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ABSTRACT
We study two simple yet general complexity classes, which
provide a unifying framework for e�cient query evaluation
in areas like graph databases and information extraction,
among others. We investigate the complexity of three funda-
mental algorithmic problems for these classes: enumeration,
counting and uniform generation of solutions, and show that
they have several desirable properties in this respect.

Both complexity classes are defined in terms of non de-
terministic logarithmic-space transducers (NL transducers).
For the first class, we consider the case of unambiguous NL
transducers, and we prove constant delay enumeration, and
both counting and uniform generation of solutions in polyno-
mial time. For the second class, we consider unrestricted NL
transducers, and we obtain polynomial delay enumeration,
approximate counting in polynomial time, and polynomial-
time randomized algorithms for uniform generation. More
specifically, we show that each problem in this second class
admits a fully polynomial-time randomized approximation
scheme (FPRAS) and a polynomial-time Las Vegas algo-
rithm (with preprocessing) for uniform generation. Remark-
ably, the key idea to prove these results is to show that
the fundamental problem #NFA admits an FPRAS, where
#NFA is the problem of counting the number of strings of
length n (given in unary) accepted by a non-deterministic
finite automaton (NFA). While this problem is known to be
#P-complete and, more precisely, SpanL-complete, it was
open whether this problem admits an FPRAS. In this work,
we solve this open problem, and obtain as a welcome corol-
lary that every function in SpanL admits an FPRAS.

1. INTRODUCTION
Arguably, query answering is the most fundamental prob-

lem in databases. In this respect, developing e�cient query
answering algorithms, as well as understanding when this
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cannot be done, is of paramount importance in the field.
In the most classical view of this problem, one is interested
in computing all the answers, or solutions, to a query. To
present such a view, consider a running example from the
area of graph databases [8].
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Figure 1: A graph database Gpeople, and two paths
⇡1, ⇡2 of friends in Gpeople from Zara to Jack.

Given a set � of labels, one can model a graph database G
as a pair (V,E) where V is a set of vertices and E ⊆ V ×�×V
is a set of labeled edges. For example, Gpeople in Figure 1 is a
graph database storing information about people and their
relationships; in particular, the set of labels for Gpeople is{friend, knows}, so that a triple (a, friend, b) indicates that
a and b are friends, while a triple (a,knows, b) indicates that
a knows b. Path queries are a fundamental way to retrieve
information from graph databases [8, 18]. In its simplest
form, a path query Q over a graph database G = (V,E) is
a triple (a, r, b), where a, b ∈ V and r is a regular expression
over the set � of edge labels for G. An answer to Q over G is
a path from a to b whose labels conform to r. Formally, such
a path is a sequence ⇡ = v0, p1, v1, p2, . . . , pn, vn of vertices
and labels such that (vi, pi+1, vi+1) ∈ E, a = v0 and b = vn.
Moreover, ⇡ is said to conform to r if the string p1p2�pn
is in the regular language defined by r. For example, Q1 =(Zara, friend∗, Jack) is a path query over the graph database
Gpeople in Figure 1, for which two answers are the paths ⇡1,
⇡2 shown in this figure. Thus, an answer to Q1 over Gpeople
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is a path of friends from Zara to Jack. The set of answers
of a path query Q over a graph database G is denoted by
Q(G). Clearly, Q(G) can be an infinite set, as paths can
contain cycles, so there can be an infinite number of them
in a graph. For this reason, the length of the paths to be
retrieved must also be specified when posing a path query;
the length of a path ⇡ = v0, p1, . . . , pn, vn, denoted by �⇡�, is
defined as n. Hence, in the most classical view of the query
answering problem in graph databases, the input is a triple(G,Q,n) with G a graph database, Q a path query over
G and n a natural number. The task then is to compute
all paths ⇡ such that ⇡ ∈ Q(G) and �⇡� = n. For example,
assuming that Q1 = (Zara, friend∗, Jack), the paths ⇡1, ⇡2

in Figure 1 belong to Q1(Gpeople) when n = 3.
As the quantity of data becomes enormously large, the

number of answers to a query could also be enormous, so
computing the complete set of solutions can be prohibitively
expensive. In our running example, just think about com-
puting all the paths from a source to a target node over a
large graph, this set of answers can be huge and infeasible
to produce in practice [9, 28]. To overcome this limitation,
the idea of enumerating the answers to a query with a small
delay has recently attracted a lot of attention [33, 29]. More
specifically, the idea is to divide the computation of the an-
swers into two phases. In a preprocessing phase, some data
structures are constructed to accelerate the process of com-
puting answers. Then in an enumeration phase, the answers
are enumerated with a small delay between them. Consider-
ing again Gpeople and path query Q1 = (Zara, friend∗, Jack),
such an algorithm has a preprocessing phase that allows it to
return a first path in Q1(Gpeople) in polynomial time, say ⇡1,
and then to return one by one the answers in Q1(Gpeople)
taking polynomial time between any two consecutive out-
puts, say taking polynomial time to return ⇡2 after ⇡1.
In the case of constant delay enumeration algorithms, the
preprocessing phase should take polynomial time, while the
time between consecutive answers should be constant. Such
algorithms allow users to retrieve a fixed number of answers
very e�ciently, which can give them a lot of information
about the solutions to a query. In fact, the same holds if
users need a polynomial number of answers.
Unfortunately, because of the data structures used in the

preprocessing phase, these enumeration algorithms usually
return answers that are similar to each other [12, 33, 17].
In our running example, an enumeration algorithm for the
query Q1 = (Zara, friend∗, Jack) can return as the first two
answers the paths ⇡1 and ⇡2 shown in Figure 1, which are
similar to each other as they only di↵er on the second node:
Nora and Leah. In this respect, other approaches can be
used to return some solutions e�ciently but improving the
variety. For instance, if we are going to generate two answers
to Q1 over Gpeople, instead of producing paths ⇡1 and ⇡2 in
Figure 1, it would be desirable to improve the variety by
producing ⇡1 and the following path:

Leah Paul
friend

Zara
friend

⇡3 Jack
friend

The possibility of generating an answer uniformly, at ran-
dom, is a desirable condition to improve the variety, if it
can be done e�ciently. Notice that the uniform genera-
tion of answers is also important for other query evalua-
tion tasks like approximate query answering, and estimat-
ing aggregates and parameters for query optimization [14,

3, 36]. Moreover, the possibility of returning varied solu-
tions has been identified as an important feature not only in
databases, but also for algorithms that retrieve information
in a broader sense [2, 1].
E�cient algorithms for enumeration or uniform genera-

tion are powerful tools to help in the process of understand-
ing the answers to a query. But how can we know how
long these algorithms should run, and how complete the set
of computed answers is? A third tool that is needed then
is an e�cient algorithm for computing, or estimating, the
number of solutions to a query. For example, for the query
Q1 = (Zara, friend∗, Jack) over the graph database Gpeople

in Figure 1, we have that Q1(Gpeople) contains three paths
⇡ such that �⇡� = 3. Hence, if we have an e�cient algorithm
to compute the number of paths in Q1(Gpeople) of length 3,
then we know that there are no more answers to produce af-
ter generating paths ⇡1 and ⇡2 in Figure 1, and the previous
path ⇡3. Similar than for enumeration and uniform genera-
tion, counting the number of solutions has other applications
in query evaluation like computing the size of intermediate
results, computing histograms, among others [20, 23].
Taken together, enumeration, counting, and uniform gen-

eration techniques form a powerful attacking trident when
confronting to the query answering problem in our running
example and, more generally, in any database system. The
goal of this work is to find e�cient algorithms for these prob-
lems but following a principled approach, instead of focusing
on them in isolation and for some specific domains. More
precisely, we follow the guidance of [24], which urges the use
of relations to formalize the notion of solution to a given
input of a problem, so that enumeration, counting, and uni-
form generation appear as particular problems in this for-
malization. In Section 2, we present this framework together
with the formal notions of e�ciency that we pursue for these
three problems. The next step then is to provide a sim-
ple way to identify relations that have good properties in
terms of these three tasks. For this, we use the concept
of non-deterministic logspace transducers to provide two
classes of relations, called RelationNL and RelationUL,
and show that the aforementioned three problems admit ef-
ficient algorithms when restricted to these classes of rela-
tions. RelationNL and RelationUL are formally defined
in Section 3, where our main results are also formally stated.
Interestingly, one can show that several problems in data
management are in one of these two classes. More specifi-
cally, by establishing membership in one of these two classes
of relations, we show in Section 4 that problems about in-
formation extraction and binary decision diagrams, as well
as our running example, admit e�cient algorithms for enu-
meration, counting, and uniform generation.
It is important to mention that the main technical result

of this work is to prove that each problem in RelationNL
admits a fully polynomial-time randomized approximation
scheme (FPRAS) [24] and a polynomial-time Las Vegas al-
gorithm (with preprocessing) for uniform generation. The
key idea to prove these results is to show that the funda-
mental problem #NFA admits an FPRAS, where #NFA
is the problem of counting the number of strings of length
n accepted by a non-deterministic finite automaton (NFA).
While this problem is known to be #P-complete and, more
precisely, SpanL-complete [5], it was open whether it admits
an FPRAS, and only quasi polynomial time randomized ap-
proximation schemes were known for it [26, 21]. In this work,
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we solve this open problem, and obtain as a welcome corol-
lary that every function in SpanL admits an FPRAS. Thus,
to the best of our knowledge, we obtain the first complexity
class with a simple and robust definition based on Turing
Machines, that contains #P-complete problems and where
each problem admits an FPRAS.

2. A UNIFYING FRAMEWORK
BASED ON RELATIONS

As mentioned in the introduction, we follow a principled
approach to study the problems of enumerating, counting
and uniformly generating the answers to a query. We begin
by following the guidance of [24], which urges the use of
relations to formalize the notion of solution to a given input
of a problem. Formally, if ⌃ denotes a finite alphabet, then
we represent a problem as a relation R ⊆ ⌃∗ ×⌃∗, where, as
usual, ⌃∗ denotes the set of all strings over ⌃. For every pair(x, y) ∈ R, we interpret x as being the encoding of an input
to the problem, and y as being the encoding of a solution
or witness to that input. For each x ∈ ⌃∗, we define the
set WR(x) = {y ∈ ⌃∗ � (x, y) ∈ R}, and call it the witness
set for x. Also, if y ∈ WR(x), we call y a witness or a
solution to x. For instance, the query answering problem
from our running example in Figure 1 can be represented as
the following relation:

EVAL-PQ = { ((G,Q,n), ⇡) � G is a graph database,

Q is a path query, n ∈ N, ⇡ ∈ Q(G), and �⇡� = n}, (†)

that is, the input to the query answering problem is the
triple (G,Q,n), and a solution for (G,Q,n) is a path ⇡ such
that ⇡ ∈ Q(G) and the length of ⇡ is n. Thus, the following
is the set of solutions for (G,Q,n):
WEVAL-PQ((G,Q,n)) = {⇡ � ((G,Q,n), ⇡) ∈ EVAL-PQ}.

This is a very general framework where any relation be-
tween input and solutions can be encoded, so we restrict
to p-relations [24]. Formally, a relation R ⊆ ⌃∗ ×⌃∗ is a p-
relation if (1) there exists a polynomial q such that (x, y) ∈ R
implies that �y� = q(�x�) and (2) there exists a deterministic
Turing Machine that receives as input (x, y) ∈ ⌃∗ ×⌃∗, runs
in polynomial time and accepts if, and only if, (x, y) ∈ R.
One can easily check that EVAL-PQ is a p-relation, as many
other query answering problems in data management. Thus,
considering p-relations is a natural and reasonable restric-
tion for our framework.
The problems studied in this work can be formalized as

follows in the framework presented:

Problem: ENUM(R)
Input: A word x ∈ ⌃∗
Output: Enumerate all y ∈WR(x)

without repetitions

Problem: COUNT(R)
Input: A word x ∈ ⌃∗
Output: The size �WR(x)�
Problem: GEN(R)
Input: A word x ∈ ⌃∗
Output: Generate uniformly, at random,

a word in WR(x)

Given that �y� = q(�x�) for every (x, y) ∈ R, for a polyno-
mial q, we have that WR(x) is finite and these three prob-
lems are well defined. Notice that in the case of ENUM(R),
we do not assume a specific order on words, so that the
elements of WR(x) can be enumerated in any order (but
without repetitions). Moreover, in the case of COUNT(R),
we assume that �WR(x)� is encoded in binary and, there-
fore, the size of the output is logarithmic in the size of
WR(x). Finally, in the case of GEN(R), we generate a word
y ∈WR(x) with probability 1�WR(x)� if the set WR(x) is not
empty; otherwise, we return a special symbol � to indicate
that WR(x) = �. Hence, in our running example, the prob-
lems of enumerating, counting and uniformly generating the
answers to a path query correspond to ENUM(EVAL-PQ),
COUNT(EVAL-PQ), and GEN(EVAL-PQ), respectively.
In what follows, we present the notions of e�ciency that

we pursue for the problems studied in this work.

2.1 Notions of efficiency for enumeration
An enumeration algorithm for ENUM(R) is a procedure

that receives an input x ∈ ⌃∗ and, during the computation,
it outputs each word in WR(x), one by one and without
repetitions. The time between two consecutive outputs is
called the delay of the enumeration. In this paper, we con-
sider two restrictions on the delay: polynomial-delay and
constant-delay. Polynomial-delay enumeration is the stan-
dard notion of polynomial time e�ciency in enumeration
algorithms [25] and is defined as follows. An enumeration
algorithm is of polynomial delay if there exists a polynomial
p such that for every input x ∈ ⌃∗, the time between the
beginning of the algorithm and the initial output, between
any two consecutive outputs, and between the last output
and the end of the algorithm, is bounded by p(�x�).
Constant-delay enumeration is another notion of e�ciency

for enumeration algorithms that has attracted a lot atten-
tion [11, 15, 33]. This notion has stronger guarantees com-
pared to polynomial delay: after the processing of the input,
the enumeration is done in a second phase taking constant-
time between two consecutive outputs. Several notions of
constant-delay enumeration have been studied, most of them
in database theory where it is important to divide the anal-
ysis between query and data. In this paper, we want a def-
inition of constant-delay that is agnostic of the distinction
between query and data (i.e. combined complexity [35]) and,
for this reason, we use a more general notion of constant-
delay enumeration than the ones in [11, 15, 33].
As it is standard in the literature [33], for constant-delay

enumeration we consider enumeration algorithms on Ran-
dom Access Machines (RAM) with addition and uniform
cost measure [4]. Given a relation R ⊆ ⌃∗ ×⌃∗, an enumer-
ation algorithm E for R has constant-delay if E runs in two
phases over the input x.

1. The first phase (precomputation), which does not pro-
duce output.

2. The second phase (enumeration), which occurs im-
mediately after the precomputation phase, where all
words in WR(x) are enumerated without repetitions
and satisfying the following conditions, for a fixed con-
stant c:

(a) the time it takes to generate the first output y is
bounded by c ⋅ �y�;

54 SIGMOD Record, March 2020 (Vol. 49, No. 1)



(b) the time between two consecutive outputs y and
y′ is bounded by c ⋅ �y′� and does not depend on
y; and

(c) the time between the final element y that is re-
turned and the end of the enumeration phase is
bounded by c ⋅ �y�,

We say that E is a constant-delay algorithm for R with pre-
computation time f , if E has constant-delay and the precom-
putation phase takes time O(f(�x�)). Moreover, we say that
ENUM(R) can be solved with constant-delay if there exists
a constant-delay algorithm for R with precomputation time
p for some polynomial p.
Our notion of constant-delay algorithm di↵ers from the

definitions in [33] in two aspects. First, as was previously
mentioned, we relax the distinction between query and data
in the preprocessing phase, allowing our algorithm to take
polynomial time in the input (that is, we consider the com-
bined complexity of the problem [35]). Second, our defini-
tion of constant-delay is what in [15, 11] is called linear delay
in the size of the output, namely, writing the next output is
linear in its size and does not depend on the size of the input.
This is a natural assumption, since each output must at least
be written down to return it to the user. Notice that, given
an input x and an output y, the notion of polynomial-delay
above means polynomial in �x� and, instead, the notion of
linear delay from [15, 11] means linear in �y�, i.e., constant
in the size of �x�. Thus, we have decided to call the two-
phase enumeration from above “constant-delay”, as it does
not depend on the size of the input x, and the delay is just
what is needed to write the output (which is the minimum
requirement for such an enumeration algorithm).

2.2 Notions of efficiency for counting and
uniform generation

Given a relation R ⊆ ⌃∗×⌃∗, the problem COUNT(R) can
be solved e�ciently if there exists a polynomial-time algo-
rithm that, given x ∈ ⌃∗, computes �WR(x)�. In other words,
if we think of COUNT(R) as a function that maps x to the
value �WR(x)�, then COUNT(R) can be computed e�ciently
if COUNT(R) ∈ FP, the class of functions that can be com-
puted in polynomial time. As such a condition does not
hold for many fundamental problems in data management,
we also consider the possibility of e�ciently approximat-
ing the value of the function COUNT(R). More precisely,
COUNT(R) is said to admit a fully polynomial-time ran-
domized approximation scheme (FPRAS) [24] if there exists
a randomized algorithm A ∶ ⌃∗ × (0,1) → N and a polyno-
mial q(u, v) such that for every x ∈ ⌃∗ and � ∈ (0,1), it holds
that:

Pr( �A(x, �) − �WR(x)� � ≤ � ⋅ �WR(x)� ) ≥ 3

4

and the number of steps needed to compute A(x, �) is at
most q(�x�,1��). Thus, algorithm A(x, �) approximates the
value �WR(x)� with a relative error of �, and it can be com-
puted in polynomial time in the size of x and the value 1��.

The problem GEN(R) can be solved e�ciently if there
exists a polynomial-time randomized algorithm that, given
x ∈ ⌃∗, generates an element of WR(x) with uniform prob-
ability distribution (if WR(x) = �, then it returns �). How-
ever, as in the case of COUNT(R), the existence of such
a generator is not guaranteed for many fundamental prob-
lems, so we also consider a relaxed notion of generation that

has a probability of failing in returning a solution. More pre-
cisely, GEN(R) is said to admit a preprocessing polynomial-
time Las Vegas uniform generator (PPLVUG) if there exist
a pair of randomized algorithms P ∶ ⌃∗×(0,1)→ (⌃∗∪{�}),G ∶ ⌃∗ → (⌃∗ ∪ {fail}), a set V ⊆ ⌃∗, and a pair of polyno-
mials q(u, v), r(u) such that for every x ∈ ⌃∗ and � ∈ (0,1):

1. The preprocessing algorithm P receives as inputs x
and � and performs at most q(�x�, log(1��)) steps. If
WR(x) ≠ �, then P(x, �) returns a string d such that
d ∈ V with probability 1−�. IfWR(x) = �, then P(x, �)
returns �.

2. The generator algorithm G receives as input d and per-
forms at most r(�d�) steps. Moreover, if d ∈ V, then:
(a) G(d) returns fail with a probability of at most

1
2
, and

(b) conditioned on not returning fail, G(d) returns
a truly uniform sample y ∈ WR(x), i.e. with a
probability 1��WR(x)� for each y ∈WR(x).

Otherwise, if d �∈ V, then G(d) outputs a string without
any guarantee.

The set V of strings is called the set of valid strings. In line
with the notion of constant-delay enumeration algorithm,
we allow the previous concept of uniform generator to have
a preprocessing phase. If there is no witness for the input
x (that is, WR(x) = �), then the preprocessing algorithm P
returns the symbol �. Otherwise, the invocation P(x, �) re-
turns a string d in ⌃∗, namely, a data structure or “advice”
for the generation procedure G. The output of the invoca-
tion P(x, �) is used by the generator algorithm G to produce
a witness of x with uniform distribution (that is, with proba-
bility 1��WR(x)�). If the output of P(x, �) is not valid (which
occurs with probability �), then we have no guarantees on
the output of the generator algorithm G. Otherwise, we
know that G(d) returns an element of WR(x) with uniform
distribution, or it returns fail. Furthermore, we can repeatG(d) as many times as needed, generating each time a truly
uniform sample y from WR(x) whenever y ≠ fail. It is im-
portant to notice that the definition of PPLVUG does not
guarantee that it can be distinguished in polynomial time
whether d is valid (that is, whether d ∈ V), so G has to use
d only knowing that with probability 1 − � is a valid string,
in which case d will be useful for generating an element of
WR(x) with uniform distribution.
Notice that by condition (2a), we know that the proba-

bility of failing is smaller than 1
2
, so that by calling G(d)

several times we can make this probability arbitrarily small.
For example, the probability that G(d) returns fail in 1000
consecutive independent invocations is at most ( 1

2
)1000. Fur-

thermore, we have that P(x, �) can be computed in time
q(�x�, log(1��)), so we can consider an exponentially small
value of � such as

1

2�x�+1000
and still obtain that P(x, �) can be computed in time poly-
nomial in �x�. Notice that with such a value of �, the prob-
ability of producing a valid string d is at least

1 − 1

21000
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which is an extremely high probability. Finally, it is impor-
tant to notice that the size of d is at most q(�x�, log(1��)),
so that G(d) can be computed in time polynomial in �x� and
log(1��). Therefore, G(d) can be computed in time polyno-
mial in �x� even if we consider an exponentially small value
for � such as 1�2�x�+1000.
Notice that the notion of preprocessing polynomial-time

Las Vegas uniform generator imposes stronger requirements
than the notion of fully polynomial-time almost uniform gen-
erator introduced in [24]. In particular, the latter not only
has a probability of failing, but also considers the possibil-
ity of generating a solution with a probability distribution
that is almost uniform, that is, an algorithm that gener-
ates a string y ∈ WR(x) with a probability in an interval[1��WR(x)� − ",1��WR(x)� + "] for a given error " ∈ (0,1).
3. OUR MAIN CONTRIBUTIONS
The goal of this section is to provide simple yet general

definitions of classes of relations with good properties in
terms of enumeration, counting, and uniform generation.
More precisely, we are first aiming at providing a class C
of relations that has a simple definition in terms of Tur-
ing Machines and such that for every relation R ∈ C, it holds
that ENUM(R) can be solved with constant delay, and both
COUNT(R) and GEN(R) can be solved in polynomial time.
Moreover, as it is well known that such good conditions can-
not always be achieved, we are then aiming at extending the
definition of C to obtain a simple class, also defined in terms
of Turing Machines and with good approximation proper-
ties. It is important to mention that we are not looking
for an exact characterization in terms of Turing Machines
of the class of relations that admit constant delay enumera-
tion algorithms, as this may result in an overly complicated
model. Instead, we are looking for simple yet general classes
of relations with good properties in terms of enumeration,
counting, and uniform generation, and which can serve as a
starting point for the systematic study of these three funda-
mental properties together.

3.1 The general class RelationNL
A key notion that is used in our definitions of classes of

relations is that of a transducer. Given a finite alphabet ⌃,
an NL-transducer M is a nondeterministic Turing Machine
with input and output alphabet ⌃, a read-only input tape,
a write-only output tape where the head is always moved
to the right once a symbol is written in it (so that the
output cannot be read by M), and a work-tape of which,
on input x, only the first f(�x�) cells can be used, where
f(n) ∈ O(log(n)). A string y ∈ ⌃∗ is said to be an output
of M on input x, if there exists a run of M on input x that
halts in an accepting state with y as the string in the out-
put tape. The set of all outputs of M on input x is denoted
by M(x) (notice that M(x) can be empty). Finally, the
relation accepted by M , denoted by R(M), is defined as{(x, y) ∈ ⌃∗ ×⌃∗ � y ∈M(x)}.
Definition 3.1. A relation R is in RelationNL i↵ there
exists an NL-transducer M such that R(M) = R.

The class RelationNL should be general enough to con-
tain some natural and well-studied problems. A first such
a problem is the satisfiability of a propositional formula in
DNF. This problem can be naturally represented as follows:

SAT-DNF = {(',�) � ' is a proposional formula

in DNF, � is a truth assignment and �(') = 1}.
Thus, we have that ENUM(SAT-DNF) corresponds to the
problem of enumerating the truth assignments satisfying a
propositional formula ' in DNF, while COUNT(SAT-DNF)
and GEN(SAT-DNF) correspond to the problems of count-
ing and uniformly generating such truth assignments, re-
spectively. It is not di�cult to see that SAT-DNF is in
RelationNL. In fact, assume that we are given a propo-
sitional formula ' of the form D1 ∨ � ∨ Dm, where each
Di is a conjunction of literals, that is, a conjunction of
propositional variables and negation of propositional vari-
ables. Moreover, assume that each propositional variable
in ' is of the form x k, where k is a binary number, and
that x 1, . . ., x n are the variables occurring in '. Notice
that with such a representation, we have that ' is a string
over the alphabet {x, ,0,1,∧,∨,¬}. We define as follows an
NL-transducer M such that M(') is the set of truth as-
signments satisfying '. On input ', the NL-transducer M
non-deterministically chooses a disjunct Di, which is rep-
resented by two indexes indicating the starting and ending
symbols of Di in the string '. Then it checks whether Di

is satisfiable, that is, whether Di does not contain comple-
mentary literals. Notice that this can be done in logarithmic
space by checking for every j ∈ {1, . . . , n}, whether x j and¬x j are both literals in Di. If Di is not satisfiable, then M
halts in a non-accepting state. Otherwise, M returns a satis-
fying truth assignment of Di as follows. A truth assignment
for ' is represented by a string of length n over the alphabet{0,1}, where the j-th symbol of this string is the truth value
assigned to variable x j. Then for every j ∈ {1, . . . , n}, if x j
is a conjunct in Di, then M write the symbol 1 in the out-
put tape, and if ¬x j is a conjunct in Di, then M write the
symbol 0 in the output tape. Finally if neither x j nor ¬x j
is a conjunct in Di, then M non-deterministically chooses a
symbol b ∈ {0,1}, and it writes b in the output tape.
By using NL-transducers, one can easily show that some

query answering problems in data management are also in
RelationNL, in the same way as for the case of SAT-DNF.
For instance, the relation EVAL-PQ defined in (†), which
is used to encode our running example, can be shown to
be in RelationNL. To see this, assume a reasonable en-
coding for an input (G,Q,n) (this time, we omit the string
representation of the input and output for simplicity). In
particular, assume that Q = (a, r, b) is a path query with
a, b vertices in G and r a regular expression. Then our NL-
transducer constructs on-the-fly the product of G with an
NFA A accepting the regular language defined by r, uses
this product to traverse G through a path ⇡ such that ⇡
conforms to r and �⇡� = n, and outputs ⇡. More precisely,
our NL-transducer keeps a counter c and two indices, called
g and q, pointing to a vertex in G and a state in A, respec-
tively. The transducer starts with c = 0, g = a and q = q0,
assuming that q0 is the initial state of A. Then, at each step
the machine non-deterministically chooses an edge (g, `, g′)
on G and a transition (q, `, q′) on A for some edge-label `,
writes (g, `, g′) in the output tape, and updates c, g, and q
to c + 1, g′, and q′, respectively. If this combination edge-
transition does not exist or c becomes greater than n, then
the machine stops and rejects. Instead, if it holds that g
is equal to b, q is a final state of A, and c = n, then our
NL-transducer stops and accepts. In other words, we have
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shown that EVAL-PQ ∈ RelationNL.
The problem COUNT(SAT-DNF) is a paramount exam-

ple of a #P-complete problem. Moreover, it is known that
COUNT(EVAL-PQ) is #P-complete as well [9]. Hence,
we cannot expect COUNT(R) to be solvable in polyno-
mial time for every R ∈ RelationNL. However, the prob-
lem COUNT(SAT-DNF) admits an FPRAS [27], so we can
still hope for COUNT(R) to admit an FPRAS for every
R ∈ RelationNL. In this work, we give a positive answer
to the question of the existence of such an approximation
algorithm for every relation in RelationNL.

Theorem 3.2. If R ∈ RelationNL, then ENUM(R) can be
solved with polynomial delay, COUNT(R) admits an FPRAS,
and GEN(R) admits a PPLVUG.

In particular, given that EVAL-PQ is inRelationNL, the
three problems for graph databases mentioned in Sections 1
and 2 have good algorithmic properties: ENUM(EVAL-PQ)
can be solved with polynomial delay, COUNT(EVAL-PQ)
admits an FPRAS, and GEN(EVAL-PQ) admits a PPLVUG.
Notice that deriving a polynomial-delay enumeration algo-
rithm for EVAL-PQ is straightforward, but the existence of
an FPRAS for COUNT(EVAL-PQ), as well as of a PPLVUG
for GEN(EVAL-PQ), was not known before. This is one of
the main advantages of our approach: by proving member-
ship in RelationNL, we can easily identify query answering
problems that have good algorithmic properties in terms of
enumeration, counting, and uniform generation.

3.1.1 A fundamental consequence of our result

It turns out that proving our main result (Theorem 3.2)
involves providing an FPRAS for a natural problem associ-
ated to path queries and graph databases. More specifically,
#NFA is the problem of counting the number of words of
length k accepted by a non-deterministic finite automaton
(NFA), where k is given in unary (that is, k is given as a
string 0k). It is known that #NFA is #P-complete [5], but
it is open whether it admits an FPRAS; in fact, the best
randomized approximation scheme known for #NFA runs
in time nO(log(n)) [26]. In our notation, this problem is rep-
resented by the following relation:

MEM-NFA = {((A,0k),w) � A is an NFA and

w is a word of length k accepted by A},
that is, #NFA is the same problem as COUNT(MEM-NFA).
To prove Theorem 3.2, we have to provide an FPRAS for
COUNT(MEM-NFA), thus giving a positive answer to the
open question of whether #NFA admits an FPRAS.
It is important to mention a fundamental consequence of

this result in computational complexity. The class of func-
tion SpanL was introduced in [5] to provide a characteri-
zation of some functions that are hard to compute. More
specifically, given a finite alphabet ⌃, a function f ∶ ⌃∗ → N
is in SpanL if there exists an NL-transducer M with input
alphabet ⌃ such that f(x) = �M(x)� for every x ∈ ⌃∗. The
complexity class SpanL is contained in #P, and it is a hard
class in the sense that if SpanL ⊆ FP, then P = NP [5],
where FP is the class of functions that can be computed in
polynomial time. In fact, SpanL has been instrumental in
proving that some functions are di�cult to compute [5, 22,
9, 28].
It is easy to see that #NFA belongs to SpanL. In fact, it

was shown in [5] that #NFA is SpanL-complete under the

notion of parsimonious reduction. Therefore, given that a
parsimonious reduction preserves the existence of an FPRAS,
we obtain the following corollary from Theorem 3.2 and our
characterization of #NFA as COUNT(MEM-NFA):
Corollary 3.3. Every function in SpanL admits an FPRAS.

Although some classes C containing #P-complete func-
tions and for which every f ∈ C admits an FPRAS have been
identified before [32, 10], to the best of our knowledge this
is the first such a class with a simple and robust definition
based on Turing Machines.

3.2 The more restricted class RelationUL
A natural question at this point is whether a simple syn-

tactic restriction on the definition of RelationNL gives rise
to a class of relations with better properties in terms of enu-
meration, counting, and uniform generation. Fortunately,
the answer to this question comes by imposing a natural and
well-studied restriction on Turing Machines, which allows us
to define a class that contains many natural problems. More
precisely, we consider the notion of UL-transducer, where
the letter “U” stands for “unambiguous”. Formally, M is a
UL-transducer if M is an NL-transducer such that for every
input x and y ∈ M(x), there exists exactly one run of M
on input x that halts in an accepting state with y as the
string in the output tape. Notice that this notion of trans-
ducer is based on well-known classes of decision problems
(e.g. UP [34] and UL [31]) adapted to our case, namely,
adapted to problems defined as relations.

Definition 3.4. A relation R is in RelationUL i↵ there
exists a UL-transducer M such that R(M) = R.

For the class RelationUL, we obtain the following result.

Theorem 3.5. If R ∈ RelationUL, then ENUM(R) can
be solved with constant delay, there exists a polynomial-time
algorithm for COUNT(R), and there exists a polynomial-
time randomized algorithm for GEN(R).
Hence, given a relation R in RelationUL and an input

x, the solutions for x can be enumerated, counted and uni-
formly generated e�ciently. Classes of problems definable
by machine models and that can be enumerated with con-
stant delay have been proposed before. In [6], it is shown
that if a problem is definable by a d-DNNF circuit, then the
solutions of an instance can be listed with linear preprocess-
ing and constant delay enumeration. Still, to the best of our
knowledge, this is the first such a class with a simple and
robust definition based on Turing Machines.

4. OTHER APPLICATIONS OF
THE MAIN RESULTS

By using our machinery, we have already proved that
query evaluation in graph databases has good properties in
terms of enumeration, approximate counting, and uniform
generation. In this section, we show further applications of
our main results in information extraction and binary deci-
sion diagrams.

4.1 Information extraction
In [16], the framework of document spanners was proposed

as a formalization of ruled-based information extraction. In
this framework, the main data objects are documents and
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spans. Formally, given a finite alphabet ⌃, a document is
a string d = a1 . . . an and a span is a pair s = [i, j� with
1 ≤ i ≤ j ≤ n + 1. A span represents a continuous region of
the document d, whose content is the substring of d from
positions i to j − 1. Given a finite set of variables X, a
mapping µ is a function from X to the spans of d.

Variable set automata (VA) are one of the main formalisms
to specify sets of mappings over a document. Here, we use
the notion of extended VA (eVA) from [17] to state our main
results. We only recall the main definitions, and we refer the
reader to [17, 16] for more intuition and further details. An
eVA is a tuple A = (Q, q0, F, �) such that Q is a finite set
of states, q0 is the initial state, and F is the final set of
states. Further, � is the transition relation consisting of let-
ter transitions (q, a, q′), or variable-set transitions (q, S, q′),
where S ⊆ {x�,� x � x ∈ X} and S ≠ �. The symbols x�
and � x are called markers, and they are used to denote
that variable x is open or close by A, respectively. A run
⇢ over a document d = a1�an is a sequence of the form:

q0
X1�→ p0

a1�→ q1
X2�→ p1

a2�→ . . . an�→ qn
Xn+1�→ pn where each Xi

is a (possible empty) set of markers, (pi, ai+1, qi+1) ∈ �, and(qi,Xi+1, pi) ∈ � whenever Xi+1 ≠ �, and qi = pi otherwise
(that is, when Xi+1 = �). We say that a run ⇢ is valid if
for every x ∈X there exists exactly one pair [i, j� such that
x � ∈ Xi and � x ∈ Xj . A valid run ⇢ naturally defines a
mapping µ⇢ that maps x to the only span [i, j� such that
x� ∈ Xi and �x ∈ Xj . We say that ⇢ is accepting if pn ∈ F .
Finally, the semantics JAK(d) of A over d is defined as the
set of all mappings µ⇢ where ⇢ is a valid and accepting run
of A over d.
In [19, 30], it was shown that the decision problem re-

lated to query evaluation, namely, given an eVA A and a
document d deciding whether JAK(d) ≠ �, is NP-hard. For
this reason, in [17] a subclass of eVA is considered in order
to recover polynomial-time evaluation. An eVA A is called
functional if every accepting run is valid. Intuitively, a func-
tional eVA does not need to check validity of the run given
that it is already known that every run that reaches a fi-
nal state will be valid. For the query evaluation problem of
functional eVA (i.e. to compute JAK(d)), one can naturally
associate the following relation:

EVAL-eVA = {((A, d), µ) � A is a functional eVA,

d is a document, and µ ∈ JAK(d)}
It is not di�cult to show that EVAL-eVA ∈ RelationNL.

Hence, by Theorem 3.2 we get the following results.

Corollary 4.1. ENUM(EVAL-eVA) can be enumerated with
polynomial delay, COUNT(EVAL-eVA) admits an FPRAS,
and GEN(EVAL-eVA) admits a PPLVUG.

In [17], it was shown that every functional RGX or func-
tional VA (not necessarily extended) can be converted in
polynomial time into a functional eVA. Therefore, Corol-
lary 4.1 also holds for these more general classes.
Regarding e�cient enumeration and exact counting, an

algorithm for constant-delay enumeration was given in [17]
for the class of deterministic functional eVA. Here, we can
extend these results for a more general class, that we called
unambiguous functional eVA. Formally, we say that an eVA
is unambiguous if for every two valid and accepting runs ⇢1
and ⇢2, it holds that µ⇢1 ≠ µ⇢2 . In other words, each out-
put of an unambiguous eVA is witness by exactly one run.
As in the case of EVAL-eVA, we can define the relation

EVAL-UeVA, by restricting the input to unambiguous func-
tional eVA. By using UL-transducers and Theorem 3.5, we
can then extend the results in [17] for the unambiguous case.

Corollary 4.2. ENUM(EVAL-UeVA) can be solved with
constant delay, there exists a polynomial-time algorithm for
COUNT(EVAL-UeVA), and there exists a polynomial-time
randomized algorithm for GEN(EVAL-UeVA).
4.2 Binary decision diagrams
Binary decision diagrams are an abstract representation

of boolean functions which are widely used in computer sci-
ence and have found many applications in areas like formal
verification [13]. A binary decision diagram (BDD) is a di-
rected acyclic graph D = (V,E) where each node v is labeled
with a variable var(v) and has at most two edges going to
children lo(v) and hi(v). Intuitively, lo(v) and hi(v) rep-
resent the next nodes when var(v) takes values 0 and 1,
respectively. D contains only two terminal, or sink nodes,
labeled by 0 or 1, and one initial node called v0. We assume
that every path from v0 to a terminal node does not repeat
variables. Then given an assignment � from the variables in
D to {0,1}, we have that � naturally defines a path from v0
to a terminal node 0 or 1. In this way, D defines a boolean
function that gives a value in {0,1} to each assignment �;
in particular, D(�) ∈ {0,1} corresponds to the sink node
reached by starting from v0 and following the values in �.
For Ordered BDDs (OBDDs), we also have a linear order <
over the variables in D such that, for every v1, v2 ∈ V with v2
a child of v1, it holds that var(v1) < var(v2). Note that not
all variables need to appear in a path from the initial node
v0 to a terminal node 0 or 1. Nevertheless, the promise in
an OBDD is that variables will appear following the order <.
An OBDD D defines the set of assignments � such that

D(�) = 1. Then D can be considered as a succinct represen-
tation of the set {� � D(�) = 1}, and one would like to enu-
merate, count and uniformly generate assignments given D.
This motivates the use of the relation:

EVAL-OBDD = {(D,�) �D(�) = 1}.
Given (D,�) in EVAL-OBDD, there is exactly one path in
D that witnesses D(�) = 1. Therefore, one can easily show
that EVAL-OBDD is in RelationUL.

Corollary 4.3. ENUM(EVAL-OBDD) can be enumerated
with constant delay, there exists a polynomial-time algorithm
for COUNT(EVAL-OBDD), and there exists a polynomial-
time randomized algorithm for GEN(EVAL-OBDD).
The above results are well known. However, they show

how easy and direct is to use UL-transducers to obtain some
of the good algorithmic properties of OBDDs.
Some non-deterministic variants of BDDs have been stud-

ied [7]. In particular, an nOBDD extends an OBDD with
vertices u without variables (i.e. var(u) = �) and without
labels on its children. Thus, an nOBDD is non-deterministic
in the sense that given an assignment �, there can be sev-
eral paths that bring � from the initial node v0 to a terminal
node with labeled 0 or 1. Without lost of generality, nOB-
DDs are assumed to be consistent in the sense that, for each
�, all paths of � in D can reach 0 or 1, but not both.
As in the case of OBDDs, we can define EVAL-nOBDD

that pairs an nOBDD D with an assignment � that evaluate
D to 1 (i.e. D(�) = 1). Contrary to OBDDs, an nOBDD
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looses the single witness property, and now an assignment �
can have several paths from the initial node to the 1 terminal
node. Thus, it is not clear whether EVAL-nOBDD is in
RelationUL. Still one can easily show that EVAL-nOBDD
is in RelationNL, from which the following results follow.

Corollary 4.4. ENUM(EVAL-nOBDD) can be solved
with polynomial delay, COUNT(EVAL-nOBDD) admits an
FPRAS, and GEN(EVAL-nOBDD) admits a PPLVUG.

It should be noticed that the existence of an FPRAS and
a PPLVUG for EVAL-nOBDD was not known before, and
one can easily show this by using NL-transducers and then
applying Theorem 3.2.

5. CONCLUDING REMARKS
We consider this work as a first step towards the definition

of classes of problems in data management with good prop-
erties in terms of enumeration, counting, and uniform gener-
ation of solutions. Given the relevance of these problems for
query answering, identifying good complexity classes, like
RelationNL and RelationUL, should be the cornerstone
to better understand the complexity of query evaluation.
In this sense, there is plenty of room for extensions and
improvements. In particular, one could be more ambitious
and ask for more conditions to these relations, like having
good properties in terms of ranked enumeration [33] (i.e.
enumeration of the solutions following some specific order)
or random generation with respect to a user-defined distri-
bution. Moreover, we believe that other classes with good
algorithmic properties can be identified, which could serve
to unify enumeration, counting, and uniform generation in
data management.
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[5] C. Álvarez and B. Jenner. A very hard log-space counting
class. Theoretical Computer Science, 107(1):3–30, 1993.

[6] A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel. A
circuit-based approach to e�cient enumeration. In
Proceedings of ICALP, pages 111:1–111:15, 2017.

[7] A. Amarilli, F. Capelli, M. Monet, and P. Senellart.
Connecting knowledge compilation classes and width
parameters. CoRR, abs/1811.02944, 2018.

[8] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter,
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