
Foundations of Schema Mapping Management

Marcelo Arenas Jorge Pérez Juan Reutter Cristian Riveros
PUC Chile PUC Chile University of Edinburgh Oxford University

marenas@ing.puc.cl jperez@ing.puc.cl juan.reutter@ed.ac.uk cristian.riveros@comlab.ox.ac.uk

ABSTRACT

In the last few years, a lot of attention has been paid to the speci-
fication and subsequent manipulation of schema mappings, a prob-
lem which is of fundamental importance in metadata management.
There have been many achievements in this area, and semantics
have been defined for operators on schema mappings such as com-
position and inverse. However, little research has been pursued
towards providing formal tools to compare schema mappings, in
terms of their ability to transfer data and avoid storing redundant
information, which has hampered the development of foundations
for more complex operators as many of them involve these notions.

In this paper, we address the problem of providing foundations
for metadata management by developing an order to compare the
amount of information transferred by schema mappings. From this
order we derive several other criteria to compare mappings, we pro-
vide tools to deal with these criteria, and we show their usefulness
in defining and studying schema mapping operators. More pre-
cisely, we show how the machinery developed can be used to study
the extract and merge operators, that have been identified as fun-
damental for the development of a metadata management frame-
work. We also use our machinery to provide simpler proofs for
some fundamental results regarding the inverse operator, and we
give an effective characterization for the decidability of the well-
known schema evolution problem.

Categories and Subject Descriptors

H.2.5 [Heterogeneous Databases]: Data translation

General Terms

Algorithms, Theory

Keywords

Metadata management, model management, schema mapping, data
exchange, data integration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0033-9/10/06 ...$10.00.

1. INTRODUCTION
A schema mapping is a specification that describes a relationship
between data structured under two independent schemas. In the last
few years, a lot of attention has been paid to the specification and
subsequent manipulation of schema mappings, a problem which
is of fundamental importance in metadata management [5, 22, 19,
6]. In the metadata management context, schema mappings are
first class citizens, and high-level algebraic operators are used to
manipulate them.

Metadata management and, in particular, schema mapping man-
agement, is an area of active research, where there had been many
achievements in the recent years. However, there is not yet consen-
sus on the definitive semantics even for the most fundamental meta-
data management operators (a notable exception is the composition
operator [14, 22]). Consider, for example, the cases of the merge

operator [7, 25, 22, 23, 26] and the inverse operator [11, 15, 3, 16,
2, 1], for which several different semantics have been proposed. In
fact, we are currently in a situation in which different proposals for
the same set of operators are being studied, but little research is
being pursued towards understanding the fundamental notions that
all these proposals seem to share. In particular, abstract notions of
information, redundancy and minimality are part of every proposal
for the semantics of schema mapping operators [5, 25, 22, 11, 3,
26]. The formalization of these notions in a general setting would
play an essential role in providing a unifying framework for meta-
data management. The work by Melnik [22] could be considered
a first such effort towards the development of a general framework
for the area. In this paper, we go a step further in this direction.

We address the problem of providing foundations for metadata
management by focusing on the abstract notions of information and
redundancy. We develop theoretical tools to compare schema map-
pings in terms of these two aspects, providing characterizations to
deal with these criteria, and showing their usefulness in defining
and studying complex metadata management operators.

As an example to motivate our notions, consider the following
two mappings given by source-to-target tuple-generating depen-
dencies (st-tgds):

M1 : A(x, y, z) → ∃u P (x, u)
M2 : A(x, y, z) → R(x) ∧ S(x, y)

Intuitively, M2 transfers more information than M1 since the first
and second components of tuples in A are being transferred to the
target under M2, while only the first component is being trans-
ferred under M1. In fact, notice that the information transferred
by M1 can be obtained from the target of M2 by means of the
mapping R(x) → ∃u P (x, u). However, the opposite is not true;
we cannot obtain the information transferred by M2 from the tar-

get of M1. Consider now the mapping M3 given by:

M3 : A(x, y, z) → T (x, y)

Intuitively, mapping M3 transfers the same amount of information
as M2. Nevertheless, M3 is more efficient in the way that it struc-
tures the target data, as M2 stores redundant information in table
R. In this paper, we formalize the previous notions, that is, we
develop notions to compare mappings in terms of their ability to
transfer source data and avoid storing redundant information in its
target schema, as well as the symmetric notions of covering target
data, and storing redundant information in the source schema. In
fact, we prove the usefulness of the proposed notions by showing
that they can play a central role in the study of complex metadata
management operators.

More precisely, we start our investigation by defining a set of
natural conditions that an order on the amount of information trans-
ferred by a schema mapping should satisfy. We then propose the
order ¹S, that is provably the strictest relation satisfying these con-
ditions. Under our definition, the mappings in the above example
satisfy that M1 ¹S M2 but M2 6¹S M1. We study some funda-
mental properties of ¹S and, in particular, we prove its decidability
for the class of mappings specified by CQ 6=-TO-CQ dependencies,
which includes the widely used class of st-tgds. We also contrast
our proposal with previous work on comparing mappings [16]. Fa-
gin et al. propose in [16] a notion of information loss for schema
mappings specified by st-tgds, which gives rise to an order on this
type of mappings. In this paper, we show that our notion coincides
with the proposal of Fagin et al. for the class of mappings defined
by st-tgds. Moreover, we also prove that beyond st-tgds, Fagin et
al.’s notion does not satisfy the natural conditions that we impose
over an order to compare the amount of information transferred by
mappings.

As shown in the previous example, there may exist multiple ways
to transfer the same information from a source schema. Thus, one
also needs a way to distinguish between different alternatives. In
particular, if schemas are designed together with mappings, it is de-
sirable to use schemas that are optimal in the way they handle data.
To deal with this requirement, we introduce the notion of target re-

dundancy, and show that it captures the intuition of using the exact

amount of resources needed to transfer information using a schema
mapping. In fact, our notion formally captures the intuition in the
previous example, as M2 is target redundant while M3 is not.

Furthermore, to complement our information framework, we de-
vise two additional concepts that allow us to compare mappings
that share the same target schema. Symmetrically to the defini-
tion of ¹S, we introduce the order ¹T, that intuitively measures the
amount of information covered by a mapping, as well as a notion
of source redundancy. We provide characterizations and tools for
all the proposed notions, and show that together they can be used
as a powerful framework to study metadata management operators.

As a proof of concept, we show how the machinery developed
can be used to study some metadata management problems in the
context of data exchange. In particular, we provide simpler proofs
for some fundamental results regarding the inverse operator pro-
posed by Fagin [11], and we also give an effective characteriza-
tion for the decidability of the well-known schema evolution prob-
lem [22, 19].

Finally, we use all this machinery to study more complex meta-
data management operators. More precisely, we revisit the seman-
tics of the extract operator [22, 23], that intuitively captures the idea
of upgrading a legacy schema. We formalize this operator in terms
of the general notions developed in this paper, and we provide an
algorithm for computing it for a class of mappings that includes

the mappings specified by st-tgds. Moreover, we also study the
merge operator, that as well as the extract operator, has been identi-
fied as fundamental for the development of a metadata management
framework.

It should be stressed that all the notions proposed in this paper
are general and, thus, applicable in a wide context in metadata man-
agement.

Organization of the paper. Notation is introduced in Section 2,
while the order ¹S is defined in Section 3. The fundamental prop-
erties of ¹S are studied in Section 4, while two of its applications
in the data exchange context are shown in Section 5. The order
¹T and the notions of target and source redundancy are introduced
in Section 6. The extract operator is studied in Section 7, and the
merge operator is studied in Section 8. Concluding remarks are
given in Section 9.

2. PRELIMINARIES
A schema R is a finite set {R1, . . . , Rk} of relation symbols, with
each Ri having a fixed arity ni ≥ 0. Let D be a countably infinite
domain. An instance I of R assigns to each relation symbol Ri

of R a finite ni-ary relation RI
i ⊆ D

ni . The domain dom(I) of
instance I is the set of all elements that occur in any of the rela-
tions RI

i . Inst(R) is defined to be the set of all instances of R.
As is customary, we consider instances with two types of values:
constants and nulls [12]. Let C and N be infinite and disjoint sets
of constants and nulls, respectively, and assume that D = C ∪ N.
Then the instances of a schema are constructed by using elements
from both C and N. And if we refer to a schema R as ground, then
we assume that Inst(R) contains instances that are constructed by
using only elements from C.

Mappings: Given schemas R1 and R2, a schema mapping (or
just mapping) from R1 to R2 is a nonempty subset of Inst(R1)×
Inst(R2). If M is a mapping and (I, J) ∈ M, then we say that
J is a solution for I under M. The set of solutions for I under M
is denoted by SolM(I). The domain of M, denoted by dom(M),
is defined as the set of instances I such that SolM(I) 6= ∅, and
the range of M, denoted by range(M) is defined as the set of
instances J that are a solution for some instance I ∈ dom(M).
Given mappings M12 from R1 to R2 and M23 from R2 to R3,
the composition of M12 and M23 is defined as for binary re-
lations, that is, M12 ◦ M23 = {(I1, I3) | ∃I2 : (I1, I2) ∈
M12 and (I2, I3) ∈ M23} [14, 22]. Furthermore, given a map-
ping M, we denote by M−1 the mapping {(J, I) | (I, J) ∈ M}.

Queries and certain answers: A k-ary query Q over a schema
R, with k ≥ 0, is a function that maps every instance I ∈ Inst(R)
into a k-relation Q(I) ⊆ dom(I)k. In this paper, CQ is the class
of conjunctive queries and UCQ is the class of unions of conjunc-
tive queries. If we extend these classes by allowing equalities or
inequalities, then we use superscripts = and 6=, respectively. Thus,
for example, UCQ 6= is the class of union of conjunctive queries
with inequalities. FO is the class of all first-order formulas with
equality. Slightly abusing notation, we use C(·) to denote a built-in
unary predicate such that C(a) holds if and only if a is a constant,
that is, a ∈ C. If L is any of the previous query languages, then
LC is the extension of L allowing predicate C(·).

Let M be a mapping from a schema R1 to a schema R2, I an
instance of R1 and Q a query over R2. Then certainM(Q, I)
denotes the set of certain answers of Q over I under M, that is,
certainM(Q, I) =

T
J∈SolM(I) Q(J).

Dependencies: Let L1, L2 be query languages and R1, R2 be
schemas with no relation symbols in common. A sentence Φ over
R1 ∪ R2∪ {C(·)} is an L1-TO-L2 dependency from R1 to R2

if Φ is of the form ∀x̄ (ϕ(x̄) → ψ(x̄)), where (1) x̄ is the tu-

ple of free variables in both ϕ(x̄) and ψ(x̄); (2) ϕ(x̄) is an L1-
formula over R1 (plus C(·) if C(·) is allowed in L1); and (3)
ψ(x̄) is an L2-formula over R2 (plus C(·) if C(·) is allowed in
L2). We call ϕ(x̄) the premise of Φ, and ψ(x̄) the conclusion

of Φ. Furthermore, we omit the outermost universal quantifiers
from L1-TO-L2 dependencies and, thus, we write ϕ(x̄) → ψ(x̄)
instead of ∀x̄ (ϕ(x̄) → ψ(x̄)). An FO-TO-CQ dependency is
full if its conclusion does not include existential quantifiers. No-
tice that the class of source-to-target tuple-generating dependen-
cies (st-tgds) corresponds to the class of CQ-TO-CQ dependencies.
The semantics of dependencies is inherited from the semantics of
FO. Moreover, we assume that for every L1-TO-L2 dependency
∀x̄ (ϕ(x̄) → ψ(x̄)), both ϕ(x̄) and ψ(x̄) are domain-independent
(see [10] for a formal definition of domain independence).

Definability of mappings: Let R1 and R2 be schemas with
no relation symbols in common and Σ a set of FO-sentences over
R1 ∪ R2 ∪ {C(·)}. Then a mapping M from R1 to R2 is spec-

ified by Σ, denoted by M = (R1,R2, Σ), if for every (I, J) ∈
Inst(R1) × Inst(R2), we have that (I, J) ∈ M if and only if
(I, J) satisfies Σ. Moreover, if we refer to M = (R1,R2, Σ) as
an st-mapping, then R1 is a ground schema and R2 is a non-ground
schema (instances of R1 are constructed by using only elements
from C, while instances of R2 are constructed by using elements
from C and N).

Proviso: In this paper, all sets of dependencies are assumed to
be finite.

3. TRANSFERRING SOURCE

INFORMATION
In a data exchange scenario, a schema mapping is used to transfer
information from a source schema to a target schema. Thus, it is
natural to ask how much source information a mapping transfers
and, in particular, if two mappings are used to transfer information
from the same source schema, it is natural to ask whether one of
them transfers more source information than the other. The latter
question is the main motivation for the first part of our investiga-
tion.

The problem of measuring the amount of source information
transferred by a mapping has been studied in the data exchange
scenario [16, 2, 3]. In fact, the issue of developing an order for
comparing the amount of source information transferred by two
mappings has been explicitly considered in [16]. However, we fol-
low here a different approach to develop such an order, as we first
identity five natural conditions that such an order should satisfy, and
then we consider the strictest order according to these conditions.

From now on, we use symbol ¹ to denote an order between map-
pings that transfer information from the same source schema. That
is, if M1 ¹ M2, then we assume that there exists a schema R such
that both dom(M1) and dom(M2) are contained in Inst(R). The
following is the first condition that we impose on ¹.

(C1) M1 ¹ M2 implies dom(M1) ⊆ dom(M2).

If I is an instance in the domain of M1, then M1 provides some
information about I as it gives a collection of target instances that
are considered to be valid translations of I . Thus, if M2 gives
as much source information as M1, then I should also be in the
domain of M2, as stated by condition (C1).

As usual for any notion of preference, ¹ is also asked to be re-
flexive and transitive:

(C2) M ¹ M,

(C3) M1 ¹ M2 and M2 ¹ M3 implies M1 ¹ M3.

Notice that we do not ask relation ¹ to be antisymmetric, as it is
usually the case that the same information can be transferred in
different ways. Thus, strictly speaking, ¹ is not an order but a
preorder.

Furthermore, let IdR be the identity schema mapping for a
schema R, that is, IdR = {(I, I) | I ∈ Inst(R)}. This mapping
transfers exactly the information that is contained in the instances
of R and, thus, any other mapping that transfers information from
R could not be more informative than IdR. This gives rise to the
fourth condition for the desired order:

(C4) if M is a mapping from a schema R to a schema R1, then
M ¹ IdR.

Finally, our last condition accounts for the information that is trans-
ferred through a composition of schema mappings. Assume that a
mapping M transfers information from a schema R to a schema
R1 and that M1, M2 are mappings that transfer information from
R1. If M2 maps as much source information as M1, then given
that M transfers information to schema R1, one would expect that
M◦M2 transfers as much source information as M◦M1. This
is stated in our last condition:

(C5) let M be a mapping from a schema R to a schema R1, and
M1, M2 mappings from R1 to schemas R2 and R3, re-
spectively. If M1 ¹ M2, then M◦M1 ¹ M◦M2.

Now that we have identified five conditions that the desired order
should satisfy, the first question to answer is whether there exists
any order that meet them. In the following paragraphs, we give
a positive answer to this question by introducing a relation ¹S.
Moreover, we also show that ¹S is the strictest order that satisfy
the above conditions.

Definition 3.1 (Order ¹S) Let R, R1, R2 be schemas, and M1,

M2 mappings from R to R1 and R to R2, respectively. Then

M1 ¹S M2 if there exists a mapping N from R2 to R1 such that

M1 = M2 ◦ N .

Intuitively, the preceding definition says that M1 ¹S M2 if M2

transfers enough information from R to be able to reconstruct the
information transferred by M1.

Example 3.2. Let M1 and M2 be mappings specified by depen-
dencies S(x, y) → T (x) and S(x, y) → U(y, x), respectively.
Intuitively, M2 maps more information than M1 as all the source
information is stored in the target according to mapping M2. In
fact, in this case we have that M1 ¹S M2 since M1 = M2 ◦ N ,
where N is a mapping specified by dependency U(x, y) → T (y).
In this case, it is also possible to prove that M2 6¹S M1.

On the other hand, if M3 is a mapping specified by dependency
S(x, y) → V (y), then one would expect M1 and M3 to be in-
comparable, as these mappings extract information from different
columns of table S. In fact, in this case it is possible to prove that
M1 6¹S M3 and M3 6¹S M1.

As a corollary of the fact that the composition is associative, we
obtain that ¹S satisfies the above conditions:

Proposition 3.3 The order ¹S satisfies (C1), (C2), (C3), (C4) and

(C5).

The following proposition shows the somewhat surprising result
that such a simple relation is the strictest order that satisfies the
above conditions.

Proposition 3.4 Assume that an order ¹ satisfies (C1), (C2), (C3),

(C4) and (C5). Then for every pair of mappings M1 and M2,

M1 ¹S M2 implies that M1 ¹ M2.

It remains as an open problem whether the order ¹S indeed char-
acterizes the above axioms, in the sense that if an order ¹ satisfies
(C1), (C2), (C3), (C4) and (C5), then ¹ is equivalent to ¹S (for
every pair of mapping M1, M2, it holds that M1 ¹ M2 if and
only if M1 ¹S M2).

In our investigation, we use ¹S to compare the amount of infor-
mation transferred by two mappings from the same source schema.
In particular, if M1 ¹S M2 and M2 ¹S M1, we say that M1

and M2 transfer the same amount of source information, which is
denoted by M1 ≡S M2.

3.1 Comparison with other notions of order
In [16], Fagin et al. propose to use some notions of inversion of
schema mappings [11, 3, 16] to measure the information loss of a
mapping. Loosely speaking, the more invertible a mapping is, the
less information the mapping loses [16]. In this section, we contrast
and compare Fagin et al’s approach with the order ¹S.

In order to give some intuition behind the definitions presented
in [16], we first introduce an order ¹R that is based on the notion
of maximum recovery [3]. Let M be a mapping from a schema
R to a schema R1. A mapping M⋆ is a maximum recovery of
M if IdR ⊆ M ◦ M⋆ and for every other mapping M′ such
that IdR ⊆ M ◦ M′, it holds that M ◦ M⋆ ⊆ M ◦ M′. It
is easy to see that if M⋆

1 and M⋆
2 are both maximum recover-

ies of M, then M ◦ M⋆
1 = M ◦ M⋆

2. Thus, the composition
of a mapping M with any of its maximum recoveries depends
only on M. In fact, it was shown in [3] that if M⋆ is a maxi-
mum recovery of M, then the composition M ◦ M⋆ is equal to
the set {(I, K) | SolM(K) ⊆ SolM(I)}. The definition of or-
der ¹R is based on this property. More precisely, a mapping M2

is said to be less lossy than a mapping M1 if for every pair of
instances I, K, it holds that SolM1

(I) ⊆ SolM1
(K) whenever

SolM2
(I) ⊆ SolM2

(K) holds. Let ¹R denote the order induced
by this notion, that is, M1 ¹R M2 if and only if M2 is less lossy
than M1.

It is important to notice that if mappings M1 and M2 have max-
imum recoveries, say M⋆

1 and M⋆
2, respectively, then M1 ¹R M2

if and only if IdR ⊆ M2 ◦M
⋆
2 ⊆ M1 ◦M

⋆
1. Thus, M1 ¹R M2

if the composition of M2 with its maximum recovery is more sim-
ilar to the identity mapping than the composition of M1 with its
maximum recovery.

As a first result, we prove that ¹R does not satisfy all the condi-
tions identified in this section for a natural order, thus showing that
¹S can be considered as a better alternative than ¹R to compare
the information transferred by schema mappings. In particular, ¹R

does not satisfy (C5).

Proposition 3.5 There exist mappings M, M1 and M2 such that

M1 ¹R M2 and M◦M1 6¹R M◦M2.

In [16], Fagin et al. were interested in studying mappings with null
values in source and target instances. In particular, for a mapping
M of this type, Fagin et al. define a mapping e(M) that extends
M by giving a semantics to the nulls that distinguish them from
the constants (see [16] for the precise definition of e(M)). In [16],
Fagin et al. introduce a notion of information loss of a schema map-
ping M by considering the extension e(M) of M. More precisely,
if M1 and M2 are two mappings containing null values in source
and target instances, then M2 is said to be less lossy than M1

if for every pair of instances I, K, it holds that Sole(M1)(I) ⊆

Sole(M1)(K) whenever Sole(M2)(I) ⊆ Sole(M2)(K) holds [16].
Let ¹E be the order induced by this notion. Notice that ¹E is tightly
connected with ¹R; in fact, it holds that M1 ¹E M2 if and only
if e(M1) ¹R e(M2). The following proposition shows that as for
the case of ¹R, the order ¹E does not satisfy (C5).

Proposition 3.6 There exist mappings M, M1 and M2 such that

M, M1 and M2 contain null values in source and target in-

stances, M1 ¹E M2 and M◦M1 6¹E M◦M2.

No restrictions on mappings were imposed when defining the order
¹S. In particular, ¹S can be used to compare mappings containing
null values in source and target instances. Thus, Proposition 3.6
gives evidence that ¹S is a better alternative than ¹E to compare
the information transferred by schema mappings.

It should be pointed out that in [16], the authors introduce the
order ¹E but do not study its fundamental properties. Interestingly,
the following result shows that ¹S, ¹R and ¹E coincide for the
class of st-mappings (mappings not containing null values in source
instances) that are specified by st-tgds. Thus, the machinery devel-
oped in this paper for ¹S can also be used for ¹E and ¹R in this
case.

Proposition 3.7 Let M1 = (S,T1, Σ1) and M2 = (S,T2, Σ2)
be st-mappings, where Σ1, Σ2 are sets of st-tgds. Then the follow-

ing statements are equivalent:

(1) M1 ¹S M2.

(2) M1 ¹R M2.

(3) M1 ¹E M2.

4. FUNDAMENTAL PROPERTIES OF THE

ORDER ¹S

In this section, we provide a characterization of the order ¹S, that
gives evidence of why it is appropriate to compare the amount of
source information being transferred by two mappings. Further-
more, we use this characterization to deal with some algorithmic
problems related to this notion. In particular, we show in Section
4.2 that the order ¹S is decidable for the class of mappings speci-
fied by CQ 6=-TO-CQ dependencies, that includes the widely used
class of st-tgds.

4.1 Characterizing the order ¹S

In this section, we present a characterization of the order ¹S for
mappings given by FO-TO-CQ dependencies, that is based on
query rewriting. More specifically, given a mapping M from a
schema S to a schema T and a query Q over S, we say that Q is tar-

get rewritable under M if there exists a query Q′ over T such that
for every instance I of S, it holds that Q(I) = certainM(Q′, I).
That is, Q is target rewritable under a mapping M if M trans-
fers enough source information to be able to answer Q by using
the target data. Thus, the amount of source information transferred
by two mappings can be compared in terms of the queries that are
target rewritable under them, which gives rise to the following char-
acterization:

Theorem 4.1 Let M1 = (S,T1, Σ1) and M2 = (S,T2, Σ2) be

st-mappings, where Σ1, Σ2 are sets of FO-TO-CQ dependencies.

Then the following statements are equivalent:

(1) M1 ¹S M2.

(2) For every query Q over S, if Q is target rewritable in M1,

then Q is target rewritable in M2.

It is important to notice that the preceding theorem considers the
class of all queries, as defined in Section 2. Thus, Theorem 4.1
gives strong evidence in favor of the order ¹S.

4.2 Fundamental algorithmic issues for the
order ¹S

Some algorithmic issues related to the order ¹S play a key role
in the development of algorithms for some metadata management
operators. In this section, we study two such fundamental issues.
More precisely, we start by answering the question of whether rela-
tion ¹S is decidable. Not surprisingly, we obtain a negative answer
for the class of FO-TO-CQ dependencies.

Theorem 4.2 The problem of verifying, given st-mappings M1

and M2 specified by sets of FO-TO-CQ dependencies, whether

M1 ¹S M2 is undecidable.

Interestingly, the characterization of ¹S can be used to prove that
the order is decidable for mappings given by CQ 6=-TO-CQ depen-
dencies, which includes the fundamental class of st-tgds.

Theorem 4.3 The problem of verifying, given st-mappings M1

and M2 specified by sets of CQ 6=-TO-CQ dependencies, whether

M1 ¹S M2 is in coNEXPTIME.

A second fundamental algorithmic issue is the problem of con-
structing a mapping N such that M1 = M2 ◦ N , whenever
M1 ¹S M2. Next, we present an algorithm that solves this prob-
lem for CQ 6=-TO-CQ dependencies, which uses the following ter-
minology.

Let M be a mapping and Q be a query that is target
rewritable under M, and let Q′ be a query such that Q(I) =
certainM(Q′, I) holds for every instance I . Then, we say that
Q′ is a target rewriting for Q under M. Correspondingly, we also
say that Q is a source rewriting of Q′.

It can be proved that for mappings specified by FO-TO-CQ de-
pendencies, it is always possible to compute the source rewrit-

ing of a conjunctive query Q′, that is, there exists a procedure
SOURCEREWRITING that, given such a mapping M and a query
Q′ in CQ, computes a query Q in FO that is a source rewriting of
Q′. In particular, if the input mapping is specified by CQ 6=-TO-CQ
dependencies, then the output of the procedure is a query Q in
UCQ=,6= [3, 9].

For the class of mappings specified by CQ 6=-TO-CQ dependen-
cies, target rewritings can also be computed. More precisely, it
follows from the proof of Theorem 4.1 that there exists a proce-
dure TARGETREWRITING that, given a mapping M specified by
a set of CQ 6=-TO-CQ dependencies and a target rewritable query
Q in UCQ=,6=, computes a query in UCQ=,6=,C that is a target
rewriting of Q. The following algorithm uses this procedure and
the algorithm mentioned above as black boxes.

Algorithm COMPUTEORDER(M1,M2)

Input: st-mappings M1 = (S,T1, Σ1) and M2 = (S,T2,
Σ2), where Σ1, Σ2 are sets of CQ 6=-TO-CQ depen-
dencies and M1 ¹S M2.

Output: A mapping N such that M1 = M2 ◦ N .

1. Construct a set Σ′ of dependencies as follows. For every de-
pendency ϕ(x̄) → ψ(x̄) ∈ Σ1 repeat the following:

(a) Let α(x̄) be the query in UCQ=,6= that is the output of
SOURCEREWRITING(M1, ψ(x̄)).

(b) Let β(x̄) be the query in UCQ=,6=,C that is the output of
TARGETREWRITING(M2, α(x̄)).

(c) For every disjunct γ(x̄) of β(x̄), add formula γ(x̄) ∧
C(x̄) → ψ(x̄) to Σ′.

2. Let Σ be the set obtained from Σ′ by eliminating the equalities
by using variable replacements.

3. Return the mapping N = (T2,T1, Σ)

Proposition 4.4 COMPUTEORDER(M1,M2) returns a mapping

N specified by a set of CQ 6=,C-TO-CQ dependencies such that

M1 = M2 ◦ N .

5. TWO APPLICATIONS OF ¹S IN DATA

EXCHANGE
The issue of providing foundations for metadata management has
appeared in different contexts. In particular, in the data exchange
context, the schema evolution problem has been a driving force for
the development of the composition and inverse operators [14, 19,
11]. Here, we show that the machinery developed in the previous
sections can be used as a uniform framework to study the inverse
operator and the schema evolution problem.

5.1 Inverting schema mappings
In this section, we focus on the definition of the inverse operator
given by Fagin in [11], and we show that it can be defined in terms
of the order ¹S. Interestingly, this characterization can be used to
extend, and provide simpler proofs of, some of the fundamental
results about this operator.

We start by recalling the definition of inverse given by Fa-

gin [11]. For a ground schema R, let bR be the schema { bR | R ∈

R}, and bIdR = (R, bR, Σ) be an identity mapping, where Σ con-

tains a dependency of the form R(x1, . . . , xk) → bR(x1, . . . , xk),
for every k-ary predicate R ∈ R. Then given M from R to R1

and M′ from R1 to bR, mapping M′ is said to be an inverse of

mapping M if M◦M′ = bIdR [11].
The following theorem shows that the notion of inverse intro-

duced by Fagin can be defined in terms of the order ¹S. It should
be noticed that this theorem focuses on a particular class of map-

pings, as bIdR is appropriate as an identity only for mappings in this
class. Specifically, given a mapping M from R to R1, M is said
to be total if dom(M) = Inst(R), and M is said to be closed-

down on the left if whenever (I, J) ∈ M and I ′ ⊆ I , it holds that
(I ′, J) ∈ M.

Theorem 5.1 Let M be a mapping from a ground schema R to

a schema R1 that is total and closed-down on the left. Then the

following statements are equivalent.

(1) M is invertible.

(2) M is ¹S-maximal in the class of total and closed-down on

the left mappings.

(3) bIdR ¹S M.

The preceding theorem can be used to extend some of the funda-
mental results that have been obtained for the inverse operator. It
is important to notice that these results were proved in a series of
papers by using different techniques [11, 15, 17]. Interestingly, our
approach provides a unifying framework for these results. More
specifically, a first fundamental question about the notion of inverse

is whether it is decidable. In [17], it is shown that the problem of
verifying, given a mapping M specified by a set of st-tgds, whether
M is invertible is decidable. From Theorem 5.1, we know that if
M is a mapping from a ground schema R to a schema R1 speci-
fied by a set of st-tgds, then the previous problem can be reduced to

the problem of verifying whether bIdR ¹S M, which is known to
be decidable by Theorem 4.3. Moreover, we also known from The-
orems 5.1 and 4.3 that the same holds for the class of CQ 6=-TO-CQ
dependencies, which gives us the following extension of the decid-
ability result in [17]:

Corollary 5.2 The problem of verifying, given an st-mapping M
specified by a set of CQ 6=-TO-CQ dependencies, whether M is

invertible is decidable.

It should be noticed that in [17], the authors prove that testing in-
vertibility of st-tgds is coNP-complete, which cannot be obtained
from our results. A second fundamental question about any notion
of inverse is how to compute it. In [15], there is given an algorithm
for computing the inverse of a mapping specified by st-tgds. From
Theorem 5.1, we know that algorithm COMPUTEORDER can also
be used for this task, and not only for the case of st-tgds but also
for the larger class of CQ 6=-TO-CQ dependencies.

Proposition 5.3 Let M = (R,R1, Σ) be an invertible st-

mapping specified by a set Σ of CQ 6=-TO-CQ dependencies. Then

the output of COMPUTEORDER(bIdR,M) is an inverse of M.

The use of query rewriting in COMPUTEORDER makes the above
approach for computing inverses more suitable than the approach
proposed in [15] for optimization. In fact, one can reuse the large
number of techniques developed for query rewriting [20, 8, 18, 27]
when implementing procedure COMPUTEORDER.

As a corollary of Proposition 5.3, we obtain a third fundamental
result for the notion of inverse proposed by Fagin [11].

Corollary 5.4 For every invertible st-mapping M specified by a

set of CQ 6=-TO-CQ dependencies, there exists an inverse of M
that is specified by a set of CQ 6=,C-TO-CQ dependencies.

It is important to notice that Fagin et al. showed in [15] that if a
mapping M specified by a set of st-tgds is invertible, then it has
an inverse that is given by a set of CQ 6=,C-TO-CQ dependencies.
The above corollary extends this results for the class of invertible
mappings specified by CQ 6=-TO-CQ dependencies.

As we mentioned in Section 3.1, the notion of information loss
presented in [16] is tightly connected with invertibility of map-
pings. In fact, Fagin et al. claim in [16] that if M1 and M2 are
mappings specified by st-tgds, then M2 is less lossy than M1

when, intuitively, “M2 is more invertible than M1”. We conclude
this subsection by showing that if one goes beyond st-tgds (which
is the class of mappings considered in [16]), the orders ¹R and ¹E

fail to capture the idea of being more invertible. Notice that Theo-
rem 5.1 shows that our order ¹S captures exactly the intuition men-
tioned in [16] for a large class of mappings, which gives evidence
of the usefulness of ¹S to compare schema mappings. We begin by
showing that ¹R does not capture invertibility beyond st-tgds.

Proposition 5.5 There exists an st-mapping M specified by a set

of CQ-TO-UCQ dependencies such that M is ¹R-maximal on the

class of total and closed-down on the left mappings and M is not

invertible.

In [16], the authors introduce an alternative notion of inversion for
mappings with null values in source and target instances. They
call this notion extended invertibility, and show that the order ¹E is
tightly connected with this extended notion of inversion (see [16]
for details about extended inverses). The following result shows
that beyond st-tgds, ¹E captures neither the notion of invertibility
nor the notion of extended invertibility.

Proposition 5.6 There exists a mapping M such that (1) M is

specified by a set of CQ-TO-UCQ dependencies, (2) M has nulls

in source and target instances, (3) M is ¹E-maximal in the class

of all mappings, and (4) M is neither invertible nor extended in-

vertible.

We conclude this subsection by pointing out that we have mainly
focused here on the notion of inverse proposed by Fagin in [11].
However, in the last few years other alternative semantics for the
inverse operator have been proposed [15, 3, 16, 2]. Thus, it is natu-
ral to ask whether these notions can also be characterized in term of
the order ¹S, and whether the machinery proposed in this paper can
be used to improve our understanding of these notions. Although
we have made a bit of progress in this direction, these questions
remain unanswered.

5.2 Schema evolution
The schema evolution problem has been one of the driving forces
behind the study of the composition and inverse operators [14, 19,
11]. Two main scenarios have been identified for this problem. In
the first scenario, one is given a mapping M from a schema S to a
schema T, and a mapping M′ that specifies how T evolves into a
new schema T

′. The schema evolution problem is then to provide
a mapping from S to T

′, that captures the metadata provided by
M and M′. In this scenario, it is always possible to find a solution
for this problem by using the composition operator [14, 19], as
mapping M◦M′ correctly represents the relationship between S

and T
′. In the second scenario, one is also given a mapping M

from a schema S to a schema T, but in this case S evolves into
a new schema S

′, and the relationship between S and S
′ is given

by a mapping M′. Then again the question is how to construct a
mapping from S

′ to T that captures the metadata provided by M
and M′. In this section, we use the machinery developed in the
previous sections to formally study this problem. It is important
to notice that we focus on the second scenario, as the first one has
been completely solved by using the composition operator [14].

Let M1 be a mapping from a schema R to a schema R1, and
M2 a mapping from R to a schema R2. Then a mapping N is a

solution for the schema evolution problem for (M1,M2) if M1 =
M2 ◦ N . The following result shows that the schema evolution
problem can be characterized in terms of the order ¹S, as it is just
a reformulation of the definition of ¹S.

Proposition 5.7 There exists a solution for the schema evolution

problem for (M1,M2) iff M1 ¹S M2.

Thus, as a corollary of Theorem 4.3 and Proposition 4.4, we ob-
tain a solution for the schema evolution problem for the class of
mappings specified by CQ 6=-TO-CQ dependencies:

Corollary 5.8 The schema evolution problem is decidable for

the class of st-mappings specified by CQ 6=-TO-CQ dependencies.

Moreover, for every M1, M2 in this class, if there exists a so-

lution for the schema evolution problem for (M1, M2), then

COMPUTEORDER(M1,M2) returns a solution for this problem

specified by a set of CQ 6=,C-TO-CQ dependencies.

The previous approach is specific to the class of CQ 6=-TO-CQ de-
pendencies and, thus, it is natural to ask how one can deal with the
schema evolution problem in a more general setting. It has been
argued that the combination of the inverse and composition opera-
tors can be used for this purpose, and the mapping M⋆

2 ◦M1 has
been proposed as a solution for the schema evolution problem for
(M1,M2) [11], where M⋆

2 represents an inverse of mapping M2.
Next we show that this approach is appropriate to solve the schema
evolution problem, if one considers the notion of maximum recov-
ery [3] which generalize the notion of inverse proposed in [11] (see
Section 3.1 for the definition of maximum recovery).

Proposition 5.9 Let M1 and M2 be st-mappings. If M1 ¹S M2

and M⋆
2 is a maximum recovery of M2, then M⋆

2 ◦M1 is a solu-

tion for the schema evolution problem for (M1,M2).

6. TARGET INFORMATION AND

REDUNDANCY
In this section, we use the order ¹S to define three additional con-
cepts which, together with ¹S, provide a theoretical framework to
study complex metadata management operators such as extract and
merge [22]. More precisely, we introduce in Section 6.1 an order
to compare mappings that possess the same target schema. This
order, denoted by ¹T, intuitively measures the amount of target in-
formation covered by a mapping. As there may exist multiple ways
to transfer the same information from a source schema, or to cover
the same information of a target schema, one also needs a way of
distinguishing between different alternatives. To deal with this re-
quirement, in Sections 6.2 and 6.3, we use the orders ¹S and ¹T to
introduce the notions of target redundancy and source redundancy,
and show that they capture the intuition of using the exact amount

of resources needed to transfer information between schemas.

6.1 Target information covered by a mapping
In some metadata management scenarios, it is important to measure
the amount of target information covered by a mapping. When ¹S

was introduced, we said that M1 ¹S M2 if M2 transfers enough
source information to be able to reconstruct the information trans-
ferred by M1. Similarly, we say that M2 covers as much target in-

formation as M1, denoted by M1 ¹T M2, if M2 covers enough
target information to be able to reconstruct the information that is
covered by M1. More precisely,

Definition 6.1 (Order ¹T) Let M1 and M2 be mappings that

share the target schema. Then M1 ¹T M2 if there exists a map-

ping N such that M1 = N ◦M2.

Moreover, we say that M1 and M2 cover the same target infor-

mation, and write M1 ≡T M2, if M1 ¹T M2 and M2 ¹T M1.
As pointed out above, ¹T can be defined in terms of the order ¹S.

Proposition 6.2 M1 ¹T M2 iff (M1)
−1 ¹S (M2)

−1.

Characterizing the order ¹T. We provide here a characterization
of the order ¹T for mappings given by FO-TO-CQ dependencies.
But before we need to recall some definitions. Let K1 and K2 be
instances of a schema R. A homomorphism h from K1 to K2 is
a function h : dom(K1) → dom(K2) such that: (1) h(c) = c
for every c ∈ C ∩ dom(K1), and (2) for every R ∈ R and tuple
(a1, . . . , ak) ∈ RK1 , it holds that (h(a1), . . . , h(ak)) ∈ RK2

[12]. Moreover, an instance J is said to be a universal solution for
an instance I under a mapping M if J ∈ SolM(I) and for every
J ′ ∈ SolM(I), there exists a homomorphism from J to J ′ [12].

Theorem 6.3 Let M1 = (S1,T, Σ1) and M2 = (S2,T, Σ2) be

st-mappings, where Σ1, Σ2 are sets of FO-TO-CQ dependencies.

Then the following statements are equivalent:

(1) M1 ¹T M2.

(2) For every instance J of T, if J is a universal solution for

some instance under M1, then J is a universal solution for

some instance under M2.

The above characterization supports our claim that ¹T measures
the amount of information covered by a mapping. In fact, univer-
sal solutions have been identified as a fundamental class of solu-
tions in data exchange, as they represent (in a precise sense) the
entire space of solutions [12, 13]. Our characterization shows that
if M1 ¹T M2, then the space of possible universal solutions for
M1 is contained in that of M2.

We conclude this subsection by pointing out that although for the
case of st-mappings given by FO-TO-CQ dependencies, we have
provided a characterization of the order ¹T in term of the well-
studied notion of universal solution, it remains as an open prob-
lem whether the order ¹T is decidable in this case. That is, it is
open whether there exists an algorithm that, given st-mappings M1

and M2 specified by sets of FO-TO-CQ dependencies, verifies if
M1 ¹T M2.

6.2 Target redundancy in schema mappings
There may exist many different ways to transfer the same infor-
mation and, hence, metadata management systems should handle
some criteria that help them in identifying the best alternatives, in
terms of the resources they use. In this section, we introduce one
such criteria, the notion of target redundancy. We use the following
example to motivate our definition.

Example 6.4. Let M1 = (R,R1, Σ1) and M2 = (R,R2,
Σ2) be mappings specified by dependencies A(x) → R(x) and
A(x) → P (x, x), respectively, and where R, R1 and R2 are
ground schemas. It is easy to see that M1 ≡S M2. However,
M1 can be considered better than M2 in the sense that it does not
waste resources when transferring information from R. In fact, ev-
ery instance in range(M1) is essential for M1, as it is a universal
solution for an instance of R under M1. On the other hand, ev-
ery universal solution of M2 can only contain tuples of the form
P (a, a), which implies that several instances in range(M2) are
not essential for this mapping.

As shown in Example 6.4, it would be advisable to design map-
pings for which every target instance is essential in transferring
source information. In the following definition, we use the order
¹S to formalize this notion.

Definition 6.5 (Target redundancy) A mapping M is target re-
dundant if there exists an instance J⋆ ∈ range(M) such that

M⋆ = {(I, J) ∈ M | J 6= J⋆} satisfies that M⋆ ≡S M.

Thus, intuitively, we say that a mapping M is target non-redundant

if we cannot remove any target instance from M, and still be able
to transfer the same amount of information.

Example 6.6. (Example 6.4 continued) M1 is target non-
redundant, but M2 is target redundant as M2 ≡S M

⋆, where M⋆

is generated from M2 by removing from range(M2) an arbitrary
instance that contains a tuple P (a, b) with a 6= b. Notice that if we
add P (x, y) → x = y as a target constraint to M2, the resulting
mapping is target non-redundant.

Characterizing target redundancy. We provide here a character-
ization of the notion of target redundancy for mappings specified

by FO-TO-CQ dependencies. But first, we shed light on the issue
of how the use of null values generate redundant information.

Null values are used in data exchange to deal with incomplete
information. For example, assume that one needs to transfer data
from a schema Emp1(·) storing a list of employee names, to a
schema Emp2(·, ·) storing a list of employee names and the de-
partments where they work. Given that the source schema does not
contain any information about departments, one has to use a de-
pendency of the form Emp1(x) → ∃y Emp2(x, y). Thus, when
exchanging data, a null value n is included in a tuple Emp2(a, n) if
one does not know the department where employee a works. Null
values introduce redundant information, as they allow one to rep-
resent the same data in many different ways. For example, a target
instance Emp2(a, n) contains exactly the same information as a
target instance Emp2(a, n′) if n and n′ are null values. Thus, in-
stance Emp2(a, n′) is really not needed when transferring source
data. In fact, the next result shows that every st-mapping specified
by FO-TO-CQ dependencies that allows null values in the target
schema is target redundant (recall that we use the term st-mapping
for mappings that only have constants in their source instances, and
constants and nulls in their target instances).

Proposition 6.7 Let M be an st-mapping specified by a set of

FO-TO-CQ dependencies. Then M is target redundant.

It is important to notice that target redundancy does not mean that
a mapping is poorly designed, as in some cases the redundancy,
and in particular the use of null values, is unavoidable (like in the
above mapping Emp1(x) → ∃y Emp2(x, y)). Nevertheless, when
mappings are specified by using dependencies without existential
quantifiers in their conclusions, that is, full dependencies, there is
no need to use null values as one does not need to deal with incom-
plete information. We provide in the following theorem a charac-
terization of the notion of target redundancy for mappings specified
by full dependencies that allow only constant values in source and
target schemas.

Theorem 6.8 Let M = (S,T, Σ), where S and T are ground

schemas and Σ is a set of full FO-TO-CQ dependencies. Then the

following properties are equivalent:

(1) M is target non-redundant.

(2) Every instance in range(M) is a universal solution for some

instance in dom(M).

Thus, our characterization shows that a mapping M defined by a
set of full FO-TO-CQ dependencies is target non-redundant if and
only if every instance in range(M) is essential for M, as it is a
universal solution for some instance in dom(M).

As for the case of the order ¹T, we have provided a charac-
terization of the notion of target non-redundancy in terms of the
well-studied notion of universal solution. However, it remains as
an open problem whether there exists an algorithm that, given a
mapping M specified by a set of full FO-TO-CQ dependencies,
verifies whether M is target non-redundant.

6.3 Source redundancy
Just as there exists a symmetric definition for the order ¹S, so is
the case for the notion of target redundancy. In fact, we use the or-
der ¹T in the following definition to introduce the notion of source
redundancy, which also plays a fundamental role in providing foun-
dations for metadata management.

Definition 6.9 (Source redundancy) A mapping M is source re-
dundant if there exists an instance I⋆ ∈ dom(M) such that

M⋆ = {(I, J) ∈ M | I 6= I⋆} satisfies M⋆ ≡T M.

That is, a mapping M is source redundant if one can eliminate an
instance from dom(M) and still cover the same amount of target
information. Not surprisingly, there is a tight relation between tar-
get and source redundancy.

Proposition 6.10 M is source redundant if and only if M−1 is

target redundant.

Characterizing source redundancy. We conclude this section by
providing a characterization of source redundancy for the class of
mappings specified by FO-TO-CQ dependencies. From the point
of view of covering target information, a non-redundant mapping
should not assign the same space of solutions to two different
source instances, as this means that one of them is not necessary.
The following theorem shows that the notion of source redundancy
captures this intuition.

Theorem 6.11 Let M be an st-mapping specified by a set of

FO-TO-CQ dependencies. Then the following statements are

equivalent:

(1) M is source non-redundant.

(2) For every pair of source instances I1, I2, if I1 6= I2 then

SolM(I1) 6= SolM(I2).

Property (2) above is called unique-solutions property in [11],
where it is shown to be a necessary condition for invertibility.

As a final remark, it should be noticed that it is open whether
there exists an algorithm that, given an st-mapping M specified
by a set of FO-TO-CQ dependencies, verifies if M is source non-
redundant.

7. THE EXTRACT OPERATOR
Consider a mapping M between schemas S and T, and assume
that S is the schema of a database that is only being used to map
data through M. In general, not all the information of S partic-

ipates in the mapping and, thus, it is natural to ask whether one
can upgrade S into a new schema that stores only the information
being mapped by M, that is, whether one can extract from S the
portion of the schema that is actually participating in M. This is
the intended meaning of the extract operator [22, 23], as shown in
the following example.

Example 7.1. Let S = {P (·, ·), R(·, ·), S(·, ·)} and T =
{T (·, ·), U(·, ·), V (·, ·, ·)}, and assume that S is a ground schema.
Consider a mapping M from S to T given by the following depen-
dencies:

P (x, y) → ∃u T (x, u) ∧ U(x, x) (1)

P (x, y) ∧ R(y, z) → ∃v V (x, y, v) (2)

The first column of P is being transferred from the source by de-
pendency (1), while all the tuples in P that can be joined with some
tuples in R are being transferred by dependency (2). Moreover, no-
tice that relation S is not participating at all in the mapping.

A natural way to upgrade S, and store only the data that
is transferred by M, is to have a new ground schema S

′ =
{P1(·), P2(·, ·)}, where relation P1(·) is used to store the first com-
ponent of P , and relation P2(·, ·) is used to store the tuples in P that
can be joined with some tuples in R. But we can do even better. No-
tice that by the intended meaning of relations P1 and P2, one knows

S
′

S

T

M1

M2

M

Figure 1: (M1,M2) is an EXTRACT of M.

that they must satisfy the inclusion dependency P2(x, y) → P1(x).
Thus, schema S

′ plus this dependency still have enough capacity to
store all the source information being transferred by M.

Given a mapping M from a schema S to a schema T, the idea
of the extract operator is to create a new source schema S

′ that
captures exactly the information that is participating in M and no

other information [22, 23]. As shown in Figure 1, a solution for the
extract operator has two components, a mapping M1 from S to S

′

that drives the migration from the old to the new source schema,
and a mapping M2 from S

′ to T that states how data should be
mapped from the new source schema to the target schema. But
what are the conditions that have to be imposed on mappings M1

and M2 (and schema S
′) to capture the intuition behind the ex-

tract operator? A set of such conditions was proposed by Melnik
et al. in [22, 23]. In what follows, we show that the machinery de-
veloped in the previous sections can be used to provide a natural
semantics for the extract operator. We compare our proposal with
that of Melnik et al. [22, 23] in Section 7.2.

Assume that M, M1 and M2 are the mappings shown in Figure
1. The first condition that we impose on M1 and M2, to consider
them a valid extract of M, is that the composition of M1 and M2

is equal to M:

(E1) M1 ◦M2 = M.

In this way, one ensures that for every instance I of S, if one first
migrates I from S to S

′, and then maps the result to T, then one
obtains exactly the same space of possible solutions as if I is being
mapped by using the initial mapping M. Notice that (E1) does not
impose any restrictions over M1 and M2 alone. We do that with
the next conditions.

The intended meaning of the extract operator is to store in a new
schema exactly the information that is being transferred by the ini-
tial mapping. Thus, we require that M1 transfers from S to S

′ the
same amount of source information as M. Similarly, since M2

is used as the new way of mapping the information from S
′, we

require that M2 covers exactly the same target information as M.
Thus, we impose the following condition on M1 and M2:

(E2) M1 ≡S M and M2 ≡T M.

To complete the description of the extract operator, we only need
a condition that captures the optimality of the new source schema.
To do this, we do not impose an explicit condition on this schema,
but instead we impose conditions over the range of M1 and the
domain of M2. Notice that, although we require M1 to transfer
exactly the same source information as M, this mapping can be
redundant and store the data in S

′ in a suboptimal way. Thus, we
require M1 to be target non-redundant, as well as M2 to be source
non-redundant. In that way, we force range(M1) and dom(M2)
to be minimal, since one cannot lose an instance from range(M1)
or dom(M2), and still obtain mappings that fulfill conditions (E1)
and (E2). Thus, our last condition is:

(E3) M1 is target non-redundant and M2 is source non-
redundant.

Notice that it is not difficult to show that under the above condi-
tions, it holds that range(M1) = dom(M2).

We finally have all the necessary ingredients to define the seman-
tics of the extract operator.

Definition 7.2 (Extract operator) (M1,M2) is an extract of M
if M1 and M2 satisfy conditions (E1), (E2), and (E3).

Example 7.3. Consider schemas S, S′, T, and mapping M from
Example 7.1. Let Σ1 be the set that consists of dependencies:

P (x, y) → P1(x),

P (x, y) ∧ R(y, z) → P2(x, y),

Σ2 the set that consists of:

P1(x) → ∃u T (x, u) ∧ U(x, x),

P2(x, y) → ∃v V (x, y, v),

and ΓS′ the set containing the inclusion dependency over S
′:

P2(x, y) → P1(x).

Consider now the mappings M1 = (S,S′, Σ1 ∪ ΓS′), and M2 =
(S′,T, Σ2 ∪ ΓS′). Then it can be shown that (M1,M2) is an
extract of M.

7.1 Computing the extract operator
Two fundamental questions about any metadata management oper-
ator are for which classes of mappings is the operator defined, and
how can it be computed. In this section, we provide answers to
both questions for the class of mappings specified by FO-TO-CQ
dependencies, as we provide an algorithm that, given a mapping
M specified by a set of FO-TO-CQ dependencies, computes an
extract (M1,M2) of M.

To present our algorithm, we need to introduce some terminol-
ogy. In what follows, we use a procedure COMPOSE that given pair-
wise disjoint schemas S1, S2, S3, a set Σ1 of dependencies from
S1 to S2 and a set Σ2 of dependencies from S2 to S3, computes a
set Σ of dependencies from S1 to S3 such that (I, J) |= Σ if and
only if there exists K such that (I, K) |= Σ1 and (K, J) |= Σ2.
That is, COMPOSE(Σ1, Σ2) returns a set of dependencies Σ spec-
ifying a mapping that represents the composition of the mappings
specified by Σ1 and Σ2. As pointed out in [24, 23], there exists a
straightforward implementation of COMPOSE when Σ1 and Σ2 are
sets of FO sentences; if Σ1 = {σ1, . . . , σn}, Σ2 = {γ1, . . . , γm}
are set of FO-sentences, and S2 = {S1, . . . , Sk}, then a set Σ con-
sisting of second-order dependency ∃S1 · · · ∃Sk (σ1 ∧ · · · ∧ σn ∧
γ1 ∧ · · · ∧ γm) satisfies the above condition.

It should be noticed that second-order quantification is unavoid-
able to express the composition of mappings specified by FO de-
pendencies, even for the case of st-tgds [14]. In what follows, we
use COMPOSE as a black box, which could have been implemented
by considering the idea shown above and the techniques presented
in [14, 24, 23]. In particular, we use COMPOSE in Step 2 of the
following algorithm to create constraints that eliminate the redun-
dancy of mappings

Algorithm EXTRACT(M)

Input: st-mapping M = (S,T, Σ), where Σ is a set of
FO-TO-CQ dependencies.

Output: An extract (M1,M2) of M.

1. Construct sets Σ1, Σ2 of dependencies, and a ground schema
R as follows. For every ϕ(x̄) → ψ(x̄) ∈ Σ, where x̄ is an
n-ary tuple of variables, do the following.

(a) Include a fresh n-ary relational symbol R into R.

(b) Let α(x̄) be a formula in FO that is the output of
SOURCEREWRITING(M, ψ(x̄)).

(c) Include dependency α(x̄) → R(x̄) into Σ1 and dependency
R(x̄) → ψ(x̄) into Σ2.

2. Construct a set of formulas ΓR over R as follows.

(a) Let bR = { bR | R ∈ R} and Σ−
1 be the set of dependencies

{ bR(x̄) → β(x̄) | β(x̄) → R(x̄) ∈ Σ1}.

(b) Let Σ′ be an SO-formula over R ∪ bR that is the output of
COMPOSE(Σ−

1 , Σ1).

(c) Let ΓR be the set of formulas over R obtained from Σ′ by

replacing every symbol bR ∈ bR by R.

3. Let M1 = (S,R, Σ1 ∪ ΓR) and M2 = (R,T, Σ2 ∪ ΓR).
Return (M1,M2).

Theorem 7.4 EXTRACT(M) returns an extract of M.

We conclude this section by investigating what is the language
needed to express the extract operator. First, it should be noticed
that algorithm EXTRACT uses target dependencies in its output. As
our first result, we show that the use of these dependencies is un-
avoidable.

Proposition 7.5 There exists an st-mapping M = (S,T, Σ),

where Σ is a set of CQ-TO-CQ dependencies, that does not ad-

mit an extract (M1,M2) in which M1 = (S,R, Σ1) and Σ1 is a

set of FO-TO-CQ dependencies from S to R.

Second, it should also be noticed that algorithm EXTRACT uses SO
dependencies (Step 2) to eliminate redundancy. Thus, it is natural
to ask whether SO is unavoidable in this algorithm and, in particu-
lar, whether FO would not be enough. Although this remains as an
open problem, we conjecture that FO is not expressive enough to
be used to eliminate redundancy in this algorithm, as there is some
evidence in this direction. In particular, the following result shows
that if one tries to eliminate target redundancy from a mapping by
only forcing some target constraints, then one needs to use a de-
pendency language more expressive than FO (notice that this can
be done with SO dependencies, as shown in algorithm EXTRACT).

Proposition 7.6 There exists a mapping M = (S,R, Σ), where

S, R are ground schemas and Σ is a set of full CQ-TO-CQ depen-

dencies, for which there is no M′ = (S,R, Σ ∪ Γ) such that Γ
is a set of FO-sentences over R, M′ is target non-redundant and

M′ ≡S M.

7.2 On the semantics of the extract operator
The extract operator was considered by Melnik et al. in [21, 22, 23].
Given a mapping M from a schema S to a schema T, the output
of this operator according to Melnik et al. is a mapping M1 from
S to a schema S

′ together with the schema constraints ΓS′ that S′

should satisfy. Moreover, the following two conditions should be
satisfied by M1 according to [22, 23]: (1) M1 ◦ (M1)

−1 ◦M is
equal to M, and (2) range(M1) is the set of instances of S

′ that
satisfy ΓS′ .

Although our semantics for the extract operator was inspired by
the work of Melnik et al. [22, 23], there are two features of Mel-
nik et al.’s definition that limit its applicability, in particular if more

expressive languages are used to specify mappings. First, if map-
ping M1 above is specified by a set of st-tgds (or, in general, by
a set of FO-TO-CQ dependencies), then M1 ◦ (M1)

−1 is a triv-
ial mapping that contains all the pairs of instances from S. Thus,
M1 ◦(M1)

−1 ◦M is also a trivial mapping in this case and, there-
fore, M1◦(M1)

−1◦M = M does not hold in general. This rules
out the possibility of having natural solutions for the extract opera-
tor specified by st-tgds, as the one shown in Example 7.3. Second,
in the semantics proposed in [23], no minimality restriction is im-
posed on the generated schema S

′, thus allowing redundant infor-
mation. Moreover, in the semantics proposed in [22], a minimality
criterion based on counting the number of instances of a schema is
imposed, which is only meaningful when instances are generated
from a finite domain, and thus, not applicable in our context.

In view of the aforementioned limitations of the semantics of the
extract operator proposed in [22, 23], we have imposed some new
conditions on this operator that try to capture the intuition behind it
[22, 23]. In particular, we have used the notions of redundancy pro-
posed in Section 6 to impose a minimality condition over the gen-
erated schemas. Moreover, we have imposed some conditions on
the information transferred by the generated mappings, that ensure
that condition (1) above holds when (·)−1 is replaced by the no-
tion of maximum recovery, which has proved to be a more natural
notion of inverse when mappings are given by FO-TO-CQ depen-
dencies [3, 2, 1, 16] (see Section 3.1 for the definition of maximum
recovery).

Proposition 7.7 Let M be an st-mapping specified by a

set of FO-TO-CQ dependencies, (M1, M2) the output of

EXTRACT(M) and M⋆
1 a maximum recovery of M1. Then it holds

that M1 ◦M
⋆
1 ◦M = M.

8. THE MERGE OPERATOR
Consider two independent database schemas S1 and S2 and a map-
ping M between them, and assume that both schemas have ma-
terialized data that is being queried by several applications. Map-
ping M describes how data in these schemas is related, and, thus,
the relationship stated by M leads to some redundancy of stor-

age: there are corresponding pieces of data stored twice in these
schemas. Thus, it is natural to ask whether one can have a sin-
gle global schema S that simultaneously stores the data of S1 and
S2, but that is not redundant in the storage of the shared informa-
tion. This is the intuition behind the merge operator [4, 5, 22], and,
hence, we say that S is the result of merging S1 and S2 with respect
to the relationship established by M. A complete solution for the
merge operator should also include mappings M1 and M2 from S

to S1 and S2, respectively, that describe the relationship between
the global schema and the initial schemas [22, 23]. These map-
pings ensure that an application that has used the initial schemas
independently, would also be able to obtain the required data from
the global schema. A diagram of the complete process is shown in
Figure 2.

Example 8.1. Let S1 = {A(·, ·)} and S2 = {B(·, ·)} be ground
schemas, and consider a mapping M given by dependency:

A(x, y) → B(x, y).

This simple mapping states that all the tuples of relation A in S1

should also be part of relation B in S2. A natural way to store
the information of both S1 and S2 in a non-redundant way is to
consider a schema S with one relation A′(·, ·) storing all the in-
formation in A, and a new relation D(·, ·) storing the difference

between B and A. By the intended meaning of relations A′ and D,

S2

S1

M

S M2

M1

Figure 2: (M1,M2) is a merge of M.

we know that they should satisfy the denial constraint:

∀x∀y ¬(A′(x, y) ∧ D(x, y)). (3)

In fact, schema S plus this constraint have enough capacity to
store the information of both S1 and S2. Moreover, let M1 =
(S,S1, Σ1 ∪ΓS) and M2 = (S,S2, Σ2 ∪ΓS), where Σ1 consists
of dependency:

A
′(x, y) → A(x, y),

Σ2 consists of dependencies:

A
′(x, y) → B(x, y),

D(x, y) → B(x, y),

and ΓS is the set that consists of denial constraint (3). Then M1

and M2 can be used to relate the new schema S with schemas S1

and S2, respectively.

In what follows, we propose a semantics for the merge opera-
tor using the machinery developed in the previous sections. As for
the case of the extract operator, we formalize the merge consider-
ing only the mappings M, M1 and M2, as the schemas will be
implicit in the mappings.

To define the semantics of the merge operator, we need to intro-
duce the notion of M-confluence, which is inspired by the notion
of confluence proposed in [22, 23]. Let S, S1, S2 be schemas,
where S1 and S2 have no relation symbols in common, M1, M2

mappings from S to S1 and from S to S2, respectively, and M a
mapping from S1 to S2. Then the M-confluence of M1 and M2,
denoted by M1⊕MM2, is defined as the following mapping from
S to S1 ∪ S2:

{(I, J ∪ K) | (J, K) ∈ M, (I, J) ∈ M1, (I, K) ∈ M2},

where J ∪ K is the union of instances J and K, that is, RJ∪K =
RJ for every R ∈ S1, and SJ∪K = SK for every S ∈ S2. Intu-
itively, M1 ⊕MM2 describes the unified instances J ∪K that are
valid pairs according to M and also simultaneously mapped from
M1 and M2.

As pointed out before, S is a valid global schema if every in-
stance I of S represents in a non-redundant way a valid unified in-
stance of S1 and S2 according to M. Then, if the pair (M1,M2)
of mappings from S to S1 and S to S2, respectively, is given
as a solution for the merge operator, one can formalize this intu-
ition by imposing conditions over M1 ⊕M M2, and considering
dom(M1⊕MM2) as the new global schema. More precisely, we
impose the following conditions:

(M1) range(M1 ⊕M M2) = {J ∪ K | (J, K) ∈ M} and
M1 ⊕M M2 is target non-redundant.

(M2) M1 ⊕M M2 is source non-redundant.

(M3) dom(M1 ⊕M M2) = dom(M1) = dom(M2).

Condition (M1) indicates that every valid unified instance of M
is covered in an essential way by M1 ⊕M M2. Condition (M2)
specifies that every instance in the global schema is necessary to
cover the unified instances of M. Finally, condition (M3) indicates
that M1 and M2 do not consider instances that are outside the
schema defined by dom(M1 ⊕M M2). We use these conditions
to define the merge operator.

Definition 8.2 (Merge operator) (M1,M2) is a merge of M if

M1 and M2 satisfy conditions (M1), (M2) and (M3).

For instance, (M1,M2) is a merge of M in Example 8.1.
The merge operator has been studied in different contexts [7, 25,

22, 23, 26]. Our definition is inspired by the definition of Melnik
et al. [22, 23]. However, as for the case of the extract operator,
there are some features of their definition that limit its applicabil-
ity, such as the use of (·)−1 (as shown in Section 7.2). This has
leaded us to impose some new conditions to define this operator.
Moreover, in [25, 26] Pottinger and Bernstein define a semantics
for the merge operator that is based on some preservation of infor-

mation and minimality conditions. However, whereas this approach
is similar to the one taken in this section, the semantics proposed
in [26] is specific to a class of mappings that specify the overlap
between schemas by means of conjunctive queries.

8.1 Computing the merge operator
In Theorem 4.2.4 in [22], Melnik proposes a straightforward algo-
rithm for the computation of the merge operator, which can also be
used in our context to compute this operator for mappings speci-
fied by FO-TO-CQ dependencies. However, motivated by Exam-
ple 8.1, we develop here an algorithm for the case of mappings
given by full FO-TO-CQ dependencies, that outputs a merge that
makes use of smaller instances in the global schema.

Algorithm MERGE(M)

Input: Mapping M = (S1,S2, Σ), where S1, S2 are disjoint
ground schemas and Σ is a set of full FO-TO-CQ de-
pendencies.

Output: A merge (M1,M2) of M.

1. Let S = { bP | P ∈ S1}∪{DR | R ∈ S2} be a ground schema.

2. Construct a set Σ1 as follows. For every n-ary relation symbol

P in S1, include dependency bP (x̄) → P (x̄) into Σ1, with x̄ an
n-ary tuple of distinct variables.

3. Construct sets Σ2 and ΓS as follows. For every n-ary relation
symbol R in S2 do the following. Let x̄ be an n-ary tuple of
distinct variables.

(a) Include DR(x̄) → R(x̄) into Σ2.

(b) Let α(x̄) the output of SOURCEREWRITING(M, R(x̄)),
and bα(x̄) the formula obtained from α(x̄) by replacing every

relation symbol P ∈ S1 by bP .

(c) Include bα(x̄) → R(x̄) into Σ2 and ∀x̄¬(bα(x̄) ∧ DR(x̄))
into ΓS.

4. Let M1 = (S,S1, Σ1 ∪ ΓS) and M2 = (S,S2, Σ2 ∪ ΓS).
Return (M1,M2).

Theorem 8.3 MERGE(M) returns a merge of M.

9. CONCLUDING REMARKS
We provide foundations for metadata management by developing a
theory to compare schema mappings in terms of notions of infor-
mation and redundancy. We proved the usefulness of our proposal
by presenting applications in the schema evolution problem, and
the definition and computation of the inverse, extract and merge op-
erators. Although we have focused in the relational case, our theory
is bounded neither to a particular data model nor to a specific lan-
guage for expressing mappings, thus providing general foundations
for schema mapping management.

Acknowledgments

We thank the anonymous referees and Ron Fagin for many helpful
comments. Arenas was supported by FONDECYT grant 1090565,
Pérez by CONICYT Ph.D. Scholarship, Reutter by EPSRC grant
G049165 and FET-Open project FoX, and Riveros by EPSRC
EP/G004021/1.

10. REFERENCES
[1] M. Arenas, J. Pérez, J. Reutter, and C. Riveros. Composition

and Inversion of Schema Mappings. SIGMOD Record,
38(3):17-28, 2009.

[2] M. Arenas, J. Pérez, J. Reutter, and C. Riveros. Inverting
schema mappings: bridging the gap between theory and
practice. In VLDB, pages 1018–1029, 2009.

[3] M. Arenas, J. Pérez, and C. Riveros. The recovery of a
schema mapping: bringing exchanged data back. In TODS,
34(4), 2009.

[4] P. Bernstein, A. Halevy and R. Pottinger. A Vision of
Management of Complex Models. SIGMOD Record,
29(4):55-63, 2000.

[5] P. Bernstein. Applying Model Management to Classical
Meta Data Problems. In CIDR, 2003.

[6] P. Bernstein and S. Melnik. Model management 2.0:
manipulating richer mappings. In SIGMOD, pages 1–12,
2007.

[7] P. Buneman, S. B. Davidson and A. Kosky. Theoretical
aspects of schema merging. In EDBT, pages 152–167, 1992.

[8] O. Duschka and M. Genesereth. Answering recursive queries
using views. In PODS, pages 109–116, 1997.

[9] B. ten Cate, P. Kolaitis. Structural Characterizations of
Schema-Mapping Languages. In ICDT, pages 63–72, 2009.

[10] R. Fagin. Horn clauses and database dependencies. JACM,
29(4):952–985, 1982.

[11] R. Fagin. Inverting schema mappings. TODS, 32(4), 2007.

[12] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. TCS,
336(1):89–124, 2005.

[13] R. Fagin, P. G. Kolaitis and L. Popa. Data exchange: getting
to the core. TODS,. 30(1):174–210, 2005.

[14] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing
schema mappings: second-order dependencies to the rescue.
TODS, 30(4):994–1055, 2005.

[15] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Quasi-inverses of schema mappings. In PODS, pages
123–132, 2007.

[16] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Reverse data
exchange: coping with nulls. In PODS, pages 23–32, 2009.

[17] R. Fagin, A. Nash. The structure of inverses in schema
mappings. IBM Research Report RJ10425, version 4, April
2008.

[18] A. Y. Halevy. Answering queries using views: A survey.
VLDB J., 10(4):270–294, 2001.

[19] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS, pages 61–75, 2005.

[20] A. Y. Levy, A. O. Mendelzon, Y. Sagiv and D. Srivastava.
Answering queries using views. In PODS, pages 95–104,
1995.

[21] S. Melnik, E. Rahm, and P. Bernstein. Rondo: A
Programming Platform for Generic Model Management. In
SIGMOD, pages 193–204, 2003.

[22] S. Melnik. Generic model management: concepts and
algorithms. Volume 2967 of LNCS, Springer, 2004.

[23] S. Melnik, P. Bernstein, A. Y. Halevy, and E. Rahm.
Supporting executable mappings in model management. In
SIGMOD, pages 167–178, 2005.

[24] A. Nash, P. Bernstein, S. Melnik. Composition of mappings
given by embedded dependencies. In PODS pages 172–183,
2005.

[25] R. Pottinger and P. A. Bernstein. Merging models based on
given correspondences. In VLDB, pages 826–873, 2003.

[26] R. Pottinger and P. A. Bernstein. Schema merging and
mapping creation for relational sources. In EDBT, pages
73–84, 2008.

[27] R. Pottinger and A. Y. Halevy. MiniCon: A scalable
algorithm for answering queries using views. VLDB J.,
10(2-3):182–198, 2001.

