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1 INTRODUCTION

Information extraction (IE) is the process of retrieving relevant pieces of data from large docu-
ments. For instance, in business listings, we are often interested in retrieving only the names and
addresses of companies that provide a specific service and not all of the companies. Similarly, in
such a listing, we might not necessarily need all of the information about the companies that are
of interest to us but only wish to retrieve their name, phone number, and address.

Historically, there have been two main approaches to IE: the statistical approach that uses ma-
chine learning methods to find the data to be extracted, and the rule-based approach that utilizes
traditional finite language methods for this purpose. In this article, we focus on the rule-based
approach, which has been successfully adopted in industry [8] and has recently received a great
deal of attention in the database research community [12, 20]—revealing interesting connections
with logic [15, 16], automata [12, 22], datalog programs [4, 28], and relational languages [7, 17, 21].

In rule-based IE, documents from which we extract the information are modeled as strings. This
is a natural assumption for many formats in use today (e.g., JSON and XML files, CSV documents,
or plain text). The extracted data are represented by spans. These are intervals inside the docu-
ment string that record the start and end position of the extracted data, plus the substring (the
data) that this interval spans. The process of IE can then be abstracted by the notion of document

spanners [12]: operators that map strings to tuples containing spans.
The most basic way of defining document spanners is to use regular expressions or automata

with capture variables. The idea is that a regular language is used to locate the data to be extracted,
and variables are used to store the corresponding spans. This approach to IE has been adopted
by many practical IE systems, such as Xlog [28], Instaread [18], and IBM’s SystemT [21], and is
prevalent in the database literature [4, 12, 13, 15, 22]. The most important classes of expressions
and automata for extracting information are regex formulas (RGX) and variable-set automata (VA),
respectively, which form the logical core of SystemT’s extraction language [12].

A crucial problem when working with RGX and VA in practice is implementing them in such a
way that all required spans can be extracted efficiently. One issue that arises here is that commer-
cial tools such as SystemT require the all-match semantics, meaning that they do want to capture
all possible ways in which a regular expression or automaton can match an input string. To illus-
trate what this means, consider RGXγ1 = x {a∗} · y{a ∨ ε }. Intuitively, the formulaγ1 splits an input
document d into two spans, where the first span is stored in x , and matches the regular expression
a∗, whereas the second span is stored in y and matches either the symbol a, or the empty string ε .
Furthermore, the concatenation of the two spans must equal the entire document d . Notice that on
a concrete input document d = aaa, γ1 has two ways of splitting d into spans: (i) we can store the
span corresponding to the first two occurrences of a into x and the span corresponding to the final
a into y, or (ii) we can store the span corresponding to the entire document d into x and the empty
span into y. Under an all-match semantics, both are valid answers, and as such both possibilities
should be output.

The issue with the all-match semantics is that it is not well supported by standard tools for
regular expression matching [10, 11]. Indeed, most of standard regular expression processing tools
will apply an approximate way of retrieving the matches, such as only trying to find the longest
match (e.g., for γ1 and d in the preceding example, they will only consider case (ii)) [30]. Therefore,
the question is how to efficiently evaluate RGX and VA under this particular semantics.

To compare the efficiency of different evaluation algorithms under the all-match semantics,
we need to move from the traditional worst-case complexity analysis to a more detailed output-
sensitive analysis. The reason for this is that the output of the extraction process can easily be-
come huge, and a complexity bound based on the worst-case output size may vastly overestimate
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Efficient Enumeration Algorithms for Regular Document Spanners 3:3

the needed running time. To understand this, first consider RGX γ2 = Σ∗ · x1{Σ∗ · x2{Σ∗} · Σ∗} · Σ∗,
where Σ denotes a finite alphabet. Intuitively, γ2 extracts any span of a document d into x1 and
any subspan of this span into x2. Therefore, on a document d over Σ, this formula will produce an
output of size Ω(‖d ‖2), where ‖d ‖ denotes the size of d . Clearly, any evaluation algorithm must at
least produce this large output and therefore must run in time Ω(‖d ‖2) in the worst case.1 Next,
consider RGX γ3 = a · γ1 ∨ b · γ2, which extracts information using γ1 on inputs that start with let-
ter a, and using γ2 on inputs that start with the letter b. An algorithm for evaluating γ3 that runs
in time Θ(‖d ‖2) is worst-case optimal because of the Ω(‖d ‖2) worst-case output size (on inputs
that start with letter b), but it is far from ideal on inputs that start with letter a where the output is
of size O (1) and a complexity of Ω(‖d ‖2) on such inputs is hence unreasonable. In conclusion, to
compare the relative efficiency of possible evaluation algorithms for document spanners, we need
to move to an output-sensitive analysis instead of a worst-case analysis.

In output-sensitive analysis, we bound the complexity of an evaluation algorithm on input I
as a function of both ‖I ‖ and ‖O ‖, where O is the output of the algorithm on I . For example, for
RGX γ3 presented earlier, an algorithm that runs in time O (‖d ‖ + ‖O ‖) is clearly asymptotically
preferable over an algorithm that runs in time O (‖d ‖2 + ‖O ‖).

In this work, we are interested in designing efficient output-sensitive evaluation algorithms for
documents spanners under combined complexity—that is, the efficiency of the evaluation algo-
rithm is measured in terms of both the spanner and the document over which it is evaluated.

Enumeration algorithms and their complexity. A strategy to design efficient output-sensitive eval-
uation algorithms that has been recently successful is the use of enumeration algorithms [5, 6, 9,
25]. Given an input (γ and d in our case), an enumeration algorithm first performs a preprocessing

phase during which it does not produce output but may compute certain data structures. Then, it
performs an enumeration phase during which it uses these data structures to produces all of the
elements of the output (each element being a tuple of spans in our case) without duplicates and in
rapid succession. The efficiency of an enumeration algorithm is measured by determining both the
complexity of the preprocessing phase and the maximum delay incurred between output elements
during the enumeration phase. If this delay is polynomial in ‖γ ‖ and ‖d ‖, then the enumeration
algorithm is said to have polynomial delay. For an enumeration algorithm with polynomial delay,
the total runtime can always be expressed in the output-sensitive form

O ( f (‖γ ‖, ‖d ‖) + p (‖γ ‖, ‖d ‖) × |O | ) ,
where f : N2 → N is some function that bounds the complexity of the preprocessing phase,
p : N2 → N is a polynomial, and |O | denotes the cardinality of the set of tuples O . Actually,
an enumeration algorithm is more efficient when the delay does not depend on γ nor on d . In
that case, the enumeration algorithm is said to have constant delay. For an enumeration algo-
rithm with constant delay, the total runtime can always be expressed in the output-sensitive form
O ( f (‖γ ‖, ‖d ‖) + |O |).

Other notions of bounded delay also exist. For example, if the delay is always linear in the size
of the element that is being output (and independent of γ and d), then the algorithm is said to have
output-linear delay. It yields a total runtime of the form O ( f (‖γ ‖, ‖d ‖) + ‖O ‖), where ‖O ‖ denotes
the representation size of O (e.g., the number of bits to encode O). Output-linear delay is actually
the best we can hope for in an enumeration algorithm, since obviously one cannot expect the
delay to be less than the size of the element to be output. After all, we require this many instructions
to actually write the output element. Note in particular that there is a small distinction between

1In general, we can keep nesting the variables (i.e., x3 inside x2), and the output size will be Ω( ‖d ‖� ), with � the maximum
nesting level of variables in γ .
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constant delay and output-linear delay: an enumeration algorithm has constant delay if and only
if it has output-linear delay and, in addition, every output element is of constant size.

Confusingly, the terms constant and output-linear delay also sometimes used in data-complexity
settings where the query is considered fixed and its size is hence constant. To avoid confusion, we
say that an enumeration algorithm has data-constant delay if there exists some functionд : N → N
such that, for everyd, the algorithm’s delay between output elements is bounded byд(‖γ ‖) (which
is constant if we consider γ constant). The total runtime in the case of data-constant delay is of
the form O ( f (‖γ ‖, ‖d ‖) + д(‖γ ‖) × |O |). Similarly, we say the algorithm has data-output-linear

delay if there exists д such that, for every d and every output element x , the algorithm’s delay
for producing x is bounded by д(‖γ ‖) × ‖x ‖. It has total runtime O ( f (‖γ ‖, ‖d ‖) + д(‖γ ‖) × ‖O ‖).
Obviously, constant delay implies data-constant delay and output-linear delay implies data-output-
linear delay. We will use the term bounded delay refer to any enumeration algorithm that has
constant, output-linear, data-constant, or data-output-linear delay. As is evident from the total
runtime bounds given, every bounded-delay enumeration algorithm can be thought of as being
efficient in the output-sensitive context, provided that we can make f (and д, where applicable)
small. The ideal algorithm, then, is one with output-linear delay and small f .

As already mentioned, enumeration algorithms with bounded delay have been studied in var-
ious contexts, ranging from monadic second-order (MSO) queries over trees [5, 9] to relational
conjunctive queries [6]. These studies, however, have been mostly theoretical in nature and did
not consider practical applicability of the proposed algorithms. To quote several recent surveys of
the area in the data-complexity setting [25–27]: “We stress that our study is from the theoretical
point of view. If most of the algorithms we will mention here are linear in the size of the database,
the constant factors are often very big, making any practical implementation difficult.” These sur-
veys also leave open the question of whether practical algorithms could be designed in specific
contexts, where the language being processed is restricted in its expressive power. This was al-
ready shown to be true in Arenas et al. [4], where an output-linear delay enumeration algorithm
for a restricted class of document spanners known as navigation expressions was implemented
and tested in practice. Since navigation expressions are a very restricted subclass of RGX and VA,
and since the latter have been established in the literature as the two most important classes of
rule-based IE languages, in this article we study practical output-linear delay algorithms for RGX
and VA.

Contributions. The principal contribution of our work is an intuitive and efficient output-linear
delay algorithm for evaluating a syntactic variant of VA that we call extended VA. Extended VA are
designed to streamline the way that VA process documents. Specifically, the algorithm we present
can evaluate extended VA that are both deterministic and sequential. Here, deterministic means
that for every document d and every span assignment resulting from evaluating the VAA on d ,
there is only one accepting run of A on d generating that assignment. Sequential means that the
matching algorithm encoded by A is well defined in the following sense: while matching, if A
assigns a start position to a span variable, it will also assign an end position. Furthermore, within
a single run, it will never overwrite a previously assigned start position, and it will never assign a
stop position before assigning a start position. Given an extended VAA that is both deterministic
and sequential, the algorithm we present can evaluate A over a document d with preprocessing
time O (‖A‖ × ‖d ‖), and with output-linear delay. This leads to the main result of our article.

Theorem 1.1. There is an enumeration algorithm that, given a deterministic and sequential

extended VA A and a document d , enumerates the result O of evaluating A on d with pre-

processing time O (‖A‖ × ‖d ‖) and output-linear delay, yielding a total evaluation complexity of

O (‖A‖ × ‖d ‖ + ‖O ‖).
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Table 1. Summary of the Precomputation Time Taken by Our Output-Linear
Delay Enumeration Algorithm, Given for Each Class of Regular Spanners

Class of Regular Spanners Preprocessing Phase
Deterministic sequential extended VA m · ‖d ‖
Sequential extended VA 2n ·m · ‖d ‖
Functional VA 2n · (n2 + |Σ|) · ‖d ‖
VA / RGX (2n6� + 2n3� |Σ|) · ‖d ‖
VA{∪,� } using k operations 2n ·(k+1) · (n2(k+1) + |Σ|) · ‖d ‖
VA{π ,∪,� } using k operations 2nk+1 · (n2(k+1) + |Σ|) · ‖d ‖
Here, n is the number of states, � the number of variables and m the number of transi-
tions of the input VA. All preprocessing times are measured using O-notation.

We then study how our evaluation algorithm can be applied to arbitrary RGX and VA. We do so
by showing that arbitrary RGX and VA can always be transformed into deterministic and sequen-
tial extended VA, and by subsequently studying the complexity of this transformation. This works
for general RGX and VA, as well as for important subclasses such as (non-extended) functional
and sequential RGX and VA. As shown in other works [12, 17, 22], these subclasses have both
good algorithmic properties and prohibit unintuitive behavior. Finally, we extend our findings to
the setting where spanners are specified by means of an algebra that allows to combine RGX or
VA using unions, joins, and projections. Again, we analyze the complexity of transforming such
algebra expressions into deterministic and sequential extended VA.

By combining the complexity of the studied transformations with the runtime of our evaluation
algorithm, we hence obtain upper bounds on the preprocessing times when evaluating the class
of regular spanners [12] with output-linear delay. The specific upper bounds that we obtain are
summarized in Table 1.

In an effort to also get an idea of potential lower bounds on preprocessing times, we study the
problem of counting the number of tuples generated by a spanner. This problem is strongly con-
nected to the enumeration problem [25] and gives evidence on whether an output-linear delay
algorithm with faster preprocessing time exists. Here, we extend our main constant delay algo-
rithm to count the number of outputs of a deterministic and sequential extended VA A in time
O (‖A‖ × ‖d ‖). We also show that counting the number of outputs of a functional but not neces-
sarily deterministic nor extended VA is complete for the counting class SpanL [2], thus making it
unlikely to compute this number efficiently unless the polynomial hierarchy equals Ptime.

Additional material. Some of the material presented in this article was first published as a confer-
ence paper [14]. The main contributions added to this article that are not present in the conference
version can be summarized as follows:

• A strengthened version of the main result. In Florenzano et al. [14], we only showed that our
algorithm has data-constant delay. Here, we make a more detailed analysis, showing that it
has output-linear delay, which is a stronger notion than data-constant delay. In particular,
in our setting, output-linear delay implies that the algorithm also has data-constant delay,
because the size of each output element is O (‖γ ‖). However, the converse implication does
not hold in general.

• Correctness proof for the main algorithm and auxiliary results. The conference version of this
article only sketched the reasons explaining why the proposed algorithm works correctly. In
contrast, here we formally prove the correctness of our enumeration algorithm. Similarly,
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3:6 F. Florenzano et al.

Florenzano et al. [14] contained many auxiliary theorems that were only stated without
formal proof. Here we provide all missing proofs.

• Connections with new related work. In recent work, Amarilli et al. [3] presented a new enu-
meration algorithm for arbitrary sequential VA that refuses a conjecture made in the confer-
ence version of this article [14]. This conjecture stated that data-constant delay enumeration
is not possible for arbitrary sequential VA. In Section 6, we discuss the precise relationship
between Amarilli et al. [3] and our work, and emphasize that the failure of the conjecture
is based on the fact that data-constant delay is not a fine-grained enough notion to cap-
ture efficient enumeration algorithms. Based on this, we introduce a stronger variant of
the conjecture that states that output-linear delay enumeration is not possible for arbitrary
sequential VA.

Related work. Output-linear and data-output-linear delay enumeration algorithms for MSO queries
have been proposed in other works [5, 9, 19]. Since any regular spanner can be encoded by an MSO
query (where capture variables are encoded by pairs of first-order variables), this implies that enu-
meration for MSO queries also apply to document spanners. In Courcelle [9], a data-output-linear
delay enumeration algorithm was given with preprocessing time O (‖t ‖ × log(‖t ‖)) in data com-
plexity where ‖t ‖ is the size of the input structure. In Kazana and Segoufin [19], an algorithm
with data-output-linear delay was given based on the deterministic factorization forest decom-
position theorem, a combinatorial result for automata. Our algorithm has linear precomputation
time over the input document and does not rely on any previous results, making it incomparable
with Courcelle [9] and Kazana and Segoufin [19].

The output-linear delay enumeration algorithm given by Bagan [5] requires a more detailed
comparison. This algorithm works on a deterministic automaton model that has some resem-
blance with deterministic VA, but there are several differences. First of all, Bagan’s algorithm is
for tree automata and the output are tuples of MSO variables, whereas our algorithm works only
for VA, whose output are first-order variables. Second, Bagan’s algorithm has preprocessing time
O (‖A‖3 × ‖t ‖), where A is a tree automaton and t is a tree structure. In contrast, our algorithm
has preprocessing time O (‖A‖ × ‖d ‖), namely linear in ‖A‖. Although Bagan’s algorithm is for
tree automata and this can explain a possible cubic blow-up in terms of ‖A‖, it is not directly clear
how to improve its preprocessing time to be linear in ‖A‖. Finally, Bagan’s algorithm is described
as a composition of high-level operations over automata and trees, whereas our algorithm can be
described using a few lines of pseudocode.

There is also recent work [17, 22] tackling the enumeration problem for document spanners
directly but focusing on polynomial delay rather than output-linear delay. In Maturana et al. [22],
a complexity-theoretic treatise of polynomial delay (with polynomial preprocessing) is given for
various classes of spanners. And whereas Maturana et al. [22] focus on decision problems that
guarantee an existence of a polynomial delay algorithm, in this work we focus on practical algo-
rithms that furthermore allow for output-linear delay enumeration. However, Freydenberger et al.
[17] give an algorithm for enumerating the results of a functional VAA over a document d with a
delay of roughly O (‖A‖2 × ‖d ‖) and preprocessing of the order O (‖A‖2 × ‖d ‖). The main differ-
ence of Freydenberger et al. [17] and this work is that our algorithm can guarantee output-linear
delay but requires automata that are extended, deterministic, and sequential.2 By first convert-
ing the functional VA of Freydenberger et al. [17] into a deterministic, sequential, extended VA
and then using our evaluation algorithm, we can still obtain output-linear delay enumeration, but

2Every functional VA is also sequential; therefore, the only extra requirements are that the automaton is extended and
deterministic.
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Fig. 1. A document d and the evaluation �γ �d , with γ as defined in Example 2.1.

now with a preprocessing time of O (2‖A ‖ × ‖d ‖) (see Section 5). Therefore, if considering only
functional VA, the algorithm of Freydenberger et al. [17] would be the preferred option when
the automaton is large and the number of outputs is relatively small, whereas for spanners that
capture a lot of information, or are executed on very large documents, one would be better off us-
ing the output-linear delay algorithm presented here. Another difference is that the algorithm of
Freydenberger et al. [17] is presented in terms of automata-theoretic constructions, whereas we
aim to give a practical algorithm that is simple to implement.

Organization. We formally define the basic notions used throughout the article in Section 2.
Extended VA are introduced in Section 3. The algorithm for evaluating a deterministic and se-
quential extended VA with linear preprocessing and output-linear delay enumeration is presented
in Section 4 and its application to regular spanners in Section 5. We study the counting problem
in Section 6 and conclude in Section 7.

2 BASIC DEFINITIONS

Documents and spans. We use a fixed finite alphabet Σ throughout the article. A document, from
which we will extract information, is a finite string d = a1 . . . an in Σ∗. We denote the length n of
document d by |d |. A span s is a pair [i, j〉 of natural numbers i and j with 1 ≤ i ≤ j. Such a span is
said to be of document d if j ≤ |d | + 1. In that case, s is associated with a continuous region of the
document d (also called a span of d), whose content is the substring of d from position i to position
j − 1. We denote this substring by d (s ) or d (i, j ). To illustrate, Figure 1 shows a document d and
several spans of d . There, for example, d (1, 5) = John. Notice that if i = j, then d (s ) = d (i, j ) = ε .
Given two spans s1 = [i1, j1〉 and s2 = [i2, j2〉 such that j1 = i2, we define their concatenation as
s1 · s2 = [i1, j2〉. The set of all spans of d is denoted by span(d ).

Mappings. Following Maturana et al. [22], we will use mappings to model the information extracted
from a document. Mappings differ from tuples (as used, e.g., by Fagin et al. [12], Freydenberger
[15], and Freydenberger and Holldack [16]) in that not all variables need to be assigned a span.
Formally, letV be a fixed (and not necessarily finite) set of variables, disjoint from Σ. A mapping is
a function μ from a finite set of variables dom(μ ) ⊆ V to spans. Two mappings μ1 and μ2 are said to
be compatible (denoted μ1 ∼ μ2) if μ1 (x ) = μ2 (x ) for every x in dom(μ1) ∩ dom(μ2). If μ1 ∼ μ2, we
define μ1 ∪ μ2 as the mapping that results from extending μ1 with the values from μ2 on all of the
variables in dom(μ2) \ dom(μ1). The empty mapping, denoted by ∅, is the only mapping such that
dom(∅) = ∅. Similarly, [x → s] denotes the mapping whose domain only contains the variable x ,
which it assigns to be the span s . The join of two set of mappings M1 and M2 is defined as follows:

M1 � M2 = {μ1 ∪ μ2 | μ1 ∈ M1, μ2 ∈ M2 and μ1 ∼ μ2}. (1)
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3:8 F. Florenzano et al.

Table 2. Semantics �γ �d of an RGX γ over a Document d

�γ �d = {μ | ([1, |d | + 1〉, μ ) ∈ [γ ]d }
[ε]d = {(s, ∅) | s ∈ span(d )andd (s ) = ε }
[a]d = {(s, ∅) | s ∈ span(d )andd (s ) = a}

[x {γ }]d = {(s, μ ) | ∃(s, μ ′) ∈ [γ ]d : x � dom(μ ′)andμ = [x → s] ∪ μ ′}
[γ1 · γ2]d = {(s, μ ) | ∃(s1, μ1) ∈ [γ1]d ,∃(s2, μ2) ∈ [γ2]d :

s = s1 · s2, dom(μ1) ∩ dom(μ2) = ∅, and μ = μ1 ∪ μ2}
[γ1 ∨ γ2]d = [γ1]d ∪ [γ2]d

[γ ∗]d = [ε]d ∪ [γ ]d ∪ [γ 2]d ∪ [γ 3]d ∪ · · ·
Here, γ 2 is shorthand for γ · γ , similarly γ 3 for γ · γ · γ , and so forth.

Document spanners. A document spanner is a function that maps every document d to a set of map-
pings M such that the range of each μ ∈ M are spans of d—thus modeling the process of extracting
the information (in form of mappings) from d . Fagin et al. [12] proposed different languages for
defining spanners: by means of RGX, by means of automata, and by means of algebra. We next re-
call the definition of these languages and define their semantics in the context of mappings rather
than tuples.

Regex formulas. RGX extend the syntax of classic regular expressions with variable capture ex-
pressions of the form x {γ }. Intuitively, and similar to classical regular expressions, RGX specify a
search through an input document. However, if during this search a subformula of the form x {γ }
is matched against a substring, the span s that delimits this substring is recorded in a mapping
[x → s] as a side effect. Formally, the syntax of RGX is defined by the following grammar [12]:

γ := ε | a | x {γ } | γ · γ | γ ∨ γ | γ ∗.

Here, a ranges over letters in Σ and x over variables inV . We will write var(γ ) to denote the set
of all variables occurring in RGX γ . We write RGX for the class of all RGX.

The mapping-based spanner semantics of RGX is given in Table 2 (cf. Maturana et al. [22]). The
semantics is defined by structural induction on γ and has two layers. The first layer, [γ ]d , defines
the set of all pairs (s, μ ) with s ∈ span(d ) and μ a mapping such that (1) γ successfully matches
the substring d (s ) and (2) μ results as a consequence of this successful match. For example, RGX
a matches all substrings of input document d equal to a but results in only the empty mapping.
However, x {γ1}matches all substrings that are matched byγ1, but assigns x the span s that delimits
the substring being matched, while preserving the previous variable assignments. Similarly, in the
case of concatenation γ1 · γ2, we join the mapping defined on the left with the one defined on
the right while imposing that the same variable is not used in both parts (as this would lead to
inconsistencies). The second layer, �γ �d , then simply gives us the mappings that γ defines when
matching the entire document. Note that when γ is an ordinary regular expression (var(γ ) = ∅),
then the empty mapping is output if the entire document matches γ , and no mapping is output
otherwise.

Example 2.1. Consider the task of extracting names, email addresses, and phone numbers from
documents. To do this, we could use RGX γ defined as

Σ∗ · name{γn } · _ · 〈·(email{γe } ∨ phone{γp )})·〉 · Σ∗, (2)

where an underscore (_) represents a space; name , email , and phone are variables; and γn , γe , and
γp are RGX that recognize person names, email addresses, and phone numbers, respectively. We
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omit the particular definition of these formulas because this is irrelevant for our purpose. The
result �γ �d of evaluating γ over the document d shown in Figure 1 is shown at the bottom of
Figure 1.

It is worth noting that the syntax of RGX here is more relaxed than the one used by Fagin
et al. [12]; in particular, they require RGX to adhere to syntactic restrictions that ensure that the
formula is functional: every mapping in �γ �d is defined on all variables of γ , for every d . For RGX
that satisfy this restriction, the semantics given here coincides with that of Fagin et al. [12] (see
Maturana et al. [22] for further discussion).

Variable-set automata. A variable-set automaton (VA) [12] is a finite-state automaton extended with
capture variables in a way analogous to RGX—that is, it behaves as a usual finite state automaton,
except that it can also open and close variables. Formally, a VA A is a tuple (Q,q0, F ,δ ), where
Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of final states; and δ is a
transition relation consisting of letter transitions of the form (q,a,q′) and variable transitions of the
form (q,x�,q′) or (q, �x ,q′), where q,q′ ∈ Q , a ∈ Σ and x ∈ V . The � and � are special symbols to
denote the opening or closing of a variable x . We refer to x� and �x collectively as variable markers.
We define the set var(A) as the set of all variables x that are mentioned in some transition of A.

A configuration of a VA A over a document d is a tuple (q, i ), where q ∈ Q is the current state
and i ∈ [1, |d | + 1] is the current position in d . A run ρ of A over a document d = a1a2 · · ·an is a
sequence of the form

ρ = (q0, i0) o1−→ (q1, i1) o2−→ · · · om−→ (qm , im ),

where oj ∈ Σ ∪ {x�, �x | x ∈ V} and (qj ,oj+1,qj+1) ∈ δ . Moreover, i0, . . . , in is a non-decreasing
sequence such that i0 = 1, im = |d | + 1, and i j+1 = i j + 1 if oj+1 ∈ Σ and i j+1 = i j otherwise (i.e., the
automata moves one position in the document if an only if it is reading a letter) . Furthermore, we
say that a run ρ is accepting if qm ∈ F and that it is valid if variables are opened and closed in a
correct manner: each x is opened or closed at most once, and x is opened at some position i if and
only if it is closed at some position j with i ≤ j.3 Note that not every accepting run is valid. In the
case that ρ is both accepting and valid, we define μρ to be the mapping that maps each variable
x to [i j , ik 〉 ∈ span(d ), where oj = x� and ok =�x in ρ. Finally, the semantics of A over d , denoted
by �A�d , is defined as the set of all μρ where ρ is a valid and accepting run of A over d .

Note that validity requires only that variables are opened and closed in a correct manner, but not
that all variables in var(A) actually appear in the run. Valid runs that do mention all variables in
var(A) are called functional. In a functional run, all variables are hence opened and closed exactly
once (and in the correct manner), whereas in a valid run they are opened and closed at most once.

A VAA is a sequential variable-set automaton (sVA) if every accepting run ofA over d is valid,
for every document d . A VAA is a functional variable-set automaton (fVA) if every accepting run
over d is functional, for every d . In particular, every fVA is also sequential. Intuitively, during a
run, an sVA does not need to check whether variables are opened and closed correctly; the run is
guaranteed to be valid whenever a final state is reached. Figure 2 illustrates this point. The VA on
the left is non-sequential, as, for example, witnessed by the accepting run

(q, 1) x �−→(q, 1) a−→(q, 2) � x−→(q, 2) x �−→(q, 2) a−→(q, 3) � x−→(q, 3)

on d = aa, where q is the VA’s only state. The VA on the right is functional and hence also sequen-
tial. It can be verified that the VA A2 on the right is equivalent to the VA A1 on the left in the
sense that �A1�d = �A2�d , for every d .

3Note that this does not require that variables are well nested—for instance, valid runs do allow variable marker sequences
of the form x� · · ·y� · · · �x · · · �y .
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Fig. 2. A non-sequential VA (left) and an equivalent functional VA (right).

It was shown in Freydenberger et al. [17] and Maturana et al. [22] that polynomial delay enu-
meration (in combined complexity) is not possible for VA in general. The hardness in this case is
explained by the fact that VA cannot consider all accepting runs. However, Maturana et al. [22]
also show that for the class of sVA (and therefore also for the class of fVA), polynomial delay
enumeration is possible. As such, the sequential property is important to obtain constant-delay
algorithms.

Spanner algebras. In addition to defining basic document spanners through RGX or VA, practical IE
systems also allow spanners to be defined by applying basic algebraic operators on already existing
spanners. This is formalized as follows. Let L be a language for defining document spanners (e.g.,
RGX or VA). Then we denote by L{π ,∪,� } the set of all expressions generated by the following
grammar:

e := α | πY (e ) | e ∪ e | e � e .

Here, α ranges over expressions of L, and Y is a finite subset ofV . Assume that �α� denotes the
spanner defined by α ∈ L and that �α�d denotes the result of evaluating the spanner denoted by
α on document d . Then, the semantics �e� of expression e is the spanner inductively defined by

�πY (e )�d = {μ |Y : μ ∈ �e�d },
�e1 ∪ e2�d = �e1�d ∪ �e2�d , and

�e1 � e2�d = �e1�d � �e2�d .

Here, μ |Y is the restriction of μ to dom(μ ) ∩ Y and �e1�d � �e2�d is the join of two sets of map-
pings, as defined by (1).

It was shown by Fagin et al. [12] that VA, RGX{π ,∪,� } , and VA{π ,∪,� } all express the same class
of spanners, called Regular Spanners. In particular, every expression in RGX{π ,∪,� } and VA{π ,∪,� }

is equivalent to a VA. These results were later extended to the class of sequential VA in Maturana
et al. [22], where a full overview of the relationship between different versions of VA, RGX, and
the associated algebras is given. This will be used later in Section 5.

The evaluation problem. In this work, we study the problem of computing �γ �d , given a document
spanner γ (e.g., by means of a VA) and a document d . Given a language L for document spanners,
we define the evaluation problem for L formally as follows:

Problem: Eval[L]
Input: Expression γ ∈ L and a document d .

Output: The set �γ �d .

Model of computation. As it is standard in the literature [5, 9, 25, 26], we consider algorithms on
Random Access Machines (RAM) with uniform cost measure [1] and addition and substraction as
basic operations. A RAM has read-only input registers (containing the input I ), read-write work
memory registers, and write-only output registers.

In our case, the input will consist of document spanner γ and document d , whose sizes we
measure as follows. We assume that each letter σ ∈ Σ can be encoded in a single register. This
implies that ‖d ‖ = |d | (recall that |d | denotes the length of d). We further assume that each variable
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x ∈ V can be encoded in a single register. RGX γ is encoded on the RAM input tape as a sequence
of registers, where each register encodes a single alphabet symbol or operation in γ . As such, ‖γ ‖
is the number of occurrences of alphabet symbols and operations in γ , as inductively defined by
the following:

‖ε ‖ = 1 ‖σ ‖ = 1 ‖x {γ }‖ = ‖γ ‖ + ‖x ‖ + 2

‖γ1 · γ2‖ = ‖γ1‖ + ‖γ2‖ + 1 ‖γ1 ∨ γ2‖ = ‖γ1‖ + ‖γ2‖ + 1 ‖γ ∗‖ = ‖γ ‖ + 1

We are considering various forms of directed graphs throughout the article (without labels, with
node labels, with edge labels, with distinguished nodes, etc). These graphs are assumed to be en-
coded on the input tape in the standard way, such as by listing the set of nodes and the set of
edges, as well as distinguished nodes (if any). A single node is assumed to be encoded in a single
register (if it is unlabeled) or a single register followed by an encoding of its label. Similarly, edges
are encoded by encoding the endpoints and the edge label (if any). Concretely, under this encoding
for graphs, the size ‖A‖ of a VA A (which is a graph) is linear in the number of transitions plus
the number of states plus the number of variables. Finally, we assume that algebraic expressions
e ∈ L{π ,∪,� } with L = RGX or L = VA are encoded by representing their parse trees: the subex-
pressions of e that are in L are encoded as defined earlier, whereas each operator in {π ,∪,�} (as
well as parentheses) are encoded in a single register. As such, ‖e ‖ = ∑

i ‖αi ‖ + c where αi are the
subexpressions of e in L, and c is the number of occurrences of symbols in {π ,∪,�, (, )} in e .

Enumeration with output-linear delay. To solve Eval[L] we adapt the notion of enumeration with
output-linear delay, as used in Bagan [5] and Courcelle [9], as follows. We say that algorithm E
is an enumeration algorithm for Eval[L] if E runs in two phases, for every spanner γ ∈ L and a
document d :

• The first phase, called the preprocessing phase, does not produce output but may prepare
data structures for use in the next phase.

• The second phase, called the enumeration phase, occurs immediately after the precomputa-
tion phase. During this phase, the algorithm
—writes #y1#y2# . . . #yn# to the output registers where # is a distinct separator symbol and

(y1, . . . ,yn ) is an enumeration (without repetition) of the set �γ �d ,
—it writes the first # as soon as the enumeration phase starts, and
—it stops immediately after writing the last #.

The separation of E’s operation into a preprocessing and enumeration phase is done to be able
to make an output-sensitive analysis of E’s complexity. Formally, we say that E has preprocessing

time f : N2 → N if the number of instructions that E executes during the preprocessing phase on
input (γ ,d ) is at most f (‖γ ‖, ‖d ‖), for every γ ∈ L and document d .

Furthermore, we measure the delay as follows. Let timei (γ ,d ) denote the time in the enumera-
tion phase when the algorithm writes the i-th # (if it exists) when running on input (γ ,d ). Define
delayi (γ ,d ) = timei+1 (γ ,d ) − timei (γ ,d ). Further, let outputi (γ ,d ) denote the i-th element yi that
is output by E when running on input (γ ,d ), if it exists. Then E is said to have output-linear

delay if there exists a constant k such that, for all γ ∈ L and d ∈ Σ∗, it holds that delayi (γ ,d ) ≤
k · ‖outputi (γ ,d )‖ for every 1 ≤ i ≤ |�γ �d |. Furthermore, if �γ �d is empty, then delay1 (γ ,d ) ≤ k
(i.e., it ends in constant time).

3 EXTENDED VA

In this section, we present a syntactic variant of VA that we call extended VA (or eVA for short).
This variant is based on ideas from Morciano [23] and avoids several problems that VA have in
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Fig. 3. A functional VA with two different runs that define the same output mapping (left) and an equivalent
I/O deterministic eVA (right).

terms of evaluation. In Section 4, we will give an enumeration algorithm for evaluating eVAs that
has O (‖A‖ × ‖d ‖) preprocessing time and output-linear delay, provided that the input eVA A is
both deterministic and sequential. Later, in Section 5, we show how this algorithm can be applied
when spanners are represented by means of ordinary VA, RGX, formulas, or spanner algebras
by studying the complexity of converting these spanner models into sequential and deterministic
eVA.

To see why VA can be problematic to evaluate by means of enumeration algorithms, observe
that VA can open and close variables in arbitrary ways, which can cause multiple runs to define the
same output mapping. An example of this is given in Figure 3. On the left, we have a functional
VA that, on input document d ∈ a∗, admits two runs that result in the same mapping μ = [x �→
[1, |d | + 1〉,y �→ [1, |d | + 1〉]. This behavior is problematic for enumeration algorithms, as outputs
must be enumerated without repetitions.4

Ideally, when running a VA, one would like to start by declaring which variable operations take
place before reading the first letter of the input word, then process the letter itself, followed by
another step declaring which variable operations take place after this, read the next letter, and
so forth. Extended VA achieve this by allowing multiple variable operations to take place during
a single transition, and by forcing each transition that manipulates variables to be followed by a
transition processing an input letter.

Formally, let MarkersV = {x�, �x | x ∈ V} be the set of variable markers for all of the variables
inV . An extended variable-set automaton (extended VA, or eVA) is a tupleA = (Q,q0, F ,δ ), where
Q , q0, and F are the same as for VA, and δ is the transition relation consisting of letter transitions
(p,a,q), or extended variable transitions (q, S,p), where S ⊆ MarkersV , S � ∅, and p,q ∈ Q . A run
ρ over a document d = a1a2 · · ·an is a sequence of the form

ρ = q0
S1−→ p0

a1−→ q1
S2−→ p1

a2−→ . . . an−→ qn
Sn+1−→pn , (3)

where every Si is a (possibly empty) set of markers, (pi ,ai+1,qi+1) ∈ δ , and (qi , Si+1,pi ) ∈ δ when-
ever Si+1 � ∅, andqi = pi otherwise. Notice that extended variable transitions and letter transitions
must alternate in a run of an eVA. Furthermore, although the transition relation does not allow

extended variable transitions of the form (q, ∅,p), transitions qi−1
Si−→pi with Si = ∅ are allowed in a

run, but only if qi−1 = pi . Also notice that alternation between variable transitions and letter tran-
sitions is only required in the definition of a run; no such condition is imposed on the transition
function of an eVA itself.

As in the setting of ordinary VA, we say that a run ρ is valid if variables are opened and closed
in a correct manner: the sets Si are pairwise disjoint; for every i and every x� ∈ Si there exists
j ≥ i with �x ∈ S j ; and, conversely, for every j and every �x ∈ S j there exists i ≤ j with x� ∈ Si .
For a valid run ρ, we define the mapping μρ that maps x to [i, j〉 ∈ span(d ) if, and only if, x� ∈ Si

4As shown in Fagin et al. [12], this behavior also leads to a blow-up that is factorial in the number of variables when defining
the join of two VA, as all possible orders between variables need to be considered. See Section 5 for further discussion.
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and �x ∈ S j . In addition, we say that ρ is accepting if pn ∈ F . Finally, the semantics of A over d ,
denoted by �A�d , is defined as the set of all mappings μρ where ρ is a valid and accepting run of
A over D. We transfer the notion of being sequential (seVA) and functional (feVA) from standard
VA to extended VA in the obvious way.

The following result shows that eVA have the same expressive power as standard VA. We use
A ≡ A′ to denote that two automata are equivalent—that is, for every document d , we have that
�A�d = �A′�d .

Theorem 3.1. For every VAA there exists an eVAA′ such thatA ≡ A′ and vice versa. Further-

more, ifA is sequential (respectively, functional), thenA′ is also sequential (respectively, functional).

Proof. Let A = (Q,q0, F ,δ ) be a VA. First of all, we require the following notion. A variable

path between two states p and q in A is a sequence π : p = p0
v1−→p1

v2−→ . . . vh−→ph = q such that
(pi ,vi+1,pi+1) ∈ δ are variable transitions in A and vi � vj for every i � j. We write Markers(π )
for the set {v1, . . . ,vh } of all variable markers appearing in π .

Given the VA A, the resulting eVA A′ should produce valid runs that alternate between let-
ter transitions and extended variable transitions. To this end, construct the extended VA A′ =
(Q,q0, F ,δ

′) where δ ′ = {(p,a,q) ∈ δ | a ∈ Σ} ∪ δext and (p, S,q) ∈ δext if, and only if, there exists
a variable path π between p and q such that Markers(π ) = S . Intuitively, this construction con-
denses variable transitions into a single extended transition. It does so in a way that it can be
assured that two consecutive extended transitions are not needed but also preserving all possi-
ble valid runs. The equivalence �A�d = �A′�d for every document d follows directly from the
construction and definition of a variable path.

The opposite direction follows a similar idea. Consider an arbitrary eVA A′ = (Q ′,q′0, F
′,δ ′).

The construction of the desired equivalent VAA is intuitively straightforward: for every extended
transition between two states in A′, create a single variable path between those two states in A
that has the same effect as the single extended transition. The only issue to consider is that one
must preserve an order between variable markers in such a way thatA does not open and close a
variable in the wrong order. To this end, an arbitrary order � of variablesV can be extended over
MarkersV such that for every pair of variables x ,y ∈ V : x���y, and x � y implies x�� y� and
�x ��y. Namely, two different variable markers follow the original order, but all opening markers
precede closing markers. From this, in every extended transition set S, we can find a first and
last marker in the set, following the mentioned order. In addition, we can find for each marker a
successor marker in S as the one that follows immediately after, following the induced order.

Formally, define VAA = (Q ′ ∪Qext,q0, F ,δ ), whereQext = { qv
(p,S,p′)

| (p, S,p ′) ∈ δ ′ and v ∈ S },
δ = {(p,a,q) ∈ δ ′ | a ∈ Σ} ∪ δfirst ∪ δsucc ∪ δlast ∪ δone, and

δfirst = {(p,v,qv
(p,S,p′) ) | v is the �-minimum element in S }

δsucc = {(qv
(p,S,p′),v

′,qv ′

(p,S,p′) ) | v,v
′ ∈ S and v ′ is the �-successor of v in S }

δlast = {(qv
(p,S,p′),v

′,p ′) | v,v ′ ∈ S, v ′ is the �-successor of v in S , and v ′ is the �-maximum of S }
δone = {(p,v,p ′) | (p, {v},p ′) ∈ δ ′}.
The previous construction maintains the shape of A′ but adds the needed intermediate states to
form a whole extended marker transition. For every extended transition (p, S,p ′), |S | − 1 states
are added, labeled with the incoming marker that will arrive to that state. The transitions in δfirst

define how to get to the first state of the path, using the first marker of S . The transitions in δsucc

define how to get to the next marker in S , and the transitions in δlast define how to get back to
the state p ′, having finished the extended transition. The transitions in δone define the case when
|S | = 1 and no intermediate states are needed. Note that a different set of intermediate states are

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 3. Publication date: February 2020.



3:14 F. Florenzano et al.

added for each extended transition (p, S,p ′), so states do not get reused and transitions do not get
mixed. As each transition (p, S,p ′) of A′ has a corresponding variable path in A, it is obvious
that a run in either A or A′ has a corresponding run in the opposite automaton with the same
properties, thanks to the order preservation established in the created variable paths. Finally, it is
straightforward to show that �A�d = �A′�d for every document d .

Note that for both constructions, if the input automaton is sequential or functional, then the
output automaton preserves this property. In the first construction, if A is sequential, it is easy
to see that all accepting runs of A′ must be valid, since all extended marker transitions are per-
formed in the same order as in the original automaton A and therefore are also valid. If A uses
all the variables for all accepting runs, this must also hold forA′, preserving functionality. Similar
observations hold for the second construction. �

Another important notion for our output-linear delay algorithm is the notion of determiniza-
tion of an extended VA. More precisely, an extended VA A is I/O deterministic (for input-output
deterministic) if the transition relation δ ofA is a partial function δ : Q × (Σ ∪ 2MarkersV \{∅}) → Q .
IfA is I/O deterministic, then we define Markersδ (q) as the set {S ⊆ MarkersV | (q, S ) ∈ dom(δ )}.
We also define MarkersA as the union of all Markersδ (q), for all q ∈ A. Note that in contrast to
determinism for classical NFAs, I/O determinism as defined here does not imply that there is at
most one run for each input document d . Instead, it implies that for every document d and every
μ ∈ �A�d , there is exactly one valid and accepting run ρ with μ = μρ . In other words, there may
still be many valid accepting runs on a document d , but each such run defines a unique mapping.
For instance, we could convert the VA A of Figure 3 (left) into the equivalent eVA A′ of Figure 3
(right). It is easy to see thatA′ is I/O deterministic, so all accepting runs will define a unique map-
ping, thus avoiding the issues thatA has when considering the enumeration of output mappings.
For the sake of presentation, in the future we will refer to I/O deterministic VA just as deterministic
VA. The following result shows that all eVA can be determinized.

Proposition 3.2. For every eVAA there exists a deterministic eVAA′ such thatA ≡ A′. Further-

more, ifA is sequential (respectively, functional), thenA′ is also sequential (respectively, functional).

Proof. This follows from the classical NFA determinization construction. In this case, let
A = (Q,q0, F ,δ ) be an eVA, then the following is an equivalent deterministic eVA for A: A′ =
(2Q , {q0}, F ′,δ ′), where F ′ = {B ∈ 2Q | B ∩ F � ∅} and δ ′(B,o) = {q ∈ Q | ∃p ∈ B. (p,o,q) ∈ δ }.
One can easily check that δ ′ is a function, and therefore A′ is deterministic. The fact that
�A�d = �A′�d for every document d follows, as well, from NFA determinization: namely, a valid
and accepting run inA can be translated using the same transitions into a valid and accepting run
in A′ where the set states hold the states from the original run. However, a valid and accepting
run in A′ can only exist if a sequence of states using the same transitions exists in the original
automatonA. Similarly, a non-valid run inA′ can only exist if a non-valid run exists inA. Putting
all of these observations together, we conclude that if A is sequential (respectively, functional),
then all accepting runs are valid (respectively, functional), and hence A′ must also be sequential
(respectively, functional). �

In Section 5, we will study in detail the complexity of the translations given by Theorem 3.1 and
Proposition 3.2; to present our algorithm, we only require equivalence between the models.

4 EVALUATING EXTENDED VA WITH OUTPUT-LINEAR DELAY

The objective of this section is to describe an algorithm that takes as input a deterministic and

sequential eVA A (deterministic seVA for short) and a document d , and enumerates the set �A�d
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Fig. 4. An extended functional VA A. Fig. 5. The deterministic eVAAd

for d = ab.

with output-linear delay afterO (‖A‖ × ‖d ‖) preprocessing. We start with an intuitive explanation
of the algorithm’s underlying idea and then develop the algorithm and analyze its complexity.

4.1 Intuition

As with the majority of bounded-delay enumeration algorithms, we build a compact representation
of the output �A�d in the preprocessing phase and use this representation to produce the output
in the enumeration phase. In our case, we build a directed acyclic graph (DAG) that can then be
traversed in a depth-first manner to enumerate all output mappings. This DAG will encode all runs
of A over d , and its construction can be summarized as follows:

• Convert the input word d into a deterministic eVAAd containing the same variables asA;
• Build the product between A and Ad , and annotate the variable transitions with the posi-

tion of d where they take place;
• Replace all of the letters in the transitions of A ×Ad with ε , and construct the “forward”

ε-closure of the resulting graph.

We first illustrate how this construction works by means of an example. Consider the eVA A
from Figure 4. It is straightforward to check that this automaton is functional (hence sequential)
and deterministic. To evaluate A over document d = ab, we first convert the input document d
into an eVA Ad that represents all possible ways of assigning spans over d to the variables of A.
The automatonAd is a chain of |d | + 1 states linked by the transitions that spell out the word d . In
other words, Ad has the states p1, . . . ,p |d |+1, and letter transitions (pi ,di ,pi+1), with i = 1 . . . |d |,
and where di is the i-th symbol of d . Furthermore, each state pi has 22· | var(A) | − 1 self loops, each
labeled by a different non-empty subset of Markersvar(A) . For instance, in the case of d = ab, the
automaton Ad is shown in Figure 5.

Next, we build the product automaton A ×Ad in the standard way (i.e., by treating variable
transitions as letters and applying the NFA product construction). During this construction, we
take care of creating only product states of the form (q,p) that are reachable from the initial product
state (q0,p1). In addition, we annotate the variable transitions with the position in d where the
particular transition is applied. For this, we use the fact that Ad is a chain of states, so in the
productA ×Ad , each variable transition is of the form ((q,pi ), S, (q′,pi )). We therefore annotate
the set S with the number i . We depict the resulting annotated product automaton forA andd = ab
in Figure 6 (left).

In the final step, we replace all letter transitions with ε-transitions and compute what we call
the forwardε-closure. This is done by considering each variable transition ((q,p), (S, i ), (q′,p ′)) of
the annotated product and computing all states (r , s ) such that one can reach (r , s ) from (q′,p ′)
using only ε transitions. We then add an annotated variable transition ((q,p), (S, i ), (r , s )) to
the automaton. For instance, for the product automaton on the left of Figure 6, we would add
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Fig. 6. The annotated product automaton (left) and its “forward”ε-closure (right).

a transition ((q0,p1), (x �, 1), (q4,p2)), because we can reach (q1,p1) from (q0,p1) using (x �, 1),
and we can reach (q4,p2) from (q1,p1) using ε (which replaced a). We repeat this for all variable
transitions ofA ×Ad , and the newly added transitions, until no new transition can be generated.
In the end, we simply erase all ε transitions from the resulting automaton. An example of this
process for the automaton A of Figure 4 and the document d = ab is given in Figure 6 (right).

From the resulting DAG, we can now easily enumerate �A�d . For this, we simply start from
the final state and do a depth-first traversal taking all of the edges backward. Every time we reach
the initial state, we will have the complete information necessary to construct one of the output
mappings. Note that every path from the final to the initial state is of size linear in the mapping
that it represents. Thus, we take linear time in producing each mapping, and this time does not
depend on the size ofA ord . For example, consider in Figure 6 (right) that we start in the accepting
state (q9,p3), move backward to (q3,p3), and then further back to the initial state (q0,p1). From the
labels along this path, we can reconstruct the mapping μ with μ (x ) = μ (y) = [1, 3〉. To enumer-
ate the next mapping, we would backtrack to the accepting state (q9,p3), start again from there
reaching (q8,p3), and continue until we reach the initial state. Note that sinceA andAd are deter-
ministic, we will never output the same mapping twice when traversing backward. Hence, we will
successfully enumerate all mappings with a delay that is linear in the size of the current mapping.

4.2 The Mapping DAG

Although the previous construction works correctly, there is no need to perform the three con-
struction phases separately in a practical implementation. In fact, by a clever merge of the three
construction steps, we can avoid materializingAd andA ×Ad altogether and instead traverse this
product automaton on the fly by processing the input document one letter at a time, incrementally
constructing the ε-closure at the same time. The traversing and construction together will have
total complexity O (‖A‖ × ‖d ‖).5

For the description of the algorithm, it will be convenient to not work with the ε-closure, which
is an edge-labeled graph, but encode the same information in a node-labeled graph that we call a
mapping DAG. To illustrate the connection between the ε-closure and the mapping DAG that we
will construct, Figure 7 shows the mapping DAG corresponding to the ε-closure of Figure 6 (right).
Essentially, ⊥ in the mapping DAG plays the role of (q0,p0) in the forward ε-closure. Each edge
in the ε-closure gets represented by a node in the mapping DAG with the same label. Moreover,

for all paths (q,p)
(S,i )
−−−→ (q′,p ′)

(T , j )
−−−−→ (q′′,p ′′) in the ε-closure, we will have an edge u ← v in the

mapping DAG, where u is labeled (S, i ) and v is labeled (T , j ). Note that the direction of edge in
the mapping DAG is the opposite of the direction of the path in the ε-closure.

5Note that in contrast, a naive implementation according to our intuitive description that explicitly constructs Ad has a
preprocessing time Ω(2var(A) × ‖d ‖) because this is the size of Ad .
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Fig. 7. The mapping DAG corresponding to the ε-closure shown in Figure 6 (right). Here, the information in
the brackets represents the node label.

The formal definition of a mapping DAG is as follows.

Definition 4.1. A mapping DAGG is a tupleG = (V ,E,⊥, λ) consisting of a finite setV of nodes,
a set of edges E ⊆ V ×V , a distinguished node⊥ ∈ V called the sink, and a labeling function λ that
labels each node v ∈ V \ {⊥} by a pair (S, i ) where S is a non-empty set of variable-markers, and
i ∈ N is a position. It is required that the graph (V ,E) is acyclic, that ⊥ has no outgoing edges in
this graph, and that for every node v ∈ V there is a directed path from v to ⊥. If v = ⊥, then this
path consists of the single node ⊥ itself.

Given a set of nodes U ⊆ V , we denote by paths(G,U ) the set of paths in G that start at a node
in U and terminate at ⊥. We denote with paths(G ) the set paths(G,V ), of all paths in G that end
in ⊥. Intuitively, the sequence of labels of the paths in paths(G ) will encode the mappings that we
need to output. This notion is made formally precise as follows. For a path π = v1 → v2 → · · · →
vk → ⊥ ∈ paths(G ), we define the label λ(π ) of π to be the sequence λ(vk ), λ(vk−1), . . . , λ(v1)—
for instance, it is the string of node labels when the path is traversed in the opposite direction
(ignoring ⊥, which does not have any label). If k = 0 and π = ⊥, then λ(π ) is simply the empty
sequence.

Definition 4.2. A mapping sequence M is a sequence M = (S1, i1), . . . , (Sm , im ) of pairs (Sk , ik )
such that (1) every set Sk is non-empty; (2) the positions are strictly increasing, i1 < i2 · · · < im ;
and (3) the variables in S1 . . . Sm are opened and closed in a correct manner (i.e., the sets Sk are
pairwise disjoint); for every k and every x� ∈ Sk , there exists l ≥ k with �x ∈ Sl ; and, conversely,
for every l and every �x ∈ Sl , there exists k ≤ l with x� ∈ Sk . We denote by μM the mapping that
maps x to [k, l〉 if, and only if, x� ∈ Sk , �x ∈ Sl and k ≤ l . We say that M represents a mapping ν if
ν = μM .

Note that if m = 0, then M represents the empty mapping. It is straightforward to see that for
every mapping μ there is exactly one mapping sequence that represents it. As such, mappings
and mapping sequences are in one-to-one relationship. Moreover, writing ‖M ‖ for

∑m
j=1 ( |Si j

| + 1)
(which denotes the space needed to encode M in a RAM under our assumption that variables can
be encoded in a single register), we have ‖M ‖ = O ( |dom(μM ) |)—that is, mapping sequences are of
size linear in the mapping that they represent.

We can now make precise what it means for a mapping DAG to represent a spanner result �γ �d .

Definition 4.3. Let G = (V ,E,⊥, λ) be a mapping DAG, and letU ⊆ V . We say that (G,U ) repre-

sents a set of mappingsO if for every μ ∈ O there exists π ∈ paths(G,U ) such that λ(π ) represents
μ, and for every path π ∈ paths(G,U ) it is the case that λ(π ) is a mapping sequence that represents
some μ ∈ �A�d .

The preceding definition does not exclude the possibility that a single mapping μ ∈ O is rep-
resented by multiple π ∈ paths(G,U ). To exclude this possibility, we say that (G,U ) is without

duplicates if for every two distinct paths π1,π2 ∈ paths(G,U ) also λ(π1) and λ(π2) are distinct.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 3. Publication date: February 2020.



3:18 F. Florenzano et al.

Our algorithm for evaluating a deterministic seVAA on document d consists of two sub-
routines, called Preprocessing and Enumerate. Preprocessing represents the preprocessing
phase, during which we construct a mapping DAG G and set of vertices U such that (G,U )
is without duplicates and represents �A�d . Enumerate then uses (G,U ) to enumerate the set
{λ(π ) | π ∈ paths(G,U )} with output-linear delay. Because (G,U ) represents �A�d and because
of the one-to-one correspondence between mapping sequences and mappings, we do not make
a distinction between enumerating {λ(π ) | π ∈ paths(G,U )} and the set of mappings �A�d . We
next describe both subroutines, starting with the enumeration phase.

4.3 Enumeration Procedure

If (G,U ) represents a set of mappings O , then enumerating O from (G,U ) is conceptually simple:
since paths(G,U ) encodes exactly the mappings inO, it suffices to enumerate paths(G,U ) and, for
each such path π , output λ(π ). If (G,U ) is without duplicates, then we are certain not to enumerate
the same mapping twice. As we have already intuitively described in Section 4.1, enumerating
paths(G,U ) can be done by a depth-first traversal of G, starting from the nodes in U . To formally
prove that this enumeration is with output-linear delay, we have to be precise about when the
separator symbols # are written; after all, the delay is measured as the time elapsed between writing
these symbols.

Concretely, we do depth-first traversal as follows. Assume for simplicity of exposition that U
contains only a single node u. During the traversal, we maintain a path π in G. Such a path is
called complete if the last node in π is ⊥, and it is called partial otherwise. Initially, π is partial and
consists of a single node, u:

(1) (Start) Output #, indicating the start of the enumeration phase.
(2) (Forward) Let π : u = v0 → v1 → · · · → vl be the current partial path. Make this path

complete by navigating from vl to ⊥. This is possible by definition of a mapping DAG.
(3) (Output) In this step, π is complete. Its label hence represents a mapping. Output λ(π ).
(4) (Backward) Let π : u = v0 → · · · → vk = ⊥ be the current complete path. Transform π

back into a partial path by removing the suffix vj+1 → · · · → vk , where j is the largest
index smaller than k such that there is an edgevj → v ′j+1 and the partial pathv0 → · · · →
vj → v ′j+1 has not yet been previously considered. Update π such that it becomes π : v0 →
· · · → vj → v ′j+1. If no such index j exists, set π to empty.

(5) (Mark) Output #. Go to step (2) if π is non-empty and otherwise terminate.

The case where U consists of multiple nodes is an easy generalization: whenever π becomes
empty, set π = u ′ with u ′ an unprocessed node in U and repeat. Terminate when all of U is pro-
cessed. IfU was empty to begin with, print # to indicate the end of enumeration immediately after
step (1) and terminate.

Let us now analyze the delay of this algorithm. For the moment, assume that in step (2) the
time required to complete the current partial path u = v0 → · · · → vl into a complete path u =
v0 → · · · → vl → vl+1 → · · · → vk = ⊥ is bounded by O (k ) (i.e., the size of the current output).
Further assume that in step (4) backtracking from u = v0 → · · · → vl → vl+1 → · · · → vk = ⊥ to
u = v0 → · · · → vj → vj+1 can be done in time O (k ). Observe that under these assumptions, we
enumerate with output-linear delay. Indeed, step (1) is O (1) and only executed once, before the
first mapping is output. Step (2) is O (k ) by assumption. Observe that the size of the mapping λ(π )
produced in step (3) is Ω(k ). Hence, step (2) is linear in the mapping sequence that is output in
step (3). Furthermore, step (3) is itself clearly linear in ‖λ(π )‖. Step (4) is O (k ) by assumption,
hence linear in the mapping sequence λ(π ) that we are outputting; finally, step (5), which finishes
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ALGORITHM 1: Enumeration of the mappings represented by a mapping DAG

1: procedure Enumerate(G,U )
2: Output #
3: if U = ∅ then Output # and terminate
4: Initialize iterator i0 over U
5: Initialize π and ι to empty sequence
6: Push i0 on ι
7: while ι non-empty and
8: ι.top().has_next() do

9: Forward(G,π , ι)
10: Output λ(π )
11: Backward(G,π , ι)
12: Output #

13: procedure Forward(G,π , ι)
14: while ι.top().has_next() do

15: v ← ι.top().next()
16: push v on π
17: push out(G,v) on ι

18: procedure Backward(G,π , ι)
19: // top of π is ⊥, its iteratorhas no next

20: while ι non-empty and
21: not ι.top().has_next() do

22: Pop ι
23: Pop π

the generation of λ(π ) by writing the separator symbol #, is O (1). Therefore, the overall delay is
linear in ‖λ(π )‖.

Implementing step (2) and step (3) such that they run in the required time O (k ) is straight-
forward when mapping DAG G uses an adjacency-list representation. Indeed, under this rep-
resentation, we can retrieve, for every node v , an iterator out(G,v ) to the set of all nodes
{w | v → w edge in G} in O (1) time. The returned iterator is positioned before the first element
and supports two O (1) operations: next(), which returns the next unvisited element in this set if
it exists and at the same time advances the iterator one element, and has_next() , which checks
if there is such a next unvisited element. Steps (2) and (3) are then implemented by maintaining
in addition to π : v0 → v1 → · · · → vl a sequence of iterators ι : i0, i1, . . . , il such that we can use
iterator il to check if vl has a successor v ′

l+1 that we did not process yet. Note that we use iterator
i0 to iterate over the elements of U .

The complete pseudocode for Enumerate is given in Algorithm 1. There we use π and ι as stacks
equipped with the following operations. Operation push adds a new element at the right end of π
and ι. Operation top retrieve the last element, and pop removes this last element (also returning
that element). Using textbook data structures for stacks, these operations can be supported in O (1)
time. From the preceding discussion, we conclude the following.

Proposition 4.4. Assume (G,U ) is without duplicates. If G is given under the adjacency list rep-

resentation of graphs, then Enumerate (G,U ) enumerates the set {λ(π ) | π ∈ paths(G,U )} without

duplicates and with output-linear delay.

We note that although in line 10 of Algorithm 1 we assume that it suffices to output a mapping
sequence M = (S1, i1), . . . , (Sk , ik ) to output the mapping μM , other representations of μM can be
derived from M in time linear in ‖M ‖, if desired. For example, if rather than M we wish to output
the set {(m, i ) | (S, i ) a pair in M,m ∈ M } that contains all pairs (m, i ) with m a variable marker
and i the position where the marker applies, then this can clearly be computed from M in time
O (‖M ‖) = O (‖μM ‖).

4.4 Preprocessing Procedure

Given a deterministic seVA A and a document d , Preprocessing constructs a mapping DAG G
and subset of its vertices U such that (G,U ) represents �A�d without duplicates. To that end, it
uses the following operations on mapping DAGs. The first method, NewMappingGraph(), creates
a new mapping DAG containing only the sink ⊥ and empty set of nodes V and edges E. The
second method, AddNewNode(G, S, i ), takes as it input a mapping DAG G, a non-empty set of
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variable markers S , and a number i > 0, and creates a fresh node v not belonging to the set V of
nodes of G. The newly created node is then added to V . The method also extends λ by defining
λ(v ) = (S, i ). Finally, the method returns the node v . Note that upon executing this method on G,
we will effectively extend G with a single disconnected node v . Formally, since v is disconnected,
G is not a mapping DAG any longer. However, calls to AddNewNode will directly be followed by
calls to the next operation, which connects v , and hence makes G a mapping DAG again. The
final method we require is called Connect(G,v,A), and it takes as its input a graph G with the set
of nodes V ∪ {⊥}, a node v ∈ V , and a set A ⊆ V ∪ {⊥}. The method adds an edge (v,v ′) to G, for
every node v ′ in A.

In this section, we describe Preprocessing based on these operations. This allows us to focus
on the logic behind Preprocessing and more easily shows it correctness. Once this is done, in
Section 4.6 we discuss how to implement these operations to ensure that Preprocessing runs in
time O (‖A‖ × ‖d ‖).

We will need the following notation and terminology on runs. Recall that a run of eVA A over
d = a1a2 . . . an is a sequence ρ of the form

ρ : q0
S1−→ p0

a1−→ q1
S2−→ p1

a2−→ . . . an−→ qn
Sn+1−→pn . (4)

In other words, when processing the document d , eVA A first invokes a variable transition that
uses the set of markers S1, followed by a letter transition that consumes the first symbol a1 of
d . The automaton then invokes the next variable transition using the set of markers S2, followed
by a letter transition consuming a2, and so forth, and ends with a variable transition. Define a
partial run similar to a run but ending with a letter transition. As such, a partial run ρ of A on
d = a1a2 . . . an is a sequence of the form

ρ : q0
S1−→ p0

a1−→ q1
S2−→ p1

a2−→ . . . Sn−→ pn−1
an−→ qn . (5)

Note that if n = 0 and d = ε, then there is only one partial run ofA on d , which consists only of the
start state q0. Clearly, extending a partial run by following an additional variable transition (pos-
sibly with empty set of variable-markers) yields a run, and, conversely, extending a run on d by
following an additional letter transition with letter an+1 yields a partial run for d ′ = a1 . . . anan+1.
From this observation, the following lemma straightforwardly follows. Let runs(A,d,q) (respec-
tively, part-runs(A,d,q)) denote the set of all runs (respectively, partial runs) of A on d that end
in state q.

Lemma 4.5. For every extended eVA A, every document d , every state p in A, and every letter

a ∈ Σ, the following hold:

runs(A,d,p) =
⋃

(q,S,p )∈δ
{ρ S−→p | ρ ∈ part-runs(A,d,q)} ∪ {ρ ∅−→p | ρ ∈ part-runs(A,d,p)}

part-runs(A,da,p) =
⋃

(q,a,p )∈δ
{ρ a−→p | ρ ∈ runs(A,d,p)}.

For the purpose of representing �A�d by a mapping DAG, we are of course not interested in the
runs of A on d themselves but in the sequences of extended variable transitions that these make.
We formalize this as follows.

Definition 4.6. Let ρ be a run or partial run of A as shown in (4) or (5). We define out (ρ) to be
the (possibly empty) sequence obtained by concatenating all of the pairs (S j , j ) with S j � ∅, in an
increasing order on j. We call out (ρ) the out-sequence of ρ.

For instance, if ρ = q0
{x�}−→ p0

a1−→ q1
∅−→ p1

a2−→ q2
{y�}−→ p2 then out (ρ) = ({x�}, 1), ({y�}, 3). Note

that, as shown by this example, out (ρ) is not necessarily a mapping sequence, even when ρ is a
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ALGORITHM 2: Preprocessing phase for an automaton A over the document a1 . . . an

1: procedure Preprocessing(A, a1 . . . an )
2: G ← NewMappingGraph()
3: for all q ∈ Q \ {q0} do

4: R1
q ← ∅

5: R1
q0
← {⊥}

6: for i := 1 to n do

7: Capturing(i )
8: Reading(i + 1)

9: Capturing(n + 1)
10: return (G,

⋃
q∈F C

n+1
q )

11: procedure Capturing(i)
12: for all q ∈ Q do

13: Ci
q ← Ri

q

14: for all q ∈ Q with Ri
q � ∅ do

15: for all S ∈ Markersδ (q) do

16: p ← δ (q, S )
17: v ← AddNewNode(G, S, i )
18: Connect(G,v,Ri

q )

19: Ci
p ← Ci

p ∪ {v}

20: procedure Reading(i + 1)
21: for all q ∈ Q do

22: Ri+1
q ← ∅

23: for all q ∈ Q with Ci
q � ∅ do

24: p ← δ (q,ai )
25: Ri+1

p ← Ri+1
p ∪Ci

q

run and not a partial run. In particular, variables need not be opened and closed in the correct
order in out (ρ), and some variables may be opened but not closed (or vice versa). However, if
ρ is an accepting run (i.e., pn ∈ F with F the set of final states of A) and A is sequential, then
out (ρ) is guaranteed to be a mapping sequence because every accepting run is valid in a sequential
automaton, ensuring that variables are both opened and closed, and in the correct order.

Let out (A,d,q) = {out (ρ) | ρ ∈ runs(A,d,q)} be the set of all out sequences of runs on d that
end in state q and similarly part-out (A,d,q) = {out (ρ) | ρ ∈ part-runs(A,d,q)}. From the defini-
tion of out (ρ) and Lemma 4.5, the following is now straightforward to obtain.

Lemma 4.7. For every extended eVA A, every document d , every state p in A, and every letter

a ∈ Σ, the following hold:

out (A,d,p) =
⋃

(q,S,p )∈δ
{σ , (S, |d | + 1) | σ ∈ part-out (A,d,q)} ∪ part-out (A,d,p)

part-out (A,da,p) =
⋃

(q,a,p )∈δ
out (A,d,p).

With this notation and terminology, we are ready to discuss Preprocessing, which is shown in
Algorithm 2. Preprocessing builds the mapping DAGG incrementally by processing d = a1 · · ·an

one letter at a time. During its execution, new nodes are added toG but never deleted. Concretely,
assume thatA = (Q,q0, F ,δ ). For every i with 1 ≤ i ≤ n + 1 and every stateq ∈ Q , Preprocessing
computes sets of nodes Ri

q and Ci
q for Reading and Capturing, respectively. Indeed, recall that

d = a1a2 . . . an = d (1,n + 1). Then Ri
q will contain all nodes in G produced after reading d (1, i ),

namely, a1 . . . ai−1. However,Ci
q will contain all nodes produced right after capturing a span ended

at d (1, i ). Note that R1
q is used for d (1, 1) = ε and C1

q is for adding the captures variables that start
before reading the document.

More specifically, Preprocessing adds nodes to G such that (G,Ri
q ) and (G,Ci

q ) represent
part-out (A,d (1, i ),q) and out (A,d (1, i ),q), respectively, in the following particular sense.
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Definition 4.8. LetG = (V ,E,⊥, λ) be a mapping DAG andU ⊆ V a set of its nodes. We say that
(G,U ) represents out (A,d (1, i ),q) if out (A,d (1, i ),q) = {λ(π ) | π ∈ paths(G,U )} and similarly
that (G,U ) represents part-out (A,d (1, i ),q) if part-out (A,d (1, i ),q) = {λ(π ) | π ∈ paths(G,U )}.

In particular, Ri
q and Ci

q will be non-empty if, and only if, part-out (A,d (1, i ),q) and
out (A,d (1, i ),q), respectively, are non-empty, which in turn, are non-empty if, and only if,
part-runs(A,d (1, i ),q) and runs(A,d (1, i ),q) are non-empty, respectively. For every 1 ≤ i ≤ n + 1,
the sets {Ci

q }q∈Q will be computed by a call to the procedure Capturing(i ), whereas the sets

{Ri+1
q }q∈Q for 1 ≤ i ≤ n are computed by a call to the procedure Reading(i + 1). Both procedures

are further explained in the following.
At the beginning, the sets {R1

q }q∈Q are initialized as follows: the mapping DAG G is initialized

to contain only the sink ⊥, and R1
q0

is initialized to contain this node and nothing else, whereas

R1
q is initialized to empty, for every q � q0 (lines 2–5 of Algorithm 2). This is consistent with the

fact that there is only one partial run over d (1, 1) = ε , namely the partial run that consists of the
initial state q0. Hence, after initialization, part-out (A,d (1, 1),q) is represented by (G,Rq ) for every
q ∈ Q .

Following this initialization, the procedures Capturing(i ) and Reading(i + 1) alternate for ev-
ery i = 1, . . . ,n. They operate as follows. When started, the procedure Capturing(i ) simulates
the extension of all partial runs on d (1, i ) to runs on d (1, i ) by traversing an extended variable
transition (q, S,p) (with S possibly empty). To this end, it initializes Ci

q to contain all elements

of Ri
q , for every q ∈ Q (line 12). This simulates the case where S = ∅. It then iterates over all

sets Ri
q with Ri

q � ∅ (line 14) and creates for every extended variable transition (q, S,p) ∈ δ a

new node v with the label (S, i ), adds it to the mapping DAG, connects it to all nodes in Ri
q ,

and adds it to Ci
p (line 15–19). This simulates the case where S � ∅. The pairs (G,Ci

p ) now cor-

rectly represent out (A,d (1, i ),p) because of Lemma 4.7 and because the pairs (G,Ri
q ) represent

part-out (A,d (1, i ),q) (by induction).
The procedure Reading(i + 1) simulates the extension of runs on d (1, i ) to partial runs on

d (1, i + 1) by reading the letter ai . To this end, Reading(i + 1) first initializes Ri+1
q to the empty

set, for every q ∈ Q and 1 ≤ i ≤ n. It then proceeds by examining, for every q with Ci
q � ∅ the

transition (q,ai ,p) (if it exists), and adding all elements of Ci
q to Ri+1

p (lines 23–25). Once this is

done, the pairs (G,Ri+1
p ) correctly represent part-out (A,d (1, i + 1),p) because of the Lemma 4.7

and because the pairs (G,Ci
q ) represent out (A,d (1, i ),q) (by induction).

As a final step, Preprocessing also executes Capturing(n + 1) to ensure that out (A,d (1,n +
1),q) is represented by (G,Cn+1

q ), for every q.
Because A is sequential, every accepting run is valid. This implies that all elements of

out (A,d,q) are valid mapping sequences, for every q ∈ F . In particular, �A�d is in one-to-
one correspondence with the mapping sequences in

⋃
q∈F out (A,d,q), which is represented by

(G,
⋃

q∈F C
n+1
q ) and returned by Preprocessing in line 10.

Next, we give an example that illustrates the execution of Algorithm 2.

Example 4.9. Consider the deterministic seVA A from Figure 4 and input document d = ab. In
this case we have that �A�d = {μ1, μ2, μ3}, where:

• μ1 (x ) = [1, 3〉, μ1 (y) = [2, 3〉;
• μ2 (x ) = [2, 3〉, μ2 (y) = [1, 3〉; and
• μ3 (x ) = [1, 3〉, μ3 (y) = [1, 3〉.

To show how Preprocessing works, in Figure 8 we show the sets Ri
q and Ci

q that are com-
puted, for q ∈ Q and i = 1, 2, 3. For parsimony, we only show those sets that are non-empty. We
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Fig. 8. The non-empty sets Ri
q and Si

q after executing each stage of Preprocessing on the automaton from
Figure 4 and the document d = ab.

Fig. 9. The mapping DAG created by Preprocessing in Example 4.9 to record the output mappings.

also show the mapping DAG that is constructed in Figure 9. At the beginning, the only non-empty
set is R1

q0
= {⊥}. When Capturing(1) is triggered, we create three new nodes, v1,v2, and v3, each

corresponding to the extended variable transitions leaving the state q0, and add them to the map-
ping DAG. In Figure 9, the node v1 corresponds to the transition (q0,x�,q1), the node v2 to the
transition (q0,y�,q2), and the nodev3 to the transition (q0, {x�,y�},q3). These nodes are also added
to appropriate sets, namely, C1

q1
= {v1}, C1

q2
= {v2}, and C1

q3
= {v3}. In Reading(2), we propagate
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the non-empty sets C1
q to the set R1

p , whenever (q,a,p) is a letter transition of A. For instance,

since A can go from q1 to q4 while reading a1 = a, the set R1
q4

will be equal to C1
q1

.
Next, Capturing(2) is executed. Here, the sets that were non-empty after Reading(1) will re-

main unchanged after Capturing(2), simulating the situation where a partial run is extended to
a run by taking a transition (q, ∅,q) with an empty set of variable markers. Other extended vari-
able transitions that can be triggered create new nodes and add them to the appropriate sets. For
instance, the node v4 is created because (q4,y�,q6) is an extended variable transition, and R1

q4
was

non-empty. Similarly, v6 is created because R1
q3
� ∅, and (q3, {�x , �y},q9) is an extended variable

transition of A.
Reading(3) again “propagates” the setsC2

q according to whatA does when reading a2 = b. The

setC2
q3

is simply copied into R3
q3

(simulating a self-loop). A more interesting situation occurs when
the transitions (q6,b,q8) and (q7,b,q8) are processed. Since they both reach q8, we first copy the
setC2

q6
into (the initially empty set) R3

q8
, and then to keep track that one can also get to q8 from q7,

we also add to R3
q8

all elements of the setC2
q7

. Since these are the only two ways thatA can move

while reading b, the other sets R3
q remain empty.

Finally, Capturing(3) keeps track of what happens during the last variable transition of A.
There are two transitions that can reach the accepting state q9, and they create the new nodes v7

and v8 to be added to C3
q9

. Note that C3
q3

and C3
q8

are also non-empty at this stage.

From our previous description of Algorithm 2 and Example 4.9, we hence conclude the following.

Proposition 4.10. Given a seVAA and document d , Preprocessing returns a pair (G,U ) consist-

ing of a mapping DAG G and subset of its vertices U such that (G,U ) represents �A�d .

4.5 Correctness of the Preprocessing Procedure

Although the preceding proposition establishes that the result of Preprocessing(A,d ) represents
�A�d , we also require that this result is without duplicates to prove the correctness of the prepro-
cessing procedure. We dedicate this section to show that this is actually the case, provided thatA
is deterministic. We start by proving the following auxiliary lemma.

Lemma 4.11. Let A be a deterministic seVA and d = a1 · · ·an be a document. While running the

procedure Preprocessing(A,d ) of Algorithm 2, for every i ∈ {1, . . . ,n + 1} and every two distinct

states q1 and q2 of A, it is the case that Ri
q1
∩ Ri

q2
= ∅ and Ci

q1
∩Ci

q2
= ∅.

Proof. We proceed by induction over i . For i = 1, we have Ri
q = ∅ for every q � q0, and there-

fore Ri
q1
∩ Ri

q2
= ∅. The sets Ci

q1
and Ci

q2
are initialized as Ri

q1
and Ri

q2
, respectively (line 13), and

therefore they are initially disjoint. Afterward, they can only be modified by adding fresh elements
(line 19), so they will always be disjoint.

For the inductive step, assume that the lemma holds for i . We show that it also holds for i + 1.
We first prove that Ri+1

q1
∩ Ri+1

q2
= ∅. Initially, both Ri+1

q1
and Ri+1

q2
are initialized as the empty set by

Reading(i + 1), and thus they are disjoint. Afterward, Reading(i + 1) adds to Ri+1
q1

(respectively,

Ri+1
q2

) all elements of all sets Ci
q such that (q,ai ,q1) ∈ δ (respectively, (q,ai ,q2) ∈ δ ). Since A is

deterministic and q1,q2 are distinct, there is no state q such that both (q,ai ,q1) and (q,ai ,q2).
Therefore, there is no state q such thatCi

q is included in both Ri+1
q1

and Ri+1
q2

. Then, since theCi
q are

disjoint from Ci
q′ for all q′ � q, this implies that Ri

q1
∩ Ri

q2
= ∅. Using the fact Ri+1

q1
∩ Ri+1

q2
= ∅, we

can now show that also Ci+1
q1

and Ci+1
q2

are disjoint by repeating the same reasoning as in the base
case. �

It is important to note that we say that (G,U ) is “without duplicates” when the enumeration
procedure starting fromU enumerates all outputs without duplicates. Actually, this property does
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not forbid the case that the enumeration of (G,U1) and (G,U2) produce duplicate outputs for two
different sets U1 and U2. This motivates the following definition: we call two pairs (G,U1) and
(G,U2) non-overlapping if for every π1 ∈ paths(G,U1) and π2 ∈ paths(G,U2) it holds that λ(π1) �
λ(π2).

The following lemma shows that after each reading and capturing call, the sets Ri
q and Ci

q do
not contain duplicates, respectively.

Lemma 4.12. Let A be a deterministic seVA and d = a1 . . . an be a document. While running

Preprocessing(A,d ) the following hold, for every i ∈ {1, . . . ,n + 1} and every state q:

(R) (G,Ri
q ) is without duplicates and (G,Ri

q ) and (G,Ri
q′ ) are non-overlapping for every q′ � q.

(C) (G,Ci
q ) is without duplicates and (G,Ci

q ) and (G,Ci
q′ ) are non-overlapping for every q′ � q.

Proof. The proof is by induction on i , proving both statements (R) and (C) simultaneously for
all q. For i = 1, we have R1

q0
= {⊥} and R1

p = ∅, for p � q0. Statement (R) then trivially follows. To
show statement (C), we use the fact that (R) already holds. Actually, the reasoning here is exactly
the same as the one used in the inductive step in the following.

For the induction step, assume that statements (R) and (C) hold for i; we also show that they hold
for i + 1. We first show that (R) holds and, specifically, that (G,Ri+1

q ) is without duplicates. To that

end, first observe that Ri+1
q =

⋃
(p,ai ,q )∈δ C

i
p , for every state q. Then (G,Ri+1

q ) is without duplicates,

for every state q, because all (G,Ci
p ) are pairwise non-overlapping and without duplicates by the

induction hypothesis.
To show the second statement of (R), let q′ � q and consider two paths π ∈ paths(G,Ri+1

q ) and

π ′ ∈ paths(G,Ri+1
q′ ), respectively. Because Ri+1

q =
⋃

(p,ai ,q )∈δ C
i
p and Ri+1

q′ =
⋃

(p′,ai ,q′)∈δ C
i
p′ , there

exist some states p and p ′ such that also π ∈ paths(G,Ci
p ) and π ′ ∈ paths(G,Ci

p′ ). We consider two

cases. If p � p ′, then λ(π ) � λ(π ′) since (G,Ci
p ) and (G,Ci

p′ ) are non-overlapping by the induction

hypothesis. If p = p ′, then we first observe that, since Ri+1
q is disjoint with Ri+1

q′ by Lemma 4.11, the
first node of π must be distinct from the first node of π ′. Hence, π and π ′ are distinct elements
of paths(G,Ci

p ) = paths(G,Ci
p′ ). It follows that λ(π ) � λ(π ′) since (G,Ci

p ) is without duplicates by
the induction hypothesis.

Let us next show that statement (C) holds. For this, we use the fact that we have already
shown (R). For the sake of simplification, we show the two statements inside C simultaneously
(i.e., the arguments are very similar). Specifically, fix states q and q′ (not necessarily different) and
consider two distinct paths π ∈ paths(G,Ci+1

q ) and π ′ ∈ paths(G,Ci+1
q′ ). Let v be the first node of

π and v ′ the first node of π ′. We make the following case analysis (highlighting the distinction of
the argument when q = q′ or q � q′):

• If v ∈ Ri+1
q and v ′ ∈ Ri+1

q′ , then λ(π1) � λ(π2) by (R) because (G,Ri+1
q ) is without duplicates

when q = q′ or (G,Ri+1
q ) and (G,Ri+1

q′ ) do not overlap when q � q′.
• Ifv ∈ Ri+1

q butv ′ � Ri+1
q′ , then sincev ′ ∈ Ci+1

q′ and sinceCi+1
q′ is computed by Capturing(i +

1), it follows that v ′ was created by Capturing(i + 1) in line 17. In particular, v ′ is labeled
by (S, i + 1) for some non-empty set S . It is straightforward to observe by induction on i
that all nodes in Ri+1

q either do not have a label (in case of ⊥) or have a label of the form
(S ′, j ) with j < i + 1. Therefore, the labels ofv andv ′ are distinct, and as such λ(π1) � λ(π2),
as desired. Note that the previous argument holds regardless whether q = q′ or q � q′.

• The case where v � Ri+1
q but v ′ ∈ Ri+1

q′ is similar.
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• v � Ri+1
q andv ′ � Ri+1

q′ . Then, sincev ∈ Ci+1
q andv ′ ∈ Ci+1

q′ ,v andv ′ are both new nodes cre-

ated by Capturing(i + 1) in line 17. In particular, there exist states p and p ′ and transitions
(p, S,q) ∈ δ and (p ′, S ′,q′) ∈ δ such that v has label (S, i + 1) and v ′ has label (S ′, i + 1).
Clearly, if S � S ′, then we are done. Otherwise, let τ and τ ′ be the paths obtained by
removing v and v ′ from π and π ′, respectively. In particular, because of the way that
Capturing(i + 1) connects newly created nodes to the already existing nodes in lines 16
through 19, we know that τ ∈ paths(G,Ri+1

p ) and τ ′ ∈ paths(G,Ri+1
p′ ). We consider two fur-

ther cases:
—If p � p ′, then λ(τ ) � λ(τ ′) since (G,Ri+1

p ) and (G,Ri+1
p′ ) do not overlap by (R). As such,

also λ(π ) � λ(π ′).
—If p = p ′, then S = S ′ and we hence have (p, S,q) ∈ δ and (p, S,q′) ∈ δ , which implies

that q = q′ given that A is deterministic. Then, both τ and τ ′ belong to paths(G,Ri+1
p ) =

paths(G,Ri+1
p′ ). Since (G,Ri+1

p ) is without duplicates, we know that λ(τ ) � λ(τ ′) and hence
also λ(π ) � λ(π ′).

Given that in all cases we conclude that λ(π ) � λ(π ′), the statement (C) holds as well. �

From the previous two lemmas, Lemma 4.11 and Lemma 4.12, we conclude the correctness of
the Preprocessing algorithm.

Corollary 4.13. The pair (G,U ) returned by Preprocessing(A,d ) is without duplicates, for every

document d and every deterministic seVA A.

4.6 Implementation and Complexity

From Proposition 4.10 and Corollary 4.13, we know that Preprocessing, shown in Algorithm 2,
computes a pair (G,U ) consisting of a mapping DAGG and subsetU of its vertices such that (G,U )
represents �A�d without duplicates. From Section 4.4 and Proposition 4.4, we know that we can
hence enumerate �A�d with output-linear delay by running Enumerate as shown in Algorithm 1.
To obtain Theorem 1.1, it hence suffices to show that Preprocessing can be implemented to run in
the desired complexity of O (‖A‖ × ‖d ‖). In this section, we therefore present an implementation
of Preprocessing that uses concrete data structures to represent sets and graphs, and achieves
the desired time complexity. Concretely, we prove that, with these data structures, a single call to
the procedures Capturing(i ) and Reading(i ) of Algorithm 2 takes time linear in the size of the
automaton, for every 1 ≤ i ≤ n + 1.

From the description of Algorithm 2, we can see that Capturing and Reading iterate over the
states and transitions of the automaton and, for each of them, perform variable assignments, graph
operations and set operations. We first explain how the required set operations can be performed
in constant time and then explain how this can be used for implementing graph operations in
constant time. The set operations consist of initializing an empty set (line 22 of Algorithm 2),
copying a set (line 13), and taking the union of two sets (lines 19 and 25). These operations cannot
be carried out in constant time in general, but we will show that some invariants of our algorithm
allow for a particular representation of sets that indeed allow more efficient manipulation.

Concretely, we represent a set as a pair of two pointers that point to the first and last elements of
a reverse linked list. This means that a set S = {v1, . . . ,vn } is represented by a pair of pointers (a,b),
where a points to v1, b points to vn , and for each i ∈ {2, . . . ,n} there is a pointer from vi to vi−1

denoted vi .prev . An empty set is represented by two null pointers and is denoted in Algorithm 3
by ϵ . Note that this representation by means of pairs of pointers allows us to iterate over a set in
reverse order with constant delay by simply starting at the end of the set and following the reverse
linked list. This is, of course, assuming that there are no repeated elements in the linked list, which
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ALGORITHM 3: Evaluate A over the document a1 . . . an

1: procedure Evaluate(A, a1 . . . an )
2: for all q ∈ Q \ {q0} do

3: listq ← ϵ

4: listq0 ← [⊥]
5: for i := 1 to n do

6: Capturing(i )
7: Reading(i + 1)

8: Capturing(n + 1)
9: resultList← ϵ

10: for all q ∈ F with listq � ϵ do

11: resultList.extend(listq )

12: return (G, resultList)

13: procedure Capturing(i)
14: for all q ∈ Q do

15: listold
q ← listq .copyByReference

16: for all q ∈ Q with listold
q � ϵ do

17: for all S ∈ Markersδ (q) do

18: node← Node((S, i ), listold
q )

19: p ← δ (q, S )
20: listp .extend(node)

21: procedure Reading(i + 1)
22: for all q ∈ Q do

23: listold
q ← listq

24: listq ← ϵ

25: for all q ∈ Q with listold
q � ϵ do

26: p ← δ (q,ai )

27: listp .extend(listold
q )

is an additional requirement of our set representation. It is easy to see that our representation of
sets allows for the desired set operations in constant time:

(1) Set union: Consider two sets S1 = {v1, . . . ,vn } and S2 = {u1, . . . ,um }, represented by
(a1,b1) and (a2,b2), respectively. First, we define u1.prev = vn and then represent S1 ∪ S2

by a new pair (a,b), where a = a1 and b = b2 (i.e., a points to v1 and b points to um ).
(2) Set copy: A set S = {v1, . . . ,vn } represented by (a,b) is simply copied by defining a new

pair of pointers (a′,b ′), where a′ = a and b ′ = b.

However, performing the operations defined earlier might generate inconsistencies. In partic-
ular, if we take the union between two different sets that are not disjoint, the representation will
contain repeated elements (and the resulting linked list could contain loops). Moreover, when as-
signing u1.prev = vn , we could be overwriting the previous value of u1.prev , corrupting some
previously defined set. Thanks to Lemma 4.11 and Lemma 4.12, the following two invariants are
always satisfied:

• we always take the union of disjoint sets, and
• whenever we take the union of two sets, at least one of them has a first element without a

defined prev pointer.

Note that Lemma 4.11 and Lemma 4.12 imply that in Algorithm 2 we are always taking the
union of disjoint sets. Moreover, since every setCi

q is only used at most in a single set union, if we
use the representation of sets described earlier, we can always modify the prev pointer of its first
element. This implies the following corollary.

Corollary 4.14. By encoding every set as a pair of pointers to the first and last element of a

reversed linked list, which contains the elements of the set without repetitions, Algorithm 2 can be

implemented in such a way that every set operation takes constant time.

Taking this into account, we can now also implement graph operations used in Algorithm 2
in constant time. More precisely, we need to show that node creation (line 18 in Algorithm 2)
and adding new edges (line 18) can be carried out in constant time. For this, we will represent the
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mapping DAG as a set of nodes, where each node has a label (in the form of a set of variable markers
and a position where they are invoked), and a set of neighbors of this node. This is analogous to
the adjacency list representation of a graph, so the edges are encoded in the neighbor set of each
node. With this representation, creating a node is trivially done in constant time, as it only includes
assigning a label to a node and adding it to the set of nodes of our graph. However, taking into
consideration that the newly created node is always connected to some set Ri

q (line 18), and the

fact that we can represent the set Ri
q with a pair of pointers, the neighbor set of this node can be

represented by copying the pointers to the beginning and the end of the list representing Ri
q and

is thus carried out in constant time.
With these observations, it is now easy to obtain the desired complexity: as discussed before,

for every symbol of the input document, Algorithm 2 executes the procedures Capturing and
Reading. The procedure Capturing first copies a set for each state (line 13) and then performs
at most four operations (lines 16–19) for each transition of A. The procedure Reading first
initializes one empty set per each state (line 22) and then performs at most two operations per state
(lines 24 and 25). By the previous discussion and Corollary 4.14, all of these per-state operations
can be performed in constant time, giving us the expected complexity. Finally, Preprocessing
takes the union of the sets Cn+1

q for every q ∈ F , with F the set of final states (line 10). This takes
time O ( |F |) by the same reasoning. Note that the return statement itself just involves copying
the pointer to G and this union, which is also constant time. We hence obtain the following
theorem.

Theorem 4.15. Let A be a sequential deterministic eVA and d = a1 · · ·an be a document. The

procedure Preprocessing of Algorithm 2 can be implemented in time O (‖A‖ × ‖d ‖).
This theorem plus the fact that from the graph constructed by the algorithm allows for output-

linear delay enumeration already give us the desired result. However, we aim at further closing
the gap between theory and practice, and therefore we work further in optimizing our algorithm
in practice while keeping the implementation simple. Therefore, we present another version of
the algorithm that uses the previously mentioned representation of sets and graphs. Moreover,
to optimize space, we avoid defining a list for each set Ri

q and Ci
q . Instead, we reuse the vari-

ables by keeping only two lists per state. This more low-level version of the algorithm is pre-
sented in Algorithm 3. Here, instead of sets we use reversed linked lists, and, as explained before,
we use two methods to represent set union and set copy by means of the methods extend and
copyByReference, respectively, as defined in points (1) and (2). Creating a node and defining its
set of neighbors is implemented using the method Node, which takes the label (S, i ) assigned to
the node, and the list representing the set of its neighbors given by the two pointers to its be-
ginning and end node, and copies these two pointers to represent the neighbors of the node. In
Figure 10, we illustrate the data structure created by Algorithm 3, which can be compared to the
DAG presented in Figure 9.

5 EVALUATING REGULAR SPANNERS

The previous section shows an algorithm that evaluates a deterministic and sequential extended
VA (deterministic seVA for short)A over a document d with output-linear delay enumeration after
O (‖A‖ × ‖d ‖) preprocessing. Since the wider objective of this algorithm is to evaluate regular
spanners, in this section we present a fine-grained study of the complexity of transforming an
arbitrary regular spanner, expressed in RGX{π ,∪,� } or VA{π ,∪,� } , to a deterministic seVA. This will
illustrate the real cost of our output-linear delay algorithm for evaluating regular spanners.

Because it is well known that RGX can be translated into VA in linear time [12], we can fo-
cus our study on the setting where spanners are expressed in VA{π ,∪,� } . We first study how to
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Fig. 10. DAG created by Algorithm 3 to record the output mappings, and the content of returnList . Dashed
edges represent the start/end pointer for a list (denoted by s and e, respectively).

translate arbitrary VAs into deterministic seVAs and then turn to the algebraic constructs. For
the sake of simplification, throughout this section we assume the following notation: given a VA
A = (Q,q0, F ,δ ), n = |Q | denotes the number of states, m = |δ | the number of transitions, and
� = |var(A) | the number of variables in A.

To obtain a sequential VA from a VA, we can use a construction similar to the one presented
in Freydenberger [15]. This yields a sequential VA with 2n3� states that can later be extended and
determinized (see Theorem 3.1 and Proposition 3.2, respectively). Unfortunately, following these
steps would yield an automaton whose size is double exponential in the size of the original VA. The
first positive result in this section is that we can actually transform a VA into a deterministic seVA
avoiding this double exponential blow-up.

Proposition 5.1. For any VA A there is a deterministic seVA A′ with at most 2n3� states and

2n6� + 2n3� |Σ| transitions such that A′ ≡ A.

Proof. Given an arbitrary VAA = (Q,q0, F ,δ ) with |Q | = n, |δ | =m and � variables, we show
how to construct a deterministic seVA A′ = (Q ′,q′0, F

′,δ ′) that is equivalent to A and has 2n3�

states, 2n6� + 2n3� |Σ| transitions, and � variables. Let us first describe the set Q ′ of states of A′.
Intuitively, every state will correspond to a pair ({q1, . . . ,qk }, S ), where q1, . . . ,qk ∈ Q are the
states reached byA after reading exactly all (and only) the variable markers in the set of variable
markers S . Since there are n states, the first component (the set of reached states) can be chosen
from 2n different sets. Now, for each state in the chosen set, we have a set of variable markers.
Note that we need to exclude the sets of variable markers that contain a variable that is closed
but not opened. Therefore, if we have � variables, the number of such sets of variable markers is∑�

i=1

(
�
i

)
2i , where i represents the number of opened variables,

(
�
i

)
the different ways of choosing

those i variables, and 2i possible ways of closing (or leaving open) those i variables. From this, we
obtain

�∑
i=0

(
�

i

)
2i =

�∑
i=0

(
�

i

)
2i 1�−i = (1 + 2)� = 3� .

Therefore, it is clear that we have at most 2n3� states. The only initial state is q′0 = ({q0}, ∅).
Let us now define the set of transitions δ ′. Given a symbol c ∈ Σ, the transition δ ′((P , S ), c ) is

simply defined as (δ (P , c ), S ), where δ (P , c ) = {q ∈ Q | ∃q′ ∈ P subject to (q′, c,q) ∈ δ }. Let us now
describe the variable transitions. Intuitively, δ ′((P , S ), S ′) will contain the set of states that can be
reached from a state of P by following a path in A of variable transitions in which each variable
marker in S ′ is mentioned exactly once. As defined in the proof of Theorem 3.1, a variable path
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in A is a sequence of transitions π : p = p0
v1−→p1

v2−→ . . . vh−→ph = q such that (pi ,vi+1,pi+1) ∈ δ are
variable transitions and vi � vj for every i � j. If S = Markers(π ) = {v1, . . . ,vh }, we say that π is
an S-path from p to q. Then, for every P ⊂ Q and every pair (S, S ′) of variable markers that are
valid (i.e., all closed variables in S and S ′ were also opened), and such that S and S ′ are compatible
(in the sense that every closed variable in S ′ ∪ S is also opened), δ ′((P , S ), S ′) is defined as (P ′, S ′′),
where

(1) S ′′ = S ∪ S ′ and
(2) for every q′ ∈ P ′ there exists q ∈ P such that there is an S ′-path between q and q′.

If S and S ′ are not compatible, δ ′(({q0, . . . ,qk }, S ), S ′) is undefined (note that this makes the au-
tomaton sequential).

Let us analyze the number of transitions in δ ′. To do a fine-grained analysis of the number of
variable transitions, for each i ∈ {0, . . . , �} consider a state (P , S ) where S uses exactly i variables.
The number such states is 2n

(
�
i

)
2i , since any subset ofQ can be in place of P , and a set of markers S

using precisely i variables is specified by which i variables we choose (the
(
�
i

)
factor), and whether

each one of them is only opened, or both opened and closed. The number of transitions leaving
such a state (P , S ) is defined by a set of variable markers S ′ telling us what to do with the remaining
� − i variables (if anything), as well as whether we will close some of the (at most) i variables in S
that remained opened. This means that the number of different sets S ′ of markers that use precisely
0 ≤ j ≤ � is bounded by

(
�−i

j

)
2j 2i , since we have to choose which j of the remaining � − i variables

we use, whether they are only opened, or both opened and closed (the 2j factor), and whether
we choose to close any of the (at most) i variables opened in S . Notice that the 2i factor can be
replaced with 2�−j , given that i + j ≤ �, thus making the upper bound on the number of sets S ′ that
use precisely j new variables

(
�−i

j

)
2j 2�−j . With this in hand, we can bound the number of variable

transitions in A′ as follows:

�∑
i=0

⎡⎢⎢⎢⎢⎢⎣
2n

(
�

i

)
2i

�−i∑
j=0

(
� − i
j

)
2j 2�−j

⎤⎥⎥⎥⎥⎥⎦
= 2n

�∑
i=0

(
�

i

)
2i 4�−i = 2n (2 + 4)� = 2n6� .

This gives us the number of variable transitions in A′. To this number, we must add the number
of symbol transitions, which is at most one transition per state per symbol (i.e., 2n3� |Σ|). Then, the
total number of transitions is 2n6� + 2n3� |Σ|. Finally, we define the set F ′ of final states as those
states (P , S ) in which P ∩ F � ∅ and all variables opened in S are also closed.

It is trivial to see that A′ is sequential. As the only way to reach a state (P , S ) using a vari-
able transition is from a previous state (P ′, S ′) and a set of markers S ′′ such that S ′ ∪ S ′′ = S ,
it is clear that if a run ρ ends in state (P , S ), then S is the union of all variable markers seen
in ρ. Sequentiality then follows since we require at all times that every variable is opened and
closed at most once, variables are opened before they are closed, and in final states all opened
variables are closed. The fact thatA′ is deterministic can be immediately seen from the construc-
tion; for every state, there is at most one transition for each character, and at most one transi-
tion for each set of variable markers. Since A′ is an extended VA and must alternate between
variable and character transitions, this implies that two different runs cannot generate the same
mapping.

We now show that A is equivalent to A′. Let d be a document, and assume the mapping μ is

produced by a valid accepting run ρ = (q0, i0) o1−→ (q1, i1) o2−→ · · · om−→ (qm , im ) ofA over d . Define
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a function f with domain i ∈ {1, . . . ,m} as follows:

f (i ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

k if oi is a variable marker; i ≤ k ; oj is a variable marker for every i ≤ j ≤ k
and either k =m or ok+1 is not a variable marker

(oi , ∅) if oi ∈ Σ and oi+1 ∈ Σ
oi otherwise.

With this definition, we construct a run for A′ generating μ starting with ρ ′ as the run that only
contains q′0 and i = 1 as follows:

(1) If f (i ) = k , define the set of variable markers S as
⋃k

j=i oj , and update ρ ′ to

ρ ′ S−→δ ′((P ′, S ′), S ), where (P ′, S ′) was the last state of ρ ′ before this update. Finally, update
i to k + 1.

(2) If f (i ) = (oi , ∅), update ρ ′ to ρ ′ oi−→δ ′(P ′, S ′) ∅−→δ ′((P ′, S ′), ∅), where (P ′, S ′) was the previ-
ous final state of ρ ′. Finally, update i to i + 1.

(3) If f (i ) = oi , update ρ ′ to ρ ′ oi−→δ ′((P ′, S ′),oi ), where (P ′, S ′) was the previous final state of
ρ ′. Finally, update i to i + 1.

We need to show that this is actually a valid and accepting run of A′ over d . To show that it is
a run over A′ is simple: since ρ is a run over A, the construction of f implies that for every step

of the form (P ′, S ′) S−→(P , S ∪ S ′) in ρ ′ there is an S-path from a state in P ′ to a state in P (assuming
S � ∅). The ∅ and character transitions immediately yield valid transitions for ρ ′. The fact that ρ ′ is
valid follows from the construction, as we can see that it will open and close variables in the same
order and in the same positions as ρ, which was already valid. This also shows that ρ ′ generates
μ. The fact that ρ ′ is accepting follows because qm ∈ F is final and belongs to the last state of ρ ′.

The opposite direction is similar: considering a mapping μ generated by a valid accepting run
ρ ′ of A′ over d , we need to show a valid accepting run ρ of A over d generating μ. We omit this
direction, as ρ can be generated by doing essentially the same process as before but in reverse: we

know that ρ ′ ends in a state that mentions a final state qf ∈ F . Then, for each step (P , S ) o−→(P ′, S ′)
of ρ and the selected state in P ′ (at the beginning, qf ), there is a transition or an (S ′ \ S )-path going
from a state q ∈ P to q′. This way, we can construct ρ backward; proving it is valid, accepting, and
it generates μ follows again by the construction. �

Therefore, evaluating an arbitrary VA with output-linear delay can be done with preprocessing
that is exponential in the size of the VA and linear in the document. However, note that the resulting
deterministic seVA is exponential both in the number of states and in the number of variables of
the original VA. Although having an automaton that is exponential in the number of states is
to be expected due to the deterministic restriction of the resulting VA, one could argue that the
exponential blow-up depending on the number of variable comes from the extended restriction.
It is then natural to ask whether there exists a subclass of VA where the blow-up in the size of
the automata can be avoided when a VA is translated to its extended version (not necessarily
deterministic).

Two subclasses of VA that are known to have good algorithmic properties [17, 22] are sequential
VA and functional VA. Next, we will consider if the cost of translation to extended VA is smaller
in these cases. In the more general case of sequential VA, we can actually show that a blow-up in
the size of the automaton is inevitable. The main issue here is that preserving the sequentiality
of a VA when transforming it to an extended VA can be costly. To illustrate this, consider the
automaton in Figure 11. In this automaton, any path between q0 and qF opens and closes exactly
one variable in {xi ,yi }, for each i ∈ {1, . . . ,n}. Therefore, to simulate this behavior in an extended
VA (which disallows two consecutive variable transitions), we need 2� variable transitions between
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Fig. 11. A sequential VA with 2� variables such that every equivalent eVA has O (2� ) transitions.

Fig. 12. The smallest eVA A′ equivalent to A with 2� transitions.

the initial and the final state, one for each possible set of variables. Formally, we have the following
proposition.

Proposition 5.2. For every � > 0 there is a sequential VAA with 3� + 2 states, 4� + 1 transitions,

and 2� variables such that for every extended VA A′ equivalent to A, it is the case that A′ has at

least 2� transitions.

Proof. For every �, consider the VA A with 3� + 2 states, 4� + 1 transitions, and 2� variables
(x1, . . . ,x�,y1, . . . ,y�) depicted in Figure 11. A only produces valid runs for the document d =
a, and the resulting mapping is always valid but never total. The reason is that the automaton
properly opens and closes variables, but at each intermediate state the run has the option to choose
opening and closing either xi or yi , for every 1 ≤ i ≤ �, generating 2� different runs. Therefore,
if we only consider the equivalent eVA that extends transitions from q0 to q and no other pair in
between, we obtain the extended VA A′ in Figure 12. This is the smallest eVA equivalent to A,
since each of the mentioned transitions group the greatest amount of variables in a different run.
Specifically, each of these transitions has a corresponding and different ϵ mapping, the one where
the contained variables are defined. Therefore, it has 2� transitions, as well as any other equivalent
eVA. �

However, if we consider functional VA, the exponential factor depending on the number of
variables can be eliminated when translating a functional VA into an equivalent deterministic
eVA. To show this, we first determine the cost of transforming a functional VA into an extended
VA that is not necessarily deterministic.

Proposition 5.3. For any functional VA A there exists an equivalent functional eVA A′ with at

most n states and (m + n2) transitions.

For converting A into a functional eVAAext, we require the following lemma6 (the notion of
variable path is formally defined in the proof of Theorem 3.1).

Lemma 5.4. IfA is functional, then for every two states q and q′ inA that can produce valid runs,

it holds that Markers(π ) = Markers(π ′) for every pair of variable paths π and π ′ between q and q′.

6A similar lemma appears in Freydenberger et al. [17].
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Proof. Suppose, for the purpose of contradiction, that there are two states q and q′ in A such
that there are at least two variable paths π and π ′ between q and q′, with different sets of markers
appearing in them. Since q and q′ can produce a valid run, then they are both reachable from q0

and can reach a final state. Specifically, let πi be the path from q0 to q, and let πf be the path from
q′ to a final state. Then, the concatenated paths πiππf and πiπ

′πf are both accepting. Both also
must be valid, because A is functional. But the set of markers in π and π ′ are different, yet the
rest of the paths are the same and they open and close all variables in A. This is a contradiction:
either πiππf or πiπ

′πf cannot open and close all variables. Therefore, all paths between q and q′

must contain the same set of markers appearing in them. �

Proof of Proposition 5.3. The proof of Theorem 3.1 shows how to construct, given a func-
tional VA A, an equivalent functional eVA Aext. We next show that if A has n states andm tran-
sitions, then by this construction, Aext has at most n states and m + n2 transitions. The bound
n over the number of states in Aext directly follows from the construction in Theorem 3.1. The
bound m + n2 over the number of transitions in Aext follows from the fact that A is functional:
because in the construction of Aext (cf. the proof of Theorem 3.1) we add an extended variable
transition S between states p and q only if there is a variable path π between p and q in A such
that S = Markers (π ),we obtain by Lemma 5.4 that inAext we can have at most one extended vari-
able transition per pair of states (p,q). Therefore, in addition to the m transitions in A, at most
n2 extended variable transitions can be added to Aext. We conclude that Aext has at most m + n2

transitions and that at most n2 of these transitions can be extended variable transitions. �

From this, we can determine the size of an extended VA that is equivalent to a functional VA.

Corollary 5.5. For any functional VA A there exists an equivalent deterministic seVA A′ with

at most 2n states and 2n (n2 + |Σ|) transitions.

Proof. From Proposition 5.3, we know that from a functional VAA we can construct an equiv-
alent functional and extended VAAext that has n states and at mostm + n2 transitions, where n2 of
these can be extended variable transitions. As shown in Proposition 3.2, deterministic seVAA′ can
be constructed fromAext such thatAext ≡ A′, whereA′ has at most 2n states. Now, note that since
A′ is deterministic, the number of transitions per state in A′ can be at most the number of sym-
bols in Σ plus the number of distinct variable sets S with (q, S,q′) an extended variable transition
inAext. Since the latter is at most n2, the number of transitions forA′ is at most 2n (n2 + |Σ|). �

Because of Proposition 5.3 and Corollary 5.5, and the fact that functional VA are probably the
class of VA most studied in the literature [12, 15, 17], we will work exclusively with functional VA
for the remainder of this section.

Now we proceed to study how to apply the algebraic operators to evaluate regular spanners. In
Fagin et al. [12], it was shown that any regular spanner (i.e., a join-union-projection expression
built from RGX or VA as atoms) is in fact equivalent to a single VA, and effective constructions
were given. In particular, it is known that for every pair of VA A1 and A2, there exists a VA A
of exponential size such that �A�d = �A1�d � �A2�d . The exponential blow-up comes from the
fact that each transition is equipped with at most one variable, and two variable transitions can
occur consecutively. Therefore, one needs to consider all possible orders of consecutive variable
transitions when computing a product (see Fagin et al. [12]). However, as shown by a subset of
the authors in their previous work [24], and independently in Freydenberger et al. [17], this blow-
up can be avoided when working with functional VA. In the next proposition, we generalize this
result to extended VA.
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Proposition 5.6. Let A1 and A2 be two functional eVA, and Y ⊂ V . Furthermore, let A3 and

A4 be two functional eVAs that use the same set of variables. Then there exist functional eVAs A� ,

A∪, and Aπ such that

• A� ≡ A1 � A2 and A� has n1 · n2 states and at mostm1 ·m2 transitions,

• A∪ ≡ A3 ∪ A4, and A∪ has (n3 + n4 + 1) states and at most 2 · (m3 +m4) transitions, and

• Aπ ≡ πY (A1), and Aπ has n1 states and at mostm2
1 transitions,

where ni and mi are the number of states and transitions of Ai , respectively.

Proof. Let A1 = (Q1,q
1
0, F1,δ1), A2 = (Q2,q

2
0, F2,δ2), and Y ⊂ V . First, we construct the join

of feVA. LetV1 = var(A1),V2 = var(A2), andV� = V1 ∩V2. The intuition behind the following
construction is similar to the standard construction for intersection of NFAs: we run both automa-
ton in parallel, limiting the possibility to use simultaneously markers on both automata only on
shared variables, and let free use of markers that are exclusive to V1 or V2. Formally, we define
A� = (Q1 ×Q2, (q

1
0,q

2
0), F1 × F2,δ ), where δ is defined as follows:

• ((p1,p2),a, (q1,q2))) ∈ δ if a ∈ Σ, (p1,a,q1) ∈ δ1 and (p2,a,q2) ∈ δ2.
• ((p1,p2), S1, (q1,p2))) ∈ δ if p2 ∈ Q2, (p1, S1,q1) ∈ δ1, and S1 ∩MarkersV� = ∅.
• ((p1,p2), S2, (p1,q2))) ∈ δ if p1 ∈ Q1, (p2, S2,q2) ∈ δ2 and S2 ∩MarkersV� = ∅.
• ((p1,p2), S1 ∪ S2, (q1,q2))) ∈ δ if (p1, S1,q1) ∈ δ1, (p2, S2,q2) ∈ δ2, and S1 ∩MarkersV� =

S2 ∩MarkersV� .

To show that �A��d ⊆ �A1�d � �A2�d , let μ be a mapping in �A��d for the documentd , and
ρμ the corresponding valid and accepting run of A� over d . By construction, from ρμ we can get
a sequence of states in A1 and A2 that define runs ρ1 and ρ2 in their respective automaton. This
preserves both order and positions of markers. SinceA1 andA2 are functional and ρμ is accepting,
then ρ1 and ρ2 are accepting and valid runs of A1 and A2, respectively. This implies that μρ1 ∈
�A1�d and μρ2 ∈ �A2�d . Finally, since all common marker transitions are performed by both
automata at the same union transitions, then μρ1 ∼ μρ2 and therefore μ = μρ1 ∪ μρ2 ∈ �A1�d �
�A2�d .

To show that �A1�d � �A2�d ⊆ �A��d , let μ1 ∈ �A1�d , μ2 ∈ �A2�d such that μ1 ∼ μ2 and
ρμ1 and ρμ2 be their corresponding runs. Since they are compatible mappings, both runs use each
marker in Markers(V� ) in the same positions of d . Therefore, by merging the marker transitions
made in each run, the corresponding union transitions must exist inA� and be used to construct
a run ρ in A� . Finally, since ρ1 and ρ2 are accepting, valid, and total, then ρ is also accepting,
valid, and total for var(A1) ∪ var(A2)—that is, μρ ∈ �A��d . It is easy to see that μρ = μ1 ∪ μ2,
and therefore μ1 ∪ μ2 ∈ �A��d .

To show that A� is also functional, let ρ be an accepting run in A� for d . Thanks to the con-
struction, and as shown before, corresponding runs in A1 and A2 can be produced from ρ that
are also accepting, and therefore valid and total since they are functional. Since all common mark-
ers are used in the same positions and precisely once in the corresponding runs, this is also true
for ρ. In addition, all variables are used in runs of A1 and A2; therefore, ρ is valid and total for
var(A1) ∪ var(A2). Regarding the size of A� , one can verify that A� has n1 · n2 states and at
mostm1 ·m2 transitions.

Second, we tackle the projection of automata. To prove this, we use the notion of ϵ-transitions
in eVA as the usual notion for regular NFA, namely transition of the form (q, ϵ,p). As is standard
in automata theory, if a run uses an ϵ-transition, this produces no effect on the document read or
variables that are opened or closed, and only the current state of the automaton changes fromq top.
Furthermore, in the semantics of ϵ-transitions, we assume that no two consecutive ϵ-transitions
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can be used. Clearly, ϵ-transitions do not add expressivity to the model and only help to simplify
the construction of the projection.

Let U = MarkersV \MarkersY be markers for unprojected variables, then Aπ = (Q1,q
1
0, F1,δ

′)
where (q,a,p) ∈ δ ′whenever (q,a,p) ∈ δ1 for everya ∈ Σ, (q, S \U ,p) ∈ δ ′whenever (q, S,p) ∈ δ1

and S \U � ∅, and (q, ϵ,p) ∈ δ ′ whenever (q, S,p) ∈ δ1 and S \U = ∅.
The equivalence between A1 and Aπ is straightforward. For every μ ∈ �A1�d , there exists an

accepting and valid run ρ in A1 over d . For ρ, there exists a run ρ ′ in Aπ formed by the same
sequence of states, but extended marker or ϵ-transitions are used that only contain markers from
Y . Moreover, ρ ′must also be valid since it maintains the order ofY -variables used in ρ. This shows
that �πY (A1)�d ⊆ �Aπ �d . The other direction, �Aπ �d ⊆ �πY (A1)�d , follows from the fact that
A′ has no additional accepting paths in comparison to A. It is also easy to see that Aπ must be
functional.

It is important to note that, as for classical NFAs, from Aπ an equivalent ϵ-transition free eVA
Aϵ -free

π can be constructed using ϵ-closure over states. The ϵ-closure can produce a quadratic blow-
up in the number of transitions. Given that Aπ is of size linear in A1, then after removing the
ϵ-transitions Aϵ -free

π will have n1 states and at mostm2
1 transitions.

Finally, we construct the union of automaton. This construction is the standard disjoint union
of automaton, with ϵ-transitions to each corresponding initial state. Let A3 = (Q3,q

3
0, F3,δ3)

and A4 = (Q4,q
4
0, F4,δ4) be two feVA such that var(A3) = var(A4) and Q3 ∩Q4 = ∅. Then,

A∪ = (Q3 ∪Q4,q0, F3 ∪ F4,δ3 ∪ δ4 ∪ {(q0, ϵ,q
3
0), (q0, ϵ,q

4
0)}), where q0 is a fresh new state. This

simply adds a new initial state connected with ϵ-transitions to the initial states ofA3 andA4, re-
spectively. Therefore, every run inA∪must produce a run fromA3 ∪ A4 and vice versa. An equiv-
alent ϵ-transition free automatonAϵ -free

∪ can be constructed as in the projection case. Contrary to
the projection, removing the transitions (q0, ϵ,q

3
0) and (q0, ϵ,q

4
0) fromA∪ adds at most (m3 +m4)

transitions to Aϵ -free
∪ . Thus, Aϵ -free

∪ will have (n3 + n4 + 1) states and at most 2 · (m3 +m4)
transitions. �

It is important to mention that Proposition 5.6 differs from the corresponding proposition in
the conference version of this article [14]. There, we incorrectly stated thatAπ is of size linear in
|A1 |. In Proposition 5.6, in contrast, we prove that the size of Aπ is in fact in O ( |A1 |2), and we
do not know whether one can always construct an equivalent eVA of size linear in |A1 |.

We can now determine the precise cost of compiling a regular spanner γ into a
deterministic seVA that can then be used by the algorithm from Section 4 to enumerate �γ �d with
output-linear delay, for an arbitrary document d . More precisely, we have the following.

Proposition 5.7. Let γ be a regular spanner in VA{π ,∪,� } using k algebraic operations, and at

most k + 1 functional VAs as input, each of them with at most n states. Then there exists an equivalent

deterministic seVA Aγ with at most 2nk+1
states and at most 2nk+1 · (n2(k+1) + |Σ|) transitions.

Proof. By Proposition 5.6, we know that we can construct the join between two automata
with r and s states such that the resulting automaton will have at most r × s states. By the same
proposition, automata for projections and unions can be obtained whose number of states are
linear in the number of states of the input automata. Therefore, if we apply the transformations
of Proposition 5.6 in a bottom-up fashion to γ , it is trivial to prove by induction that the final
resulting automaton will be functional and will have at most nk+1 states. By Corollary 5.5, we can

subsequently determinize this automaton, resulting in an equivalent deterministic seVA with 2nk+1

states and 2nk+1
(n2(k+1) + |Σ|) transitions, concluding the proof. �

In this case, the 2n factor from Corollary 5.5 turns to 2nk+1
, thus making it double exponential

depending on the number of algebraic operations used in γ . Ideally, we would like to isolate a

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 3. Publication date: February 2020.



3:36 F. Florenzano et al.

subclass of regular spanners for which this factor can be made single exponential. Unfortunately,

in the general case, we do not know if the double exponential factor 2nk+1
can be avoided. The main

problem here is dealing with projection, since it does not preserve determinism, thus causing an
additional blow-up due to an extra determinization step. However, if we consider VA{∪,� } , we can
obtain the following.

Proposition 5.8. Let γ be a regular spanner in VA{∪,� } using k algebraic operations, and at most

k + 1 functional VAs as input, each of them with at most n states. Then, there exists an equivalent

deterministic seVA Aγ with at most 2n ·(k+1) states and at most 2n ·(k+1) · (n2(k+1) + |Σ|) transitions.

Proof. Contrary to the previous proposition, the idea here is to first determinize each automa-
ton, and then apply the join and union construction of functional eVA. Given that each automaton
will have size O (2n ) after determinization, the product of two automata of size O (2n ) will have
size O (22n ). Therefore, the number of states of the whole construction will be O (2(k+1)n ), where
k + 1 is the number of functional eVAs in the expression.

Let A1 and A2 be the determinization of two functional eVA with n states. By Corollary 5.5,
each automaton will have at most 2n states and at most 2n (n2 + |Σ|) transitions. Indeed, from
the proof of Corollary 5.5, one can notice that at most 2nn2 transitions are variable transitions
and at most 2n |Σ| are letter transitions. Consider now the construction of A� ≡ A1 � A2 from
Proposition 5.6. One can easily check that the construction preserves determinism, namely A�
is deterministic, and the number of states is at most 22n . Furthermore, the number of variable
transitionsA� is at most 22nn2+2 and the number of letter transitions is at most 22n |Σ| (given that
the automata are deterministic, the number of letters per state does not increase).

Unfortunately, the linear construction of the union of two functional eVA does not preserve the
deterministic property of the input automaton. Instead, we can define the union of two determinis-
tic functional eVA by taking the product and accept if either of the two automata accept. Formally,
let A1 = (Q1,q

1
0, F1,δ1) and A2 = (Q2,q

2
0, F2,δ2) be two deterministic functional eVA such that

Q1 ∩Q2 = ∅. Without loss of generality, we can assume thatA1 andA2 contain sink states s1 and
s2, respectively. Then, from s1 and s2, one cannot reach final states of A1 and A2. Define now
A∪ = (Q, (q1

0,q
2
0), F ,δ ) such that Q = Q1 ×Q2, F = F1 ×Q2 ∪Q1 × F2, and δ satisfies that

• ((p1,p2),o, (q1,q2)) ∈ δ whenever (p1,o,q1) ∈ δ1, and (p2,o,q2) ∈ δ2,
• ((p1,p2),o, (q1, s2)) ∈ δ whenever (p1,o,q1) ∈ δ1, and (p2,o,q2) � δ2 for every q2 ∈ Q2, and
• ((p1,p2),o, (s1,q2)) ∈ δ whenever (p2,o,q2) ∈ δ2, and (p1,o,q1) � δ1 for every q1 ∈ Q1.

It is straightforward to show A∪ is functional, deterministic, and �A∪�d = �A1�d ∪ �A2�d .
Regarding the size of �A∪�d , if each automaton has 2n states (i.e., after the determinization pro-
cedure), then the union automaton will have at most 22n states. Furthermore, if each automaton
has at most 2nn2 variable transitions and at most 2n |Σ| letter transitions, then A∪ will have at
most 22nn2+2 variable transitions and at most 22n · |Σ| letter transitions (i.e., the number of letter
transitions per state does not increase given that A∪ is deterministic).

Finally, it is easy to show by induction that the determinization, join, and union of k + 1 func-
tional eVA will have at most 2n (k+1) states and at most 2n (k+1) (n2(k+1) + |Σ|) transitions. �

Overall, compiling arbitrary VA or expressions in VA{π ,∪,� } into deterministic seVA can be
quite costly. However, restricting to the functional setting and disallowing projections yields
a class of document spanners where the size of the resulting deterministic seVA is manage-
able. In terms of practical applicability, it is also interesting to note that all of these trans-
lations can be fed to Preprocessing on the fly, thus rarely needing to materialize the entire
deterministic seVA.
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ALGORITHM 4: Count the number of mappings in �A�d over the document d = a1 . . . an

1: function Count(A, a1 . . . an )
2: for all q ∈ Q \ {q0} do

3: N [q]← 0

4: N [q0]← 1
5: for i := 1 to n do

6: Capturing(i )
7: Reading(i + 1)

8: Capturing(n + 1)
9: return

∑
q∈F N [q]

10: procedure Capturing(i)
11: N ′ ← N
12: for all q ∈ Q with N ′[q] > 0 do

13: for all S ∈ Markersδ (q) do

14: p ← δ (q, S )
15: N [p]← N [p] + N ′[q]

16: procedure Reading(i + 1)
17: N ′ ← N
18: N ← 0
19: for all q ∈ Q with N ′[q] > 0 do

20: p ← δ (q,ai )
21: N [p]← N [p] + N ′[q]

Given the previous results, we can convert an arbitrary regular spanner into a deterministic
seVA and then applying Preprocessing followed by Enumerate to get an algorithm with output-
linear delay enumeration after linear time preprocessing (in the size of the newly constructed
automaton). Table 1 summarizes the total cost of the precomputation phase when using this
approach.

6 COUNTING DOCUMENT SPANNERS

In this section, we study the problem of counting the number of output mappings in �γ �d , where
γ is a document spanner. Counting the number of outputs is strongly related to the enumeration
problem [25] and can give some evidence on the limitations of finding bounded delay algorithms
with better precomputation phases. Formally, given a language L for specifying document span-
ners, we consider the following problem:

Problem: Count[L]
Input: An expression γ ∈ L, a document d .

Output: |�γ �d |

It is common that enumeration algorithms with output-linear delay can be extended to count
the number of outputs efficiently [25]. We show that this is the case for our algorithm over deter-
ministic seVA.

Theorem 6.1. Given a deterministic sequential extended VAA and a document d , |�A�d | can be

computed in time O (‖A‖ × ‖d ‖).

Proof. The Count function in Algorithm 4 calculates |�A�d | given a deterministic seVAA =
(Q,q0, F ,δ ) and a document d = a1 . . . an . This algorithm is a natural extension of Preprocessing
as shown in Algorithm 3 in Section 4. Instead of keeping the set of list {listq }q∈Q where each
list listq succinctly encodes all mappings of runs that end in state q, we keep an array N where
N [q] stores the number of runs that end in state q. SinceA is sequential (i.e., every accepting run
encodes a mapping) and deterministic (i.e., each run or partial run yields a distinct out-sequence),
we know that the number of runs ending in state q is equal to the number of valid partial mappings
in state q. Therefore, if N [q] stores the number of runs at state q, then the sum of all values N [q]
for every state q ∈ F is equal to the number of mappings that are output at the final states.
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As we said, Algorithm 4 is very similar to Preprocessing. At the beginning (i.e., lines 2–4), the
array N is initialized with N [q] = 0 for every q � q0 and N [q0] = 1, namely the only partial run
before reading or capturing any variable is the runq0. Next, the algorithm iterates over all letters in
the document, alternating between Capturing and Reading procedures (lines 5–8). The purpose
of the Capturing(i ) procedure is to extend runs by using extended variable transitions between
letters ai−1 and ai . This procedure first makes a copy of N into N ′ (i.e., N ′ will store the number of
runs in each state before capturing) and then adds to N [p] the number of runs that reach q before
capturing (i.e., N ′[q]) whenever there exists a transition (p, S,q) ∈ δ for some S ∈ Markersδ (q). On
the other side, the procedure Reading(i + 1) is coded to extend runs by using a letter transition
when reading ai . Similar to Capturing, Reading starts by making a copy of N into N ′ (line 17)
and N to 0 (line 18). Intuitively, N ′ will store the number of valid runs before reading ai , and N
will store the number of valid runs after reading ai . Then, Reading(i + 1) iterates over all states q
that are reached by at least one partial run and adds N ′[q] to N [p] whenever there exists a letter
transition (q,ai ,p) ∈ δ . Clearly, if there exists (q,ai ,p) ∈ δ , then all runs that reach q after reading
a1 . . . ai−1 can be extended to reachp after reading a1 . . . ai . After reading the whole document and
alternating between Capturing(i ) and Reading(i + 1), we extend runs by doing the last extended
variable transition after reading the whole word, by calling Capturing(n + 1) in line 8. Finally,
the output is the sum of all values N [q] for every state q ∈ F , as explained before.

The correctness of Algorithm 4 follows by a straightforward induction over i . Indeed, the induc-
tive hypothesis states that after executing Capturing(i ) and Reading(i + 1), N [q] has the number
of elements of runs(A,d (1, i ),q). Then, by following the same arguments as for the correctness of
Preprocessing, one can show that N [q] also store the number elements of runs(A,d (1, i + 1),q)
after executing Capturing(i + 1) and Reading(i + 2). �

Therefore, Count[L1], where L1 is the class of deterministic seVA, can be computed in poly-
nomial time in combined complexity.

Unfortunately, the efficient algorithm of Theorem 6.1 cannot be extended beyond the class
of sequential deterministic VA—that is, we show that Count[fVA] is a hard counting problem,
where fVA is the class of functional VA (that are not necessarily extended). First, we note that
Count[fVA] is not a #P-hard problem—a property that most of the hard counting problems usually
have in the literature [29]. We instead show that Count[fVA] is complete for the class SpanL [2], a
counting complexity class that is included in #P and is incomparable with FP, the class of functions
computable in polynomial time.

Intuitively, SpanL is the class of all functions f for which we can find a non-deterministic Tur-
ing machine M with an output tape such that f (x ) equals the number of different outputs (i.e.,
without repetitions) that M produces in its accepting runs on an input x , and M runs in logarith-
mic space. We say that a function f is SpanL-complete if f ∈ SpanL and every function in SpanL
can be reduced to f by log-space parsimonious reductions (see Álvarez and Jenner [2] for details).
It is known [2] that SpanL-hard functions can be computed in polynomial time if, and only if,
all the polynomial hierarchy is included in P (in particular NP = P). By well-accepted complex-
ity assumptions, the SpanL-hardness of Count[fVA] hence implies that counting the number of
outputs of a fVA over a document cannot be done in polynomial time.

Theorem 6.2. Count[fVA] is SpanL-complete.

Proof. Let us first define the class SpanL. Formally, let M be a non-deterministic Turing ma-
chine with output tape, where each accepting run ofM over an input produces an output. Given an
input x , we define spanM (x ) as the number of different outputs when runningM on x . Then, SpanL
is the counting class of all functions f for which there exists a non-deterministic logarithmic-space
Turing machine with output such that f (x ) = spanM (x ) for every input x .
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For the inclusion of Count[fVA] in Spanl, let M be a non-deterministic TM that receives A
and d as input. The work of M is more or less straightforward: it must simulate a run of A over
d to generate a mapping μ ∈ �A�d , and it does so by alternating between extended variable
transitions and letter transitions reading d and writing the corresponding run on the output tape.
At all times, M keeps a pointer (i.e., with log space) for the current state and a pointer to the
current letter. Furthermore, it starts and ends with a variable transition as defined in Section 4.
Whenever a variable transition is up, the machine must choose non-deterministically from all of
its outgoing variable transitions from the current state. Recall that M can also choose to not take
any variable transition, in which case it stays in the same state without writing on the output tape.
Instead, if (q, S,p) is chosen, then M writes the set of variables in S on the output tape and updates
the current state. It does so maintaining a fixed order between variables (either lexicographic or
the order presented in the input). However, when a letter transition is up, if a transition with the
corresponding letter from d exists (defined by the current letter), then the current letter is printed
in the output tape, and the current state and letter are updated, changing to a capturing phase.
If no transition exists from the current state, then M stops and rejects. Once the last letter is read
(the pointer to the current letter is equal to |d |), the last variable transition is chosen. Finally, if the
final state is accepting, then M accepts and outputs what is on the output tape. The correctness
of M (i.e., |�A�d | = spanM (A,d )) follows directly from the functional properties of A. More
precisely, we know that each accepting run is valid and will therefore produce an output. Finally,
in caseA has two runs on x that produce the same output, by the definition of Spanl this output
will be counted only once, as required to compute |�A�d | correctly.

For the lower bound, we show that the Census problem [2], which is SpanL-hard, can be reduced
into Count[fVA] via a parsimonious reduction in logarithmic space. Formally, given an NFA B,
and length n, the Census problem asks to count the number of words of length n that are accepted
by B. We reduce an input of the Census problem (B,n) into Count[fVA] by computing a func-
tional VA AB,n and a document dB,n such that counting the number of words of length n that
B, accepts is equivalent to counting the number of mappings that AB,n generates over dB,n . Let
B, = (Q, Σ,Δ,q0, F ) be an NFA with Σ = {a,b}. Define dB,n = (#cc )n and AB,n = (Q ′,q′0, F

′,δ ′)
over the alphabet {c, #} such that Q ′ = Q × {0, . . . ,n}, q′0 = (q0, 0), F ′ = F × {n}. Furthermore, for
the sake of simplification, we define δ ′ by using extended transitions as follows:

(q,a,p) ∈ Δ then ((q, i − 1), # · xi� · c · �xi · c, (p, i )) ∈ δ ′ for all i ∈ {1, . . . ,n}
(q,b,p) ∈ Δ then ((q, i − 1), # · c · xi� · c · �xi , (p, i )) ∈ δ ′ for all i ∈ {1, . . . ,n}.

In the previous definition, a transition of the form ((q, i − 1),w, (p, i )) means that the VA will go
from state (q, i − 1) to the state (p, i ) by following the sequence of operations in w . For example,
the sequence # · xi� · c · �xi · c means that an #-symbol will be read, followed by open xi , read c ,
close xi , and read c . Clearly, extended transitions like those presented previously can be encoded
in any standard VA by just adding more states.

Note that to get to a state (p, i ), the only option is to start from the state (q, i − 1). Since all
runs start at (q0, 0) and final states are of the form (p,n), an accepting run of AB,n over dB,n
must traverse n + 1 states of the form (q, i ), one for each i ∈ {0, . . . ,n}, and therefore assign all
n variables xi . In addition, between two consecutive states, the transition always captures a span
of length 1 (i.e. xi� · c · �xi ) and reads three characters, starting with an #-symbol, which is never
captured. Therefore, all accepting runs assign all n variables, and xi is either assigned to [3i − 1, 3i〉
or [3i, 3i + 1〉. Since all variables are opened and closed correctly between each (q, i − 1) and (p, i ),
we can conclude that AB,n is functional.
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One can easily check that the reduction of (B,n) to (AB,n ,dB,n ) can be done with logarith-
mic space. To prove that the reduction is indeed parsimonious (i.e., |{w ∈ Σn | w ∈ L (B,)}| =
|�AB,n�dB,n |), we show that there exists a bijection between words of length n accepted by
B, and mappings in �AB,n�dB,n . Specifically, consider the function f : {w ∈ Σn | w ∈ L (B,)} →
�AB,n�dB,n such that f (w ) is equivalent to the mapping μw : {x1, . . . ,xn } → span(dA,n ):

μw (xi ) =

{
[3i − 1, 3i〉, if wi = a
[3i, 3i + 1〉, if wi = b

for every wordw = w1 . . .wn ∈ L (B). To see that f is indeed a bijection, note that for every word
w ∈ L (B) of length n we have an accepting run of length n in A and can build a mapping in
�AB,n�dB,n . Note that all accepting runs for w give the same mapping. Moreover, note that for
two different words, different mapping are defined and then f is an injective function. In the other
direction, for every mapping in �AB,n�dB,n we can build some word of length n that is accepted by
B, and thus f is surjective. Therefore, f is a bijection, and the reduction from the Census problem
into Count[fVA] is a parsimonius reduction. This completes the proof. �

From Proposition 5.3, we know that every functional VA can be converted in polynomial time
into a functional extended VA. Therefore, Theorem 6.2 also implies intractability in counting the
number of output mappings of a functional extended VA. Given that all other classes of regular
spanners studied in this article (i.e., sequential, non-sequential) include either the class of func-
tional VA or functional extended VA, this implies that Count[L] is intractable for every class L
studied in this work that is different from L1, the class of deterministic seVA.

Discussion. In Section 5, we showed that enumerating the answers to a functional VA with output-
linear delay can be done after a pre-computation phase that takes time linear in the document
but exponential in the document spanner. The big question that is left to answer is whether enu-
merating the answers of a functional VA can be done with a lower pre-computing time, ideally
O (‖A‖ × ‖d ‖). Given that bounded delay algorithms with efficient pre-computation phases usu-
ally imply the existence of efficient counting algorithms [25], in Florenzano et al. [14] we conjec-
tured that it may be impossible to find an efficient algorithm that has pre-computation time better
than O (2‖A ‖ × ‖d ‖), which is obtained by determinizing an fVA and running the algorithm from
Section 4. However, the notion of efficiency that we used was that of data-constant delay, which
was not appropriate since we were relying on the conjecture that output-linear delay algorithms
with efficient precomputation phase imply efficient counting algorithms.

Interestingly, Amarilli et al. [3] realized this difference and refuted our conjecture, showing an
enumeration algorithm with preprocessing time O (‖A‖ω+1 × ‖d ‖) and delay O (‖A‖4) between
outputs, where 2 ≤ ω ≤ 3 and ω is an exponent for Boolean matrix multiplication (see Amarilli
et al. [3] for a more precise bound). Naturally, the results of Amarilli et al. [3] do not contradict
Theorem 6.2 given that from the enumeration algorithm in their work [3], one cannot derive a
polynomial-time algorithm for Count[fVA]. More importantly, we now understand that the con-
jecture should have stated the impossibility of an algorithm that has better pre-computation than
O (2‖A ‖ × ‖d ‖) and output-linear delay (i.e., in combined complexity). We leave this stronger con-
jecture as an open problem.

7 CONCLUSION

We believe that the algorithm described in Section 4 is a good candidate algorithm to evaluate
regular document spanners in practice. Throughout the article, we have provided a plethora of
evidence for this claim. First, the proposed algorithm is intuitive and can be described in a few
lines of code, lending itself to easy implementations. Second, its asymptotic complexity is very
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efficient for the class of deterministic sequential extended VA. Third, we have shown the cost of
executing our algorithm on arbitrary regular spanners by first converting regular spanners into
deterministic sequential extended VA. The resulting bounds, although not ideal, are reasonable
for a wide range of spanners usually encountered in practice. Finally, we have shown that better
pre-computation times for arbitrary regular spanners are not very likely, as one would expect to
be able to compute the number of their outputs more efficiently.

In terms of future directions, we are working on implementing the algorithm from Section 4
and testing it in practice. We are also looking into the fine points of optimizing its performance,
especially with respect to the different translations given in Section 5. As far as theoretical aspects
of this work are concerned, we are also interested in establishing hard lower bounds for output-
linear delay algorithms that do not rely on conjectured claims.
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