as follows.

lastb / Σx. (Pa(x) + 1) / firstb

where firstb, lastb are first-order formulas defining that the first and last position of the word is equal to b.

Obviously, the / -operator can easily be expressed using the first order sum operator. Somewhat less obviously,
the converse is often true as well, in particular the logic QIL below capturing weighted automata can equally be
defined using the / -operator instead of Σ. However, a direct translation from Σ-formulas into / -formulas is
difficult and we refrain from giving an explicit construction at this point.

A weighted automata A = (Γ,S,Q,E, I,F) is called polynomially ambiguous if there exists a polynomial p(x)
such that ∣RunA(w)∣ ≤ p(∣w∣) for every word w ∈ Γ∗. Polynomially ambiguous weighted automata (poly- WA)
were studied in [24], [23] and it was shown that they constitute another proper subclass in the family of weighted
automata. Further, in [23] an algorithm for deciding whether a polynomially ambiguous weighted automata is
determinizable was given. For example, Figure 3a shows a weighted automata over the min-plus semiring that is
polynomially ambiguous but it cannot be defined with finite ambiguity. Interestingly, this function can easily be
defined by the formula:

(min{enda +1, endb})→ / (min{enda, endb +1})→.

where endd ∶= ∃x. last(x) ∧ Pd(x), that is, the word ends with letter d for d ∈ {a, b}. Furthermore, Figure 3b
shows a weighted automaton over the min-plus semiring that cannot be specified with a weighted automaton by
using only polynomially ambiguity. This shows that poly- WA forms another proper subclass inside the family of
weighted automata.

Polynomially weighted automata can also be captured by a subset of QMSO as follow.

Theorem 5.4. Let S be a commutative semiring and Γ a finite alphabet. A function f ∶ Γ∗ → S is definable
by a polynomially ambiguous weighted automaton over S and Γ if, and only if, f is definable by a formula in
QMSOS,Γ(ΣxΠ1

x,⊕,⊙). That is,
poly- WA ≡ QMSO(ΣxΠ1

x,⊕,⊙)

22

Proof: (⇒) We start by introducing some notation in order to simplify the presentation of this proof. Let
A = (Γ,S,Q,E, I,F) be a polynomial ambiguous automaton and q a state in A. We denote by:
• eq ∶ Q→ S the 1-function on q (i.e. eq(q) = 1 and 0 otherwise),
• E→q ∶ Q × Γ × Q → S the restriction of E without transitions starting from q (i.e. E→q (p, a, r) = E(p, a, r)

whenever p ≠ q and 0 otherwise),
• E←q ∶ Q×Γ×Q→ S the restriction of E without transitions going into q (i.e. E←q (p, a, r) = E(p, a, r) whenever

r ≠ q and 0 otherwise), and
• for every function f ∶ Q→ S (or f ∶ Q ×Γ ×Q→ S) we denote by f−q the restriction of f on the set Q − {q}

((Q − {q}) × Γ × (Q − {q}) resp.).
Furthermore, we say that a state q ∈ Q has a cycle in A if there exists a word w ≠ ε over Γ and a run of A over
w that starting from q reaches q again. In other words, q has a cycle in Q if there exists a cycle on q when A is
seen as a graph.

With this notation, we define the following different restrictions of A:
• A−q = (Γ,S,Q − {q},E−q, I−q, F−q) is the weighted automata A restricted to the set Q − {q},
• Aq = (Γ,S,Q,E, eq, eq) is the weighted automata A where the initial and final states are restricted to q,
• AIq = (Γ,S,Q,E→q , I, eq) is the weighted automata A where final states are restricted to q and AIq does not

have transitions starting from q, and
• AFq = (Γ,S,Q,E←q , eq, F) is the weighted automata AFq where initial states are restricted to q and A does not

have transitions reaching q.
Notice that if A is polynomially ambiguous, then the weighted automata A−q , Aq , AIq , and AFq are also polynomially
ambiguous. Moreover, for every q ∈ Q it holds that q does not have cycles neither in AIq nor in AFq .

The following lemma is a useful characterization of polynomial ambiguity.

Lemma A.9. [23] A weighted automata A = (Γ,S,Q,E, I,F) is polynomially ambiguous if, and only if, for every
state q and every w ∈ Γ∗ there is at most one path for w from q to q, that is, if Aq is unambiguous for every
state q ∈ Q.

Now, we present how to construct a formula τ ∈ QMSO(ΣxΠ1
x,⊕,⊙) recursively over A by using Lemma A.9,

Theorem 5.3, and / -operator. Given an unambiguous automata A, we denote by µ(A) the QMSO(Π1
x,⊕b,⊙)-

formula constructed in Theorem 5.3 that defines the behaviour of A. Consider a recursively procedure π(⋅) over
a polynomially ambiguous weighted automata A defined as follow. First, pick any state q ∈ Q that has a cycle in
A. If q does not exist, then A is acyclic and, thus, definable by an unambiguous weighted automata A′ such that
π(A) = µ(A′). Otherwise, do the following procedure:
• If Q = {q}, then π(A) = µ(A). This is correct because a weighted automata with only one state is always

unambiguous.
• If Q ≠ {q}, then:

π(A) = π(A−q) ⊕ (π(AIq) / µ(Aq) / π(AFq))

First of all, it is straightforward to check that the recursive definition of π over a polynomially ambiguous weighted
automata A is correct given that Aq is always unambiguous (Lemma A.9) and A−q , AIq , and AFq are also polynomial
ambiguous. Second, A−q has less state than A. Moreover, q has no cycles in AIq and AFq and, thus, the induction
holds. Third, the formula defined by π is in QMSO(ΣxΠ1

x,⊕,⊙) given that the definition only uses the / -operator
and ⊕-operator, and µ always return a formula in QMSO(Π1

x,⊕b,⊙). Finally, it is easy to check by induction over
the set of states that ⟦π(A)⟧(w) = ⟦A⟧(w) for any word w ∈ Γ∗.

(⇐) This direction is trivial by the proof of Theorem 4.1. One only need to notice that the construction of the
first-order sum operator preserves polynomial ambiguity.

F. Proofs Omitted in Section VI-A

Proposition 6.1. Let Γ be a finite alphabet and S be a commutative semiring. The following classes of PNWA and
sub-fragments of QMSO are equally expressive over Γ and S:

PNWA ≡ QMSO(ΣX ,⊕,⊙b)
poly- PNWA ≡ QMSO(Σx,⊕,⊙b)

23

Proof: In this proof we show that PNWA ≡ QMSO(ΣX ,⊕,⊙b). This proof is a simplified version of the proof
of Theorem 4.1. First, consider the direction from a pure-nondeterministic weighted automaton A = (Γ,S, δ, I, F)
to a formula in QMSO(ΣX ,⊕,⊙b). Recall from the proof of Theorem 4.1 the formulas runA(X̄), final(X̄), and
empty. From these three formulas, we have to only redefine the formula empty into:

empty ∶= (∀x. x /≤ x) ⊙
⎛
⎝∑q∈I

F (q)
⎞
⎠

Then we can define a formula θA ∈ QMSO(ΣX ,⊕,⊙b) as follow:

θA ∶= ΣX̄. (runA(X̄) ⊙ final(X̄)) ⊕ empty

It is easily checked that A and θA define the same function.
For the other direction, the proof also follows the same lines than Theorem 4.1. First, notice that for a formula

without semiring quantification in QMSO(ΣX ,⊕,⊙b), Lemma A.2 produces a pure non-deterministic weighted
automata. Specifically, all the transitions of the output automata of Lemma A.2 has cost equal to 1 and it is
straightforward to show how to convert this automata into a pure non-deterministic weighted automata. Finally, for
the formula θ1 ⊕ θ2 or ΣX. θ(X) one can easily obtain a pure non-deterministic weighted automaton from the
proof of Theorem 4.1.

For the proof of poly- PNWA ≡ QMSO(Σx,⊕,⊙b), we detour the reader to the proof of Theorem 6.2.

Theorem 6.2. Let Γ be a finite alphabet and S be a commutative semiring. For all k ∈ N, the following class of
PNWA and sub-fragments of QMSO are equally expressive over Γ and S:

polyk- PNWA ≡ QMSO(Σkx,⊕,⊙b).
Proof: (⇐) Let A = (Γ,S,Q, δ, I, F) be a pure-nondeterministic weighted automata over Γ and S such that A

is polynomial ambiguous with degree k (i.e. A ∈ polyk- PNWA). We show next how to decompose A inductively
and construct a formula ϕA ∈ QMSO(Σkx,⊕,⊙b) that is equivalent to A. Consider for each pair p, q ∈ Q the
automata Ap,q = (Γ,S,Q, δ,{p}, Fq) such that Fq(q) = 1 and 0 otherwise. That is, the automata Ap,q is equivalent
to A restricted to p and q to be the initial and final state, respectively. We define the construction of ϕA inductively
by using a function π that takes as parameters an automaton of the form Ap,q with p, q ∈ Q and two first order
variable x and y, and build a formula π(Ap,q, x, y) in QMSO(Σkx,⊕,⊙b) with k = degree(Ap,q). Intuitively, the
function ⟦π(Ap,q, x, y)⟧ over w ∈ Γ∗ defines the ⊕-aggregation of all runs from p to q of A over w restricted to
the interval (x, y). Before going into the details of π, notice that by using π we can define ϕA as follows:

ϕA = ∑
(p,q)∈I×Q

π(Ap,q,first, last) ⊙ F (q).

Note that the above sum is not a quantification in the logic, and first and last are constant in the logic that defines
the first and last position over the input string. Furthermore, the product π(Ap,q,first, last)⊙F (q) is still in the logic
QMSO(Σkx,⊕,⊙b) given that one can always “push” the value F (q) (by distributivity of S) to the non-quantified
level of the formula and rewrite ϕA into a formula in QMSO(Σkx,⊕,⊙b).

In the sequel, we define the output of π(Ap,q, x, y) by induction over the degree of Ap,q . For the base case
(degree(Ap,q) = 0), we have that rAp,q ∈ O(x0), that is, there exists a constant N such that ∣RunAp,q(w)∣ < N for
all w ∈ Γ (recall that rAp,q(n) = maxv∈Γn ∣RunAp,q(v)∣ for n = ∣w∣). In other words, Ap,q is finitely ambiguous.
By Lemma A.7, we know that Ap,q can be decomposed in the disjoint union of unambiguous weighted automata
A1, . . . ,AN such that:

⟦Ap,q⟧(w) = ⟦A1 ⊕⋯⊕AN⟧(w)
for every w ∈ Γ∗. Since Ai is unambiguous for each i ≤ N , we can find a formula ϕi(x, y) in MSO restricted to
the interval (x, y) such that Ai is equivalent to ϕi(x, y). Indeed, Ai outputs 0 or 1 whenever it rejects or accepts
a words which is equivalent to a property defined in MSO. Finally, we have that:

π(Ap,q, x, y) = ϕ1(x, y) ⊕ . . .⊕ ϕN(x, y)
For the inductive case, suppose that π(Ap′,q′ , x, y) ∈ QMSO(Σkx,⊕,⊙b) is defined for every p′, q′ ∈ Q such that

degree(Ap′,q′) = k. Then we show how to construct the output of π(Ap,q, x, y) for any pair p, q ∈ Q such that

24

degree(Ap,q) = k + 1. First, we need to introduce some notation related with the graph-structure of A. Let GA
be A seen as a graph, that is, GA = (Q,Eδ) where Q is the set of vertex and Eδ is the set of edges such that
(p, q) ∈ Eδ if, and only if, (p, a, q) ∈ δ for some a ∈ Γ. Using the graph representation of an automaton A, we can
derive the notion of strongly connected component (or simply a component) of A: this is a maximal set A of nodes
of GA such that for all p, q ∈ A, there is a directed path from p to q visiting only nodes in A and traversing edges
in Eδ . We denote by SCC(A) the set of all components of A. Notice that for each p ∈ Q there exists only one
A ∈ SCC(A) such that p ∈ A. Thus, this allows us to talk about the component of p and we denote it by SCC(p).

Coming back to the proof, the main idea of the inductive step is to sum over all positions where a particular
transition between two components is being used and, then, separate the formula between the prefix and the suffix
of this transition. We argue that (1) the sub-automata over the prefix has degree at most k and we can apply our
inductive hypothesis, and (2) the sub-automata of the suffix has degree 0 which is trivial to define (using the ideas
of the base case). In order to develop this idea, the following claim is crucial.

Claim A.10. There exists p′, q′ ∈ Q satisfying the following conditions:

1) (p′, q′) ∈ Eδ ,
2) p′ and q′ are in different components (SCC(p′) ≠ SCC(q′)),
3) degree(Ap,p′) < k + 1, and
4) degree(Aq,q′) = 0.

Proof: First of all, notice that degree(Ap,q) = 0 whenever p and q are in the same component (Lemma A.9).
Furthermore, one can easily show that degree(Ap,q) = degree(Ap′,q′) for every states p′, q′ such that p and p′ (q
and q′) are in the same component. Indeed, for every w ∈ Γ∗ we can always find u, v ∈ Γ such that ∣RunAp,q(w)∣ ≤
∣RunAp′,q′

(u ⋅w ⋅ v)∣ and from here we can easily get that degree(Ap,q) = degree(Ap′,q′). These facts allow us to
define the degree of two components A,B ∈ SCC(A) in A by:

degreeA(A,B) = degree(Ap,q)
where p and q are any state of A and B, respectively. Notice that by the previous fact, p and q are not important
in the definition and, furthermore, it always holds that degreeA(A,A) = 0 for all A ∈ SCC(A).

Without lost of generality, we assume that all the component in SCC(A) are reachable from p and q, that is, for
each component in A ∈ SCC(A) there exists a path from p to q that passes through A. Otherwise, we can always
trim A by removing the components that are not reachable and co-reachable from p and q. For each component
A ∈ SCC(A), define the set ReachA(A) of all components directly reachable from A, i.e. ReachA(A) = {B ∈
SCC(A)−{A} ∣ (A×Γ×B)∩δ ≠ ∅}. Now, take any component A ∈ SCC(A) such that degreeA(A,SCC(q)) ≠ 0 and
degreeA(B,SCC(q)) = 0 for all B ∈ ReachA(A). Note first that A always exists. This can be shown constructively
as follows. Let C = {SCC(q)} and take A⋆ ∈ SCC(A) such that ReachA(A⋆) ⊆ C. If degreeA(A⋆,SCC(q)) ≠ 0,
then we are done. Otherwise, redefine C = C ∪ {A⋆} and repeat with procedure. At some point, we know that
either C = SCC(A) in which case degree(Ap,q) = 0 (a contradiction), or we find our component A = A⋆ such that
degreeA(A⋆,SCC(q)) ≠ 0 and degreeA(B,SCC(q)) = 0 for all B ∈ ReachA(A⋆). Therefore, we conclude that A
exists.

Take now p′ ∈ A and q′ ∈ B for some B ∈ ReachA(A) such that (p′, q′) ∈ Eδ . By the definition of A, we know
that p′ and q′ exists. Furthermore, we have that degree(Aq′,q) = 0 given that degreeA(B,SCC(q)) = 0. Thus, it
only left to show that degree(Ap,p′) < k + 1. By contradiction, suppose that degree(Ap,p′) ≥ k + 1. Then for every
u ⋅ v ∈ Γ∗, we have:

rAp,p′
(∣u∣) ⋅ rAp′,q

(∣v∣) ≤ rAp,q(∣u ⋅ v∣).

Since rAp,p′
∈ Ω(nk+1) and rAp′,q

∈ ω(1), then we have that rAp,q ∈ ω(nk+1). Notice that we can assume the
strong fact rAp,p′

∈ Ω(nk+1) (and not just rAp,p′
∈ ω(nk)) since it is a folklore result that the number of runs of

any automata structure is either constant, polynomial, or exponential in the length of the word. This leads us to a
contradiction given that rAp,q ∈ O(nk+1).

The previous claim is all what we need to define the formula π(Ap,q, x, y). Consider the pair of states p′, q′ ∈ Q
that satisfies the above conditions of Claim A.10. Consider the set of transitions T = {(p′, a, q′) ∣ a ∈ Γ}. Then we

25

define the formula π(Ap,q, x, y) as follows:

π(Ap,q, x, y) =
⎛
⎝

Σz. π(Ap,p′ , x, z − 1) ⊙ (∑
(p′,a,q′)∈T

Pa(z)) ⊙ π(Aq′,q, z + 1, y)
⎞
⎠
⊕ π(A−Tp,q, x, y)

where A−Tp,q is equal to Ap,q without all transitions that connects p′ with q′, that is, A−Tp,q = (Γ,S,Q, δ −T,{p}, Fq).
First, notice that, by some abuse of notation, we are using (z−1) and (z+1) to denote the predecessor and successor
of z. Without lost of generality, these two elements can be referenced into a formula by using the formula succ.
Second, the formula φ1 = ∑(p′,a,q′)∈T Pa(z) is free of Σ-quantifiers and, thus, it does not increase the nesting of
quantifiers. The same happens to the output φ2 = π(Aq′,q, z+1, y) where the degree of Aq′,q is 0 (by Lemma A.10)
and, thus, the output formula is also free of Σ-quantifiers. Since both φ1 and φ2 are free of Σ-quantifiers, we can
always “push” the product of φ1 ⊙ φ2 inside π(Ap,p′ , x, z − 1) (by distributivity of S) to the non-quantified level
of the formula and rewrite π(Ap,q, x, y) into a formula in QMSO(Σk+1

x ,⊕,⊙b). Further, the automata Ap,p′ has
degree strictly less than k + 1 (by Lemma A.10), it satisfies our inductive hypothesis and, thus, it can be defined in
a formula in QMSO(Σkx,⊕,⊙b). Finally, the last part of the formula π(Ap,q, x, y) continues the procedure π with
the sub-automata A−Tp,q that has strictly less transitions than Ap,q .

For the correctness of the formula, it is straightforward to check that π(Ap,q, x, y) is the sum over all the runs
that (a) use a transition from p′ to q′ and (b) do not use a transition from p′ to q′ at all. Clearly, the sum of runs
of both types are defined by the first and second formulas of π(Ap,q, x, y), respectively. Notice here that each
run passes at most one time through a transition from p′ to q′ given that p′ and q′ are in different components.
Therefore, we conclude that the formula π(Ap,q, x, y) computes the sum of all the runs from p to q.

(⇒) The proof of this direction is shown by analysing the ambiguity of the weighted automata constructed in the
proof of Theorem 4.1. First of all, consider a formula in QMSO(Σkx,⊕,⊙b) without any first-order Σ-quantification.
By using Lemma A.2, we can extract a pure-deterministic automata defining the same function. Notice that this
automata is deterministic and, therefore, its ambiguity degree is equal to 0.

The translation of the formula θ1 ⊕ θ2 can also be derived easily from Theorem 4.1. Consider A1 and A2 in
polyk- PNWA equivalent to θ1 and θ2 in QMSO(Σkx,⊕,⊙b), respectively. Then A1⊕A2 is equivalent to the formula
θ1⊕θ2 where A1⊕A2 is the disjoint union of A1 and A2. It is important to remark here that degree(A1⊕A2) ≤ k
whenever degree(A1) ≤ k and degree(A2) ≤ k.

The last step is to translate the first-order Σ-quantification into a PNWA and show that this translation only
increases the ambiguity of the output at most by one. For proving this, the translation of the first-order Σ-
quantification of Theorem 4.1 suffices. Let A = (Γ × {0,1},S,Q, δ, I, F) be the pure non-deterministic weighted
automaton over Γ{x} and S equivalent to θ ∈ QMSO(Σkx,⊕,⊙b) where x is a free first-order variable and
degree(A) = k (for the sake of simplicity we omit the set V of the other free variables of θ). Furthermore,
let A′ = (Γ,S,Q ∪ Q′, δ′, I ′, F ′) be the resulting pure non-deterministic weighted automaton equivalent to the
formula Σx.θ constructed in Theorem 4.1. From this construction, one can easily check that every w ∈ Γ∗ satisfies:

∣RunA′(w)∣ =
∣w∣

∑
i=1

∣RunA(wi)∣ (5)

where wi ∈ (Γ×{0,1})∗ is equal to w marked only at position i. Indeed, each accepting run ρ ∈ RunA′(w) passes
exactly once through a transition ρ(i) = (p, a, q′) ∈ δ′ where p ∈ Q and q′ ∈ Q′ and i ≤ ∣w∣. That is, ρ is of the form:

ρ = q0
a1Ð→⋯ ai−1Ð→ qi−1

aiÐ→ q′i
ai+1Ð→ ⋯ anÐ→ q′n

where w = a1⋯an, q0, . . . , qi−1 ∈ Q, and q′i, . . . , q
′
n ∈ Q′. Then we can define the function f ∶ RunA′(w) →

⋃ni=1 RunA(wi) such that:
f(ρ) = q0

a1Ð→⋯ ai−1Ð→ qi−1
aiÐ→ qi

ai+1Ð→ ⋯ anÐ→ qn,

i.e. f maps ρ to a run where each state q′ after i-position is mapped to his original version q. Clearly, f is a
bijection between RunA′(w) and ⋃ni=1 RunA(wi), and then Equation 5 holds. Finally, one can easily check the
following inequality by using Equation 5:

rA′(n) = max
w∈Γn

∣RunA′(w)∣ ≤ max
w∈Γn

n

∑
i=1

∣RunA(wi)∣ ≤
n

∑
i=1

max
wj∈Γn

∣RunA(wj)∣ = n ⋅ rA(n).

26

Thus, we have rA′ ∈ O(nk+1) and then degree(A′) ≤ k + 1.

G. Proofs Omitted in Section VI-B

In this section we give the proofs omitted in Section VI-B. We first give a formal definition of two-way weighted
automata with k-nested pebbles.

A two-way weighted automaton with k-nested pebbles is a finite state weighted machine that can move its
reading head in any of the two directions (left or right) and can drop or lift pebbles over the input word for
marking. In order to recognize only regular languages, pebbles are dropped in a nested discipline, that is, at
any moment of a run if pebbles 1 to i are placed over the word (0 ≤ i ≤ k) then the only pebble that can
be dropped is pebble (i + 1) and the only pebble that can be lifted is pebble i. In other words, the k-pebbles
follow a stack discipline over the numbers 1, . . . , k. Formally, a two-way weighted automata with k-nested pebbles
(2WA-k) is a tuple A = (Γ,S,Q,E, I,F) where Γ,S,Q, I,F are defined as usual and E is the transition function
from Q × (Γ ∪ {⊲,⊳}) × {0,1}k × Q × {→,←, ↓, ↑} to S. Here, symbols {⊲,⊳} denote left and right markers of
the beginning and end of a word, and {→,←, ↓, ↑} are abbreviations to denote the possible actions of A after
reading a letter (move right, move left, drop pebble, or lift pebble). If E(p, a, b⃗, q,↝) ≠ 0, then we say that tuple
t = (p, a, b⃗, q,↝) is a transition of A with cost E(t). Intuitively, this means that if A is in state p, reading a, and
pebbles {i ∣ b(i) = 1} are placed in the current position, then A changes its state into q and execute the instruction
↝ with cost E(t), i.e. moves the reading head one position to the right (→) or left (←), drops next pebble (↓), or
lifts last pebble (↑). Given a word w ∈ Γ∗, a configuration of A over w is a triple (q, l, l⃗) where q is the current
state of A, l ∈ {0, . . . , ∣w∣ + 2} is the current position of the reading head over ⊲ w ⊳, and l⃗ ∈ {1, . . . , ∣w∣}≤k are the
positions of the ∣l⃗∣-pebbles in ⊲ w ⊳. Notice that if l = 0 or l = ∣w∣ + 1, this means that the reading is over the left
(⊲) or right (⊳) markers respectively, and if l = ∣w∣ + 2, then the reading head “falls” out of the input word. Further,
if l⃗ = l1 . . . lj with j ≤ k, this means that the i-pebble is placed in the li-position of w for i ≤ j. We say that (q, l, l⃗)
is an initial (final) configuration of A over w if l = 0 (l = ∣w∣ + 2) and l⃗ = ε. We extend a transition t from states
to configurations in the expected way and we write this graphically as (q, l, l⃗) tÐ→ (q′, l′, l⃗′) . Notice that A is in
a final configuration if the reading head ”falls“ from the input and, thus, it cannot move any more (i.e. A is in
position ∣w∣ + 2).

Similar to one-way weighted automata, we define a run ρ of A over w as a sequence of configurations and
transitions:

ρ = (q0, l0, l⃗0) t1Ð→ (q1, l1, l⃗1) ⋯ tmÐ→ (qm, lm, l⃗m).

A run ρ like above is accepting if (q0, l0, l⃗0) is an initial configuration, (qm, lm, l⃗m) is a final configuration,
I(q0) ≠ 0, F (qm) ≠ 0, and E(ti) ≠ 0 for every i ≤m. In this case, the weight of an accepting run ρ of A over w
is defined by:

∣ρ∣ = I(q0) ⊙
m

∏
i=1

E(ti) ⊙ F (qm).

We define by RunA(w) the set of all accepting runs of A over w. Furthermore, we assume that for all the two-way
weighted automata consider in this paper, the set RunA(w) is finite for each w ∈ Γ∗. Finally, the weight of A over
a word w is defined by:

⟦A⟧(w) = ∑
ρ∈RunA(w)

∣ρ∣

where the sum is equal to 0 if RunA(w) is empty.
Similar to the previous sections, we also consider the deterministic and unambiguous restrictions of 2WA-k and

we denote them by 2DWA-k and unamb- 2WA-k, respectively. The special case when k = 0 are just two-way
weighted automata that do not use pebbles at all. Interestingly, in the next result we show that 2DWA-0 and
unamb- 2WA-0 coincide with the class of unamb- WA. By Proposition 5.3, this implies that all this subclasses are
equally expressive than QMSO(Π1

x,⊕b,⊙) which further shows the robustness of this class of functions for any
commutative semiring.

Theorem 6.3. Let Γ be a finite alphabet and S be a commutative semi-ring. The following classes of WA and
subfragments of QMSO are equally expressive over Γ and S:
1) 2DWA-0,

27

2) unamb- 2WA-0,

3) unamb- WA, and

4) QMSO(Π1
x,⊕b,⊙).

Proof: From the above claim, clearly unamb- WA and 2DWA-0 are special cases of unamb- 2WA-0.
Furthermore, in Theorem 5.3 we already prove that unamb- WA and QMSO(Π1

x,⊕b,⊙) are equivalent. Then it only
left to show that unamb- 2WA-0 ⊆ unamb- WA and unamb- 2WA-0 ⊆ 2DWA-0. For the second implication, it was
shown in [17] (Theorem 3) that two-way deterministic transducers are equal expressive than two-way unambiguous
transducers. In simple terms, a two-way transducer is a two-way weighted automata over the free semiring. This
means that unamb- 2WA-0 ⊆ 2DWA-0 is a special case of the results in [17]. Thus, we dedicate the rest of the
proof to show that unamb- 2WA-0 ⊆ unamb- WA.

Let A = (Γ,S,Q,E, I,F) be a two-way unambiguous weighted automata. The main idea of the proof is to
define an unambiguous weighted automata A′ equal to A by considering the crossing sequences of A over a word
w [22]. Intuitively, the strategy of A′ is to guess the crossing sequences of A over an input word w and checks
at the end whether the guessing was correct. Given that A is unambiguous, there exists only one correct guessing
of the crossing sequences used in a run of A. By adding the directional information of the crossing sequences, A′
can unambiguously guess this run and compute the same function defined by A over words in Γ.

Formally, fix an (unique) accepting run ρ = (q0, l0) t1Ð→(q1, l1) . . . tnÐ→(qn, ln) of A over w where ti =
(qi−1, ai, qi, di) for each i ≤ n. For each j ≤ ∣w∣ + 1, we say that a configuration (qi, li) crosses the j-boundary of
w if li−1 = j − 1 and li = j, or li−1 = j and li = j − 1. Furthermore, we call a subsequence (q′0, l′0), . . . , (q′m, l′m)
of configurations of ρ a j-crossing sequence of configurations if (q′i, l′i) crosses the j-boundary of w for each
i ≤ n. In other words, a j-crossing sequence of configurations is the subsequence of configurations of ρ which
previous transition crosses the j-boundary of w. In [22], the sequence of states q′0, . . . , q

′
m of a crossing sequence

of configurations is called a crossing sequence of A when A is seen as a two-way finite automaton. For finite
state automata, crossing sequences are enough information to convert a two-way finite automaton into a one-way
finite automaton [22]. However, for two-way weighted automata this information is not enough to unambiguously
determine the cost of a transition between two crossing sequences. To solve this issue, we extend crossing sequences
with directions →, ←, ↩, and ↪. Formally, we consider the direction dirρ(qi, li) of a configuration (qi, li) in ρ as
follows:

dirρ(qi, li) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

→ if di = di+1 = →
← if di = di+1 = ←
↩ if di = → and di+1 = ←
↪ if di = ← and di+1 = →

In other words, the direction dirρ(qi, li) is equal to → (↩) if (qi, li) crosses its boundary from left to right
and continues to the right (left), and it is equal to ← (↪) if it crosses its boundary from right to left and
continues to the left (right). By using dirρ(qi, li) we define a directional crossing sequence of ρ to be a
sequence (q′0, d′0), . . . , (q′m, d′m) ∈ (Q × {→,←,↪,↩})∗ such that (q′0, l′0), . . . , (q′m, l′m) is a crossing sequence
of configurations and d′i = dirρ(q′i, l′i) for every i ≤ m. We define CA = (Q × {→,←,↪,↩})∗ to be the set of all
directional crossing sequences of A. Since A cannot cross a boundary with the same state twice (otherwise A will
get stack in a loop), we can consider only the directional crossing sequences that are of length at most 2∣Q∣. Thus,
in the sequel we use the set of directional crossing sequences of length at most 2∣Q∣ to run A with only one pass
over the input.

Given two directional crossing sequences of A we can determine the cost between them unambiguously by
using the directions in both sequences. Specifically, we define the cost functions E→ ∶ CA × Γ × CA → S and

28

E← ∶ CA × Γ ×CA → S recursively for any p, q ∈ Q, d, e ∈ {→,←,↪,↩}, and u, v ∈ CA as follows:

E→(ε, a, ε) = 1

E←(ε, a, ε) = 1

E→((p,→) ⋅ u, a, (q, d) ⋅ v) = E(p, a, q,→)⊙E←(u, a, v) where d ∈ {→,↩}
E→((p,↩) ⋅ (q, d) ⋅ u, a, v) = E(p, a, q,←)⊙E→(u, a, v) where d ∈ {←,↪}

E←((p, d) ⋅ u, a, (q,←) ⋅ v) = E(q, a, p,←)⊙E→(u, a, v) where d ∈ {←,↪}
E←(u, a, (q,↪) ⋅ (p, d) ⋅ v) = E(q, a, p,→)⊙E←(u, a, v) where d ∈ {→,↩}

Otherwise, we define Ed(u, a, v) = 0 in all other cases. From the previous definition it is important to notice that
pairs of directional crossing sequences are incompatible iff the cost assigned by E→ is equal to 0. Moreover, the
cost over compatibles sequences follows the directions of both sequences unambiguously. Intuitively, the meaning
of function E→ (E←) is to consider that the reading head is moving forward (backward) and the first state of the
first (second) sequence is the current control state of A.

We have all the necessary ingredients to define the unambiguous weighted automata A′. First of all, without lost
of generality we assume that (1) A never falls out from the left side of the input (i.e. E(p,⊲, q,←) = 0 for all
p, q ∈ Q), (2) there exists only one initial state q0 ∈ Q such that I(q0) ≠ 0, and (3) for every p ∈ Q there exists at
most one q ∈ Q such that E(p,⊳, q,→)⊙F (q) ≠ 0. The first two conditions are trivial to impose over any two-way
unambiguous weighted automata. The last condition stems from the fact that A is unambiguous and, therefore, they
cannot exist two states q1 and q2 such that E(p,⊳, qi,→)⊙F (qi) ≠ 0 for i ∈ {1,2} whenever p is reachable at the
end of the input from the initial configuration. This implies that for every crossing sequence u ∈ CA of the form
u = u′ ⋅ (p, d) we can assign a unique state qu such that E(p,⊳, qu,→) ⊙ F (qu) ≠ 0. Let C2∣Q∣

A
be the crossing

sequence of length at most 2∣Q∣. Then we define the weighted automata A′ = (Γ,S,C2∣Q∣

A
,E′, I ′, F ′) such that for

every u, v ∈ C2∣Q∣

A
and a ∈ Γ we have:

E′(u, a, v) = E→(u, a, v)
I ′(u) = I(q0) ⊙E→((q0,→),⊲, u)
F ′(u) = E→(u,⊳, (qu,→)) ⊙ F (qu)

For the last part of the proof, we show that ⟦A⟧(w) = ⟦A′⟧(w) for every w ∈ Γ∗. Fix a word w = a1⋯an ∈ Γ∗ and
let ρ be an accepting run of A over w. From the construction of A′, it is easy to check that from ρ we can extract
a compatible sequence of directional crossing sequences u0, . . . , un ∈ C2∣Q∣

A
such that:

∣ρ∣ = I ′(u0) ⊙
n

∏
i=1

E′(ui−1, ai, ui) ⊙ F ′(un)

Then we have that u0
a1/s1Ð→ u1

a2/s2Ð→ ⋯an/snÐ→ un is an accepting run of A′ over w.
Now, we show by induction that for any accepting run ρ′ of A′ over w, there exists an accepting run ρ of A

over w such that ρ′ consists on the directional crossing sequence of ρ over w. Given that A is unambiguous, this
will imply that ρ′ is unique. For the rest of the proof, we call a run ρ = (q0, l0) t1Ð→⋯ tmÐ→(qm, lm) of A partial
accepting iff E(ti) ≠ 0 for all i ≤m. Furthermore, we define the partial cost of ρ by:

⌈ρ⌉ =
m

∏
i=1

E(ti)

Fix an accepting run u0
a1/s1Ð→ ⋯an/snÐ→ ui of A′ over a1 . . . an and suppose that ui = (qi1, di1) . . . (qiki , d

i
ki
). We make

the following claim for all i ≤ n.

Claim A.11. 1) There exists a partial accepting run ρ0 of A over a1 . . . ai that starting from (q0,0) reaches
(qi1, i + 1).

2) For each j = 2,4, . . . , ki−1 there exists a partial accepting run ρj of A over a1 . . . ai that starting from (qij , i)

29

reaches (qij+1, i + 1) .
3) The following equivalence holds for runs ρ0, ρ2, . . . , ρki−1:

I ′(u0) ⊙
i

∏
j=1

E′(ui−1, ai, ui) = I(q0) ⊙ ∏
j=0,2,...ki−1

⌈ρj⌉.

The proof of the above claim is straightforward (see [22]) and we leave this proof to the reader. Instead, we
show how to use this claim to prove the last part of this proof which, in fact, are similar to the arguments need to
prove the above claim.

Assume that Claim A.11 holds for the accepting run ρ′ = u0
a1/s1Ð→ ⋯an/snÐ→ un of A′ over w where un =

(q1, d1) . . . (qk, dk) and ρ0, ρ2, . . . , ρk−1 are the partial accepting runs mention above. Given that ρ′ is accepting we
know that F ′(un) = E→(un,⊳, (qun ,→)) ⊙ F (qun) ≠ 0. This implies that E→(un,⊳, (qun ,→)) ≠ 0. Furthermore,
from the definition of E→ it is straightforward to prove that k is odd and:

E→(un,⊳, (qun ,→)) =
⎛
⎝ ∏
j=1,3,...k−2

E(qj ,⊳, qj+1,←)
⎞
⎠
⊙E(qk,⊳, qun ,→)

For the sake of presentation, let tj be the transition (qj ,⊳, qj+1,←) for j = 1,3, . . . k − 2 and let tk be the transition
(qk,⊳, qun ,→). By Claim A.11, we have that ρ0 is a partial accepting run from (q0,0) to (q1, n + 1) and ρj is a
partial accepting run from (qj , n) to (qj+1, n + 1) for j = 2,4, . . . , k − 1. Then plugging all together we get that:

∣ρ′∣ = I ′(u0) ⊙
i

∏
j=1

E′(ui−1, ai, ui) ⊙ F ′(un)

= I(q0) ⊙ ∏
j=0,2,...k−1

⌈ρj⌉ ⊙ ∏
j=1,3,...k−2

E(tj) ⊙E(tk) ⊙ F (uqn)

= I(q0) ⊙ ∏
j=0,2,...,k−1

(⌈ρj⌉ ⊙E(tj+1)) ⊙ F (uqn)

= I(q0) ⊙ ⌈ρ⌉ ⊙ F (uqn)

= ∣ρ∣
where ρ is the resulting accepting run of A by sequentially connecting ρ0, ρ2, . . . , ρk−1 with the transitions
t1, t3, . . . , tk−2 and tk. We conclude that ρ is an accepting run of A over w and ρ′ consists on the directional
crossing sequences of ρ over w.

Theorem 6.4. Let Γ be a finite alphabet and S a commutative semi-ring. For every k ∈ N, there exists an effective
translation between the following classes of weighted automata and subfragments of QMSO over Γ and S:
1) 2DWA-k,
2) unamb- 2WA-k, and
3) QMSO(Πk+1

x ,⊕b,⊙).

Proof: We show this proof by induction over k ∈ N. Given that the base case (k = 0) was proven in
Proposition 6.3, we assume that Theorem 6.4 holds for k ∈ N and we prove this result for k + 1.

Let θ1, θ2 be a formula in QMSO(Πk+1
x ,⊕b,⊙) and let A1,A2 be the respectively 2DWA-k equivalent to θ1, θ2

by the inductive hypothesis. For the product formula θ = θ1⊙θ2, one can construct a 2DWA-k A equivalent to θ by
sequentially running A2 after A1 over the input word. More specific, A runs A1 over w ∈ Γ∗ and just after ”falling“
out of the input (⊳) it change to a transient state in order to move the reading head backward until the beginning of
the input (⊲) and runs A2 over w from its initial state. One can easily check that ⟦A⟧(w) = ⟦A1⟧(w) ⊙ ⟦A2⟧(w)
and, thus, ⟦A⟧(w) = ⟦θ⟧(w) for all w ∈ Γ∗. Now, suppose that θ = Πx. θ1(x) and A1 is a 2DWA-k over the
alphabet Γ × {0,1} such that θ1(x) ≡ A1. We can construct a 2DWA-(k + 1) A from A1 by moving forward
the first pebble, position by position, starting from the beginning of the input and running A1 from scratch each
time that this pebble is moved. Clearly, we will have that ⟦θ⟧(w) = ⟦A⟧(w) for all w ∈ Γ∗ and θ is definable
by a 2DWA-(k + 1). We conclude that any QMSO(Πk+2

x ,⊕b,⊙)-formula is definable by a two-way deterministic
weighted automata with (k + 1)-pebbles and the direction from 3 to 1 is shown.

30

Fix now a unamb- 2WA-(k + 1) A = (Γ,S,Q,E, I,F) over the finite alphabet Γ and the commutative semiring S.
We show how to construct a formula θ ∈ QMSO(Πk+2

x ,⊕b,⊙) such that θ ≡ A. First of all, without lost
of generality we assume that I and F are functions from Q into {0,1}. Indeed, one can always modify an
unambiguous weighted automata to satisfy this restriction by moving the cost of I and F into its transitions. Now,
let w ∈ Γ∗ and ρ = (q0, l0, l⃗0) t1Ð→(q1, l1, l⃗1) ⋯ tmÐ→(qm, lm, l⃗m) a run of A over w. We classify the configurations
in ρ into two types: outer and inner configurations. We say that (qi, li, l⃗i) is an outer configuration if l⃗i = ε
and is inner otherwise (i.e. l⃗i ≠ ε). That is, inner configurations have at least one pebble placed in the input
where outer configuration have not. We can also divide the transitions of ρ into outer and inner transitions. We
say that a transition (qi−1, li−1, l⃗i−1) tiÐ→(qi, li, l⃗i) is an inner transition iff (qi−1, li−1, l⃗i−1) and (qi, li, l⃗i) are inner
configurations. Otherwise, we say that (qi−1, li−1, l⃗i−1) tiÐ→(qi, li, l⃗i) is an outer transition. A run ρ can be seen as a
sequence of outer and inner transitions starting always with an outer transition (i.e. no pebbles are in the input). This
division between outer and inner transition allows us to define what we call an outer and inner unamb- 2WA-k.
We say that A is an outer (inner) unamb- 2WA-k if a transition (q, l, l⃗) tÐ→(q′, l′, l⃗′) of ρ is an inner (outer)
transition, then E(t) = 1 for every w and every accepting run ρ of A over w. In other words, A is an outer (inner)
unamb- 2WA-k if A only uses transitions different from {0,1} over outer (inner) transitions. By considering the
previous distinction between outer and inner automata, the following lemma shows that any unamb- 2WA-k can
be decomposed into the product of an outer and inner unamb- 2WA-k.

Lemma A.12. There exists an outer weighted automata A1 ∈ unamb- 2WA-(k + 1) and an inner weighted automata
A2 ∈ unamb- 2WA-(k + 1) over Γ and S such that for every w ∈ Γ∗:

⟦A⟧(w) = ⟦A1⟧(w) ⊙ ⟦A2⟧(w)
Proof: The idea of the proof is to extend the states of A with one bit that keeps track if A is in outer or inner

mode. Then we use this bit to decide whether the current transition t is an outer or inner transition in order to
multiply its cost by E(t) or by 1 depending whether we are running the outer or inner version of A. More specific,
let qin, qout be two different states not in Q. Define the automata A1 = (Γ,S,Q× {qin, qout},E1, I1, F1) such that
for all q ∈ Q, I1(q, qout) = I(q) and F1(q, qout) = F (q), and 0 otherwise. Further, we define the transition function
E1 as follows:

E1((p, qout), a, b⃗0, (q, qout), d) = E(p, a, b⃗0, q, d) if d ∈ {→,←}

E1((p, qout), a, b⃗0, (q, qin), ↓) = E(p, a, b⃗0, q, ↓)

E1((p, qin), a, b⃗1, (q, qout), ↑) = E(p, a, b⃗1, q, ↑)

E1((p, qin), a, b⃗, (q, qin), d) = 1 if E(p, a, b⃗, q, d) ≠ 0 ∧ d ∈ {→,←, ↓}

E1((p, qin), a, b⃗, (q, qin), ↑) = 1 if E(p, a, b⃗, q, d) ≠ 0 ∧ b⃗ ≠ b⃗1

where p, q ∈ Q, a ∈ Γ, b⃗ ∈ {0,1}k+1, b⃗0 = (0, . . . ,0) and b⃗1 = (1,0, . . . ,0). For all other cases we define E1(t) = 0.
Notice that A1 only maintains the value of E when it is either in outer mode or it is changing from outer to inner
mode (and vice versa). By analogy, we define the weighted automata A2 = (Γ,S,Q × {qin, qout},E2, I1F1) such
that:

E2((p, qout), a, b⃗0, (q, qout), d) = 1 if E(p, a, b⃗0, q, d) ≠ 0 ∧ d ∈ {→,←}

E2((p, qout), a, b⃗0, (q, qin), ↓) = 1 if E(p, a, b⃗0, q, ↓) ≠ 0

E2((p, qin), a, b⃗1, (q, qout), ↑) = 1 if E(p, a, b⃗1, q, ↑) ≠ 0

E2((p, qin), a, b⃗, (q, qin), d) = E2(p, a, b⃗, q, d) if d ∈ {→,←, ↓}

E2((p, qin), a, b⃗, (q, qin), ↑) = E2(p, a, b⃗, q, ↑) if b⃗ ≠ b⃗1

where p, q ∈ Q, a ∈ Γ, b⃗ ∈ {0,1}k+1, b⃗0 = (0, . . . ,0) and b⃗1 = (1,0, . . . ,0). For all other cases we define E2(t) = 0.

31

From the definition, it is clear that A1,A2 ∈ unamb- 2WA-(k + 1). Furthermore, for every w ∈ Γ∗ and every
accepting run ρ of A, we can find an accepting run ρ1 (ρ2) of A1 (A2) over w such that ρ1 (ρ2) contains the cost
of the outer (inner) transitions of ρ. This implies that we have the desired result:

⟦A⟧(w) = ⟦A1⟧(w) ⊙ ⟦A2⟧(w)
for all w ∈ Γ∗. This was to be shown.

The previous lemma allows us to reduce our proof to find formulas θ1 and θ2 that defines the outer and inner part
of A, respectively. First, we focus how to define the inner unamb- 2WA-(k + 1) A2 to later show how to define
the outer unamb- 2WA-(k + 1) A1. For the sake of simplification, in the rest of the proof we use b⃗0 = (0, k+1. . . ,0)
and b⃗1 = (1, k+1. . . ,0) to denote the vector that represents no pebbles in the current position, or just the first pebble,
respectively.

Fix an inner unamb- 2WA-(k + 1) A2 = (Γ,S,Q2,E2, I2, F2) and let ρ = (q0, l0, l⃗0) t1Ð→ ⋯ tmÐ→(qm, lm, l⃗m) be
an accepting run of A2 over some w ∈ Γ∗. From the definition of an inner unamb- 2WA-(k + 1), we know that
the only transitions ti that are different from 1 are the inner transitions in ρ. These transitions are grouped in
disjoint intervals between 1 and m. Each interval starts when A2 drops the first pebble in moment i ≤m, and ends
when A2 removes this pebble again for the first time after i. Let Hρ = {(i↓, i↑, i) ∈ [1,m] × [1,m] × [1, ∣w∣]} be
the set of disjoint intervals and position in w such that ti↓ drops the first pebble in ρ at position i and ti↑ is the
first transition after ti that removes the first pebble for each (i↓, i↑, i) ∈ Hρ. For each interval h = (i↓, i↑, i), let
(ph, qh) ∈ Q2 be the pair of states such that ph (qh) is the first (last) state of the interval h, i.e. ti↓ = (p, a, ph, b⃗0, ↓)
and ti↑ = (qh, a, q, b⃗1, ↑) for some p, q ∈ Q and a ∈ Γ. Since A2 is unambiguous, we know that for each interval
h = (i↓, i↑, i) there exists a unique pair of states (ph, qh) and, thus, this pair of states is determined and well defined
for each h. Furthermore, for each pair of states (p, q) and position i in w we can define the function:

fp,q(i) =
i↑−1

∏
j=i↓+1

E(tj)

if there exists an accepting run ρ and an interval (i↓, i↑, i) ∈ Hρ such that p = ph and q = qh, and fp,q(i) = 1
otherwise. In other words, fp,q(i) outputs the cost of the inner part of A2 when it drops the first pebble in
position i starting in state p and ending in state q. Clearly, if we show that the function fp,q(x) can be defined
with a formula θp,q(x) ∈ QMSO(Πk+1

x ,⊕b,⊙), then we can define A2 in QMSO(Πk+2
x ,⊕b,⊙) by:

θ2 = Πx.
⎛
⎝ ∏p,q∈Q

θp,q(x)
⎞
⎠

where the inner product is a finite product for all combinations of p, q ∈ Q. To proof that fp,q(x) can be define with
a formula θp,q(x) ∈ QMSO(Πk+1

x ,⊕b,⊙), we argue that θp,q(x) can be computed with a unamb- 2WA-k Ap,q
and used the inductive hypothesis to get a formula in QMSO(Πk+1

x ,⊕b,⊙). The task of Ap,q to compute fp,q(x)
is to check that there exists an accepting run such that A2 (1) drops the first pebble in position x and enters into
state p, (2) removes the first pebble in position x from state q, and (3) multiplies the cost of the inner transitions
between the two states p and q. Property (1) and (2) are regular properties over w (marked with position x) and
can be checked with a two-way automata without pebbles [19]. If we know that property (1) and (2) holds over
w (marked with position x), Property (3) can be defined with a unamb- 2WA-k that just run the transitions of A2

starting from p in position x and ending when it reaches q in position x. Then the final automata is the sequential
running of these three automata that computes (1), (2), and (3). By the previous lines, it is straightforward to give
the explicit construction of Ap,q and, therefore, omit its definition. We conclude that θp,q(x) can be defined in
QMSO(Πk+1

x ,⊕b,⊙) and, thus, we have that A2 is definable in QMSO(Πk+2
x ,⊕b,⊙).

We turn now on the definition of A1 in QMSO(Πk+2
x ,⊕b,⊙). First, notice that in this case the cost is computed

in the outer intervals of an accepting run of A1. Moreover, the inner intervals and pebbles are just used to check a
regular property based on the position where the first pebble is dropped and removed. To characterize this intuition,
we use two-way automata with MSO-transitions proposed in [16] (which is a generalization of Lemma 3 in [21]).
A two-way weighted automata with MSO-transitions is a tuple Ā = (Γ,S, Q̄, Ē, Ī, F̄) such that Q̄, Ī , and F̄ are
defined as before, and Ē is a finite subset of Q̄ ×MSO[Γ,≤] × Q̄ × {←,→} × S where MSO[Γ,≤] are formulas in
MSO over words in Γ with one free variable. Intuitively, transitions in Ā are of the form (p,ϕ(x), q, d, s) which

32

means that if Ā is in state p and ϕ(i) is true where i is the current position of the reading head, then Ā changes
the control state to q and moves the reading head in the direction d with cost s. Configurations and accepting runs
of Ā over a word w ∈ Γ∗ are defined as usual. Also, we say that Ā is a two-way unambiguous weighted automaton
with MSO-transitions (unamb- 2WAMSO) if for every w ∈ Γ there exists at most one accepting run of Ā over w.
The following result can be easily obtained from [16] (Theorem 7).

Theorem A.13. [16] Let Ā be a unamb- 2WAMSO over a finite alphabet Γ and a semiring S. Then there exists
a unamb- 2WA A′ such that for all w ∈ Γ∗:

⟦Ā⟧(w) = ⟦A′⟧(w)
To be precise, the previous result is a rewriting of the original result which can be easily derived from [16]. Indeed,

the original result is shown for two-way deterministic transducers which are the same as two-way deterministic
weighted automata over the free semiring. To extend the original result from deterministic to unambiguous, the
same techniques in [16] can be used to prove this result (see also [21], [8]).

For the last part of this proof, we show that A1 can be defined by a unamb- 2WAMSO which proves that
A1 can be defined in QMSO(Πk+2

x ,⊕b,⊙). Indeed, by Theorem A.13 this will imply that A1 is equivalent to a
unamb- 2WA-0 and this is equivalent to a formula in QMSO(Πk+2

x ,⊕b,⊙) (actually, in QMSO(Π1
x,⊕b,⊙)) by

Proposition 6.3. We proceed similar to the construction of A2. Let A1 = (Γ,S,Q1,E1, I1, F1) and w ∈ Γ∗. For
each p, q ∈ Q1, let fp,q(x) be a Boolean function over the positions of w such that for all i ∈ {1, . . . , ∣w∣}, fp,q(i)
is true iff there exists a run (p, i, i) t1Ð→(q1, l1, l⃗1)⋯(qm, lm, l⃗m) . . . tm+1Ð→ (q, i, i) with l⃗j ≠ ε for j ≤ m, that is, there
exists a run of A1 starting in p with the first pebble and reading head placed in position i that reaches q with the
reading head in position i without removing the first pebble. It is easy to prove that fp,q(x) is a regular property
and can be defined by an MSO-formula over Γ. Indeed, we can define a two-way boolean automata with pebbles
that simulates the non-zero part of A1 and checks that starting from (p, i, i) one can reach the configuration (q, i, i).
For each p, q ∈ Q1, let ϕp,q(x) be the MSO-formula over Γ equivalent to fp,q(x).

Now, we define an unamb- 2WAMSO Ā equivalent to A1. The main idea of Ā is to use the MSO-transitions to
simulate the inner transitions of A1 that have cost 1. For the sake of simplification, we extend unamb- 2WAMSO

with a “stay” direction ↺ that means that the reading head stay in the same position. Let Ā = (Γ,S,Q, Ē, I, F)
be a unamb- 2WAMSO such that Ē is defined as follows:

• if E1(p, a, b⃗0, q, d) = s with d ∈ {←,→} then (p,{x ∈ Pa}, q, d, s) ∈ Ē,

• if E1(p1, a, b⃗0, p, ↓) = s1 and E1(q, a, b⃗1, p2, ↑) = s2 then (p1,{ϕp,q(x) ∧ x ∈ Pa}, p2,↺, s1 ⊙ s2) ∈ Ē.

From the previous definition one can easily check that A1 ≡ Ā. For any accepting run ρ of A1 over w ∈ Γ∗, one
can get an accepting run of Ā over w that skips the inner transitions of A1 by using the MSO-transitions and has
the same total cost as ρ. For the other direction, for any accepting run of Ā over w, one can derive an accepting
run of A1 by extending the formulas ϕp,q(x) into a sequence of inner transitions of A1 over w. Therefore, we
conclude that A1 ≡ Ā.

33

