
Noname manuscript No.
(will be inserted by the editor)

Query Language based Inverses of Schema Mappings:
Semantics, Computation, and Closure Properties

Marcelo Arenas · Jorge Pérez · Juan Reutter · Cristian Riveros

Received: date / Accepted: date

Abstract The inversion of schema mappings has been iden-
tified as one of the fundamental operators for the devel-
opment of a general framework for metadata management.
During the last few years three alternative notions of in-
version for schema mappings have been proposed (Fagin-
inverse [11], quasi-inverse [15] and maximum recovery [4]).
However, these notions lack some fundamental properties
which limit their practical applicability: most of them are
expressed in languages including features that are difficult
to use in practice, some of these inverses are not guaranteed
to exist for mappings specified with source-to-target tuple-
generating dependencies (st-tgds), and it has been futile to
search for a meaningful mapping language that is closed un-
der any of these notions of inverse.

In this paper, we develop a framework for the inversion
of schema mappings that fulfills all of the above require-
ments. It is based on the notion of C-maximum recovery, for
a query language C, a notion designed to generate inverse
mappings that recover back only the information that can
be retrieved with queries in C. By focusing on the language
of conjunctive queries (CQ), we are able to find a mapping
language that contains the class of st-tgds, is closed under
CQ-maximum recovery, and for which the chase procedure

A preliminary version of this article appeared in PVLDB [3].

Marcelo Arenas
Department of Computer Science, PUC Chile
E-mail: marenas@ing.puc.cl

Jorge Pérez
Department of Computer Science, Universidad de Chile
E-mail: jperez@dcc.uchile.cl

Juan Reutter
School of Informatics, University of Edinburgh
E-mail: juan.reutter@ed.ac.uk

Cristian Riveros
Department of Computer Science, University of Oxford
E-mail: cristian.riveros@cs.ox.ac.uk

can be used to exchange data efficiently. Furthermore, we
show that our choices of inverse notion and mapping lan-
guage are optimal, in the sense that choosing a more expres-
sive inverse operator or mapping language causes the loss of
these properties.

1 Introduction

A schema mapping is a specification that describes how data
from a source schema is to be mapped to a target schema.
Schema mappings have proved to be essential for several
data-interoperability tasks such as data exchange [12], data
integration [23] and peer data management [18,20]. The re-
search on this area has mainly focused on performing these
tasks, and has produced several applications that work with
declarative specifications of schema mappings. However, as
Bernstein pointed out in [8], many information-system prob-
lems involve not only the design and integration of com-
plex application artifacts, but also their subsequent manip-
ulation. Driven by this consideration, Bernstein proposed
in [8] a general framework for managing schema mappings.
In this framework, schema mappings are usually specified
in some logical language, and high-level algebraic opera-
tors like match, merge, and compose are used to manipulate
them [8,26,28,9].

One of the operators in Bernstein’s framework is the in-
verse of a schema mapping, that has recently received con-
siderable attention [11,15,9,4,2]. Consider a mapping M
from a schema A to a schema B. Intuitively, an inverse of
M is a new mapping that describes the reverse relationship
from B to A, and is semantically consistent with the rela-
tionship established byM.

In practical scenarios, the inverse of a mapping can have
several applications. In a data exchange context [12,7], if a
mappingM is used to exchange data from a source to a tar-

2 Marcelo Arenas et al.

get schema, an inverse of M can be used to exchange the
data back to the source, thus reverting the application ofM.
As a second application, consider a peer-data management
system (PDMS) [19,20]. In a PDMS, a peer can act as a data
source, a mediator, or both, and the system relates peers by
establishing mappings between the peer schemas. Mappings
between peers are usually directional, and are used to refor-
mulate queries. For example, if there is a mappingM from
peer P1 to peer P2 and a query over P2, a PDMS can useM
to reformulate the query by using P1 as a source. Hence, an
inverse ofM would allow the PDMS to reformulate a query
over P1 in terms of P2, thus considering this time P2 as a
source. Another application is schema evolution, where the
inverse together with the composition operator play a crucial
role [9]. Consider a mappingM between schemas A and B,
and assume that schema A evolves into a schema A′. This
evolution can be expressed as a mappingM′ between A and
A′. Thus, the relationship between the new schema A′ and
schema B can be obtained by inverting mapping M′ and
then composing the result with mappingM.

All the previous work on inverting schema mappings has
been motivated by foundational issues [11,15,4,16], one of
the most delicate being the definition of a good semantics
for inversion of mappings. Yet, up to now, little attention has
been paid to the study of practical issues regarding inverting
schema mappings, and systems implementing these notions
are scarce, mostly built for specific management tasks [27].
One possible reason for this is that all the notions of inverse
proposed so far, fail to meet some fundamental requirements
that guarantee their practical applicability. Below we iden-
tify three such crucial conditions.

Existence for the most common mappings: A first crucial re-
quirement for any notion of inverse for schema mappings is
that it has to be defined for the mappings used in practice. In
particular, given that the language of source-to-target tuple-
generating dependencies (st-tgds), or GLAV constraints, is
arguably the most popular language to specify schema map-
pings, an inverse notion to be used in practice has to be ap-
plicable for each schema mapping specified in terms of these
dependencies.

Efficiency of exchanging data: In the data exchange sce-
nario, the standard procedure used to exchange data effi-
ciently with a mapping is based on the classical chase proce-
dure [12]. More precisely, given a mappingM and a source
database I , a canonical translation of I according to M is
computed by chasing I with the set of dependencies defining
M [12]. Thus, when computing an inverse ofM, it would
be desirable from a practical point of view to obtain a map-
pingM′ where the chase procedure can also be used to ex-
change data in an efficient way.

Specification of inverses: Closely related with the previous
issue, there is a representation issue. In the framework pro-

posed by Bernstein [8], schema mappings are first class citi-
zens, and high-level algebraic operators are used to manipu-
late and reuse them. In this algebraic context, a natural ques-
tion is whether a logical language for specifying mappings is
closed under inversion: given a schema mapping specified in
some language L, can its inverse be also specified in L? For
example, if a mapping is specified by a set of st-tgds, can its
inverse be specified in the same language? In practice, this is
a desirable condition as it means that inverse mappings can
be specified in a language with good properties for metadata
management.

The search for an inverse notion satisfying these require-
ments has several practical implications, as these proper-
ties are crucial to guarantee the possibility of combining
the inverse operator with other operators from Bernstein’s
framework [8]. Up to this point, no meaningful mapping
language is known to be closed under any of the inverse
notions proposed in the literature [11,15,4,16], and a few
of them where the chase can be used to exchange data effi-
ciently are not guaranteed to exist for a mapping specified
by st-tgds, which obviously undermines their practical ap-
plicability (see e.g. [11]). Thus, the main goal of this paper
is to find a notion of inverse that satisfies the three require-
ments previously mentioned. This goal amounts to (1) first
choose a natural semantics for the inverse operator, and (2)
provide a useful mapping language L that contains the lan-
guage of st-tgds, is closed under this notion of inverse, and
where the classical chase procedure can be used to exchange
data efficiently.

The issue of finding closed mapping languages for
schema mapping operators has been raised as a “prominent
issue” in metadata management [22]. Unfortunately, until
now there have been very little positive results about this is-
sue for an inverse operator [11,15,4,16]. This suggests that
one should look for a weaker notion of inverse in order to
obtain the desired closure results. But how can an inverse
notion be weakened, and how much? To answer these ques-
tions, we follow earlier work on schema mapping composi-
tion [24] and schema mapping optimization [13], and pro-
pose a new inverse notion designed to generate inverse map-
pings that recover back only the information that could have
been retrieved by a given query language.

More precisely, our framework is based on the follow-
ing idea. Let C be a class of queries. Then, assuming that
we are only interested in answering queries that belong to
C, our inverse should only care to recover the initial data
that could be retrieved by posing queries in C. Moreover,
there is a soundness requirement; we would like to recover
only sound information, that is, information that was already
present before the exchange. But, what does it mean to re-
cover sound information? By answering this simple yet fun-
damental question, we uncover a rich theory. In fact, this
gives rise to the notion of C-recovery of a mapping: a re-

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 3

verse mapping that recovers sound information for a given
mapping under a query language C. We further introduce
an order relation on C-recoveries, that leads to the notion
of C-maximum recovery, which is a mapping that recovers
the maximum amount of information for a given mapping
according to C.

By choosing different alternatives for the query language
C in the definition of the notion of C-maximum recovery, we
are able to fine-tune the power of the resulting inverses. In
particular, this allows us to characterize the notions of in-
verse proposed in the literature; as an example, it is shown
in the paper that the notion of Fagin-inverse proposed in [11]
corresponds to the notion of C-maximum recovery if C is the
class of unions of conjunctive queries with inequalities. But
more importantly, the parameterization of our notion of in-
verse by a query language allows us to find a natural notion
of inverse for schema mappings that satisfies the require-
ments mentioned before.

Let CQ be the class of conjunctive queries. The main
result of the second part of the paper states that the notion
of CQ-maximum recovery satisfies our proposed desider-
ata. That is, there exists a well-behaved language that con-
tains the class of st-tgds, that is closed under CQ-maximum
recovery, and where the classical chase procedure can be
used to exchange data efficiently. More specifically, this lan-
guage is defined by the class of CQC,6=-TO-CQ dependen-
cies, which are, essentially, st-tgds extended in the premises
with inequalities and a built in predicate C(·) to differentiate
constants from null values.

We prove several results that justify our choices of CQ-
maximum recovery as the notion of inverse for schema map-
pings, and of CQC,6=-TO-CQ dependencies as the language
for specifying schema mappings. In particular, we show in
the paper that given that the new features of CQC,6=-TO-CQ
dependencies are only allowed in the premises, this lan-
guage is good as the language of st-tgds for data exchange
purposes. Moreover, we provide in the paper an algorithm
that, given a mapping specified by a set of CQC,6=-TO-CQ
dependencies, returns a CQ-maximum recovery of this map-
ping that is also specified by a set of CQC,6=-TO-CQ depen-
dencies. Finally, we show that our choices are optimal to ob-
tain the desired aforementioned properties, in the sense that
choosing a more expressive inverse operator or mapping lan-
guage causes the loss of these properties. For instance, we
prove that a closure result cannot be obtained if instead of
using CQ-maximum recoveries as the notion for inverting
mappings, we consider either UCQ-maximum recoveries or
CQ 6=-maximum recoveries.

Organization of the paper. In Section 2, we introduce the
notation used in this paper. In Section 3, we present the no-
tion of C-maximum recovery. In Section 4, we compare our
proposal with the previous notions of inverses proposed in

the literature. In Section 5, we present an algorithm to com-
pute CQ-maximum recoveries and show a closure result for
the language of mappings specified by CQC,6=-TO-CQ de-
pendencies. In Section 6, we show the optimality of the clo-
sure result in Section 5. Finally, we present some concluding
remarks in Section 7.

1.1 New material in this paper

Preliminary versions of some of the results in this paper ap-
peared in [3]. Nevertheless, this paper contains substantial
new material. We include a new result on the separation of
C-maximum recoveries for the most common extensions of
CQ (Proposition 1). The notion of fully recoverable query
introduced in Section 4 is new, as well as the characteriza-
tions of Fagin-inverses and quasi-inverses that use this no-
tion (Propositions 2 and 3). We also include a result on the
relationship between maximum recoveries and C-maximum
recoveries (Theorem 3), which is not given in [3]. The clo-
sure result presented in Section 5 (Theorem 4) is also new as
well as the results in Section 6, which show the optimality
of this closure property (Propositions 5, 6 and 7). Beside the
aforementioned new results, in this paper we include new
examples and also many proof sketches in the body of the
paper, plus full proofs in the appendix (which are not in-
cluded in [3]).

1.2 Related work and limitations of our approach

As most of the research on schema mappings [22,12,13],
and in particular on inverting mappings [11,15,4,3,2,17],
we make the assumption that source instances contain only
constant values, while target instances contain constant and
null values, the latter to represent missing (incomplete) in-
formation (see Section 2 for a formalization of our setting).
We discuss here the limitations of this assumption when
studying inverses, as well as the related work on relaxing
this assumption [16,5].

There have been at least two investigations that relax the
assumption mentioned above in order to study the inversion
of schema mappings. In [16], the authors study a setting in
which both source and target instances contain null values,
and make the case that inverses should be studied in this
symmetric setting. Similarly, in [5] the authors study the
problem of exchanging incomplete information in a more
general setting not only including nulls in the source data,
but also considering general representation systems to ex-
change data. In both papers, the focus is on the semantics
of inversion and less attention is paid in more practical con-
cerns. In particular, although in [16] the authors introduce a
meaningful notion of inverse in the symmetric setting, the

4 Marcelo Arenas et al.

results from an algorithmic point of view are not very en-
couraging; the authors provide an algorithm to compute in-
verses of st-tgds that uses second-order quantification to ex-
press inverses, and left open whether the full power of first-
order logic is enough to express inverses even for the sim-
ple fragment of mappings specified by full st-tgds (which
are st-tgds without existential quantification). Similarly, al-
though the authors in [5] show that by adding expressiveness
to source and target instances one can obtain good proper-
ties for the existence of inverses, they do not provide an al-
gorithm to compute them.

Instead of studying a more expressive setting allowing
mappings to contain incomplete information in source and
target instances, we try to substantially improve our un-
derstanding of the classical data-exchange setting in which
source instances are considered to have only constant values.
This assumption not only allows us to simplify our study
but also allows us to provide several positive algorithmic
and practical results. Nevertheless, as observed by Fagin et
al. [16], our setting comes with a limitation on the uniform
treatment of data exchange in both directions (from source
to target and from target to source). It has been noted in [16]
that after exchanging data with a mappingM, the usual in-
stance that one would like to materialize in the target, which
is the result of the chase procedure, contains null values.
Thus, if one uses the inverse of M to exchange data back,
this time from the target to the source schema, nulls would
naturally arise in the source. This is the reason why Fagin et
al. [16] consider that the restriction of having only constant
in the source is a semantic mismatch in the study of inverses.

From the point of view advocated in [16], the proposal
for inverting mappings introduced in this paper also suffers
from the aforementioned semantic mismatch. Nevertheless,
it should be noticed that there is not yet consensus on the
community on what is the ultimate setting to study inverses
and more generally, schema mapping operators. Moreover,
most of the investigation has been carried out on the classical
(asymmetrical) data-exchange setting, and this setting had
allowed the development of several positive results on the
subject [14,11,15,4,17]. Our proposal in this paper can be
considered as continuing the top-down approach to the sub-
ject of inverting mappings, trying to close the gap between
theory and practice based on the huge amount of work on the
the classical setting of data exchange. This approach is com-
plementary to the more integral approaches proposed in [16,
5] of adding expressiveness to database instances and map-
pings. We expect that our results on the classical scenario
of data exchange, could be useful in the future research on
mappings for databases with incomplete information, on ex-
tensions of the notions of inversion in a symmetric scenario,
and on the search for the right notion of inversion together
with the right language for expressing inverses that can be
used in the next generation of schema-mapping tools.

2 Basic Notation

Our study assumes that data is represented in the rela-
tional model. A relational schema, or just schema, is a finite
set {R1, . . . , Rn} of relation symbols, with each Ri hav-
ing a fixed arity ni. As is customary in the data exchange
and schema mapping literature, we consider two types of
data values when constructing database instances: constants
and nulls [12,11,15]. More precisely, let C and N be infi-
nite and disjoint sets of constants and nulls, respectively. A
database instance (or just instance) I of schema R assigns
to each n-ary relation symbol R of R a finite n-ary relation
RI ⊆ (C∪N)n. If a tuple ā belongs toRI , we say thatR(ā)

is a fact in I . We sometimes describe an instance as a set of
facts. If we refer to a schema S as a source schema, then we
restrict all instances of S to consist only of constant values.
On the other hand, we allow null values in the instances of
any target schema T.
Schema mappings and solutions. Schema mappings are
used to define a semantic relationship between two schemas.
In this paper, we use a general representation of mappings;
given two schemas R1 and R2, a mappingM from R1 to
R2 is a set of pairs (I, J), where I is an instance of R1, and
J is an instance of R2. Further, we say that J is a solution
for I under M, if (I, J) is in M. We denote by SolM(I)

the set of all solutions for I underM.
Some of our results are focused on a special class

of mappings that we call source-to-target mappings (st-
mappings). If we refer to a mappingM from R1 to R2 as
an st-mapping, then we assume that R1 is a source schema
(that is, instances of R1 are constructed using only elements
from C) and R2 is a target schema (that is, instances of R2

are constructed by using elements from C and N).
Composition of mappings. The notion of composition has
shown to be of fundamental importance in the study of the
inverse of a schema mapping [11,15,4]. LetM12 be a map-
ping from a schema R1 to a schema R2, andM23 a map-
ping from R2 to a schema R3. Then the composition of
M12 and M23, denoted by M12 ◦ M23, is defined as the
standard composition of binary relations, that is, as the set
of all pairs of instances (I, J) such that I is an instance of
R1, J is an instance of R3, and there exists an instance K
of R2 such that (I,K) belongs toM12, and (K,J) belongs
toM23 [26,14].
Query answering. A k-ary query Q over a schema R, with
k ≥ 0, is a function that maps every instance I of R into a
k-relation Q(I) ⊆ dom(I)k, where dom(I) is the set of el-
ements mentioned in I . Notice that if k = 0 (Q is a Boolean
query), then the answer to Q is either the set with one 0-ary
tuple or the empty set, respectively denoted by true and false
in this context.

We use CQ to denote the class of conjunctive queries
and UCQ to denote the class of unions of conjunctive

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 5

queries. We note that we consider that CQ and UCQ are not
equipped with equalities. If we extend these classes by al-
lowing equalities or inequalities, then we use superscripts =

and 6=, respectively. Thus, for example, CQ= is the class of
conjunctive queries with equalities and UCQ 6= is the class
of union of conjunctive queries with inequalities. FO is the
class of all first-order queries with equality. Slightly abusing
notation, we use C(·) to denote a built-in unary predicate
such that C(a) holds if and only if a is a constant, that is,
a ∈ C. If L is any of the previous query languages, then LC

is the extension of L allowing predicate C(·). For example,
CQC,6= is the class of conjunctive queries with inequalities
and predicate C(·).

As usual, the semantics of queries in the presence of
schema mappings is defined in terms of the notion of cer-
tain answer. Assume that M is a mapping from a schema
R1 to a schema R2. Then given an instance I of R1 and
a query Q over R2, the certain answers of Q for I under
M, denoted by certainM(Q, I), is the set of tuples that be-
long to the evaluation of Q over every possible solution for
I underM, that is,

certainM(Q, I) =
⋂
{Q(J) | J ∈ SolM(I)}.

Dependencies and definability of mappings. Let L1, L2

be query languages and R1, R2 be schemas with no relation
symbols in common. An L1-TO-L2 dependency from R1 to
R2 is a formula Φ of the form

∀x̄ (ϕ(x̄)→ ψ(x̄)), (1)

where (a) x̄ is the tuple of free variables in both ϕ(x̄) and
ψ(x̄); (b) ϕ(x̄) is an L1-formula over R1 ∪ {C(·)} if C(·)
is allowed in L1, and over R1 otherwise, and (c) ψ(x̄) is an
L2-formula over R2 ∪ {C(·)} if C(·) is allowed in L2, and
over R2 otherwise. We call ϕ(x̄) the premise of Φ, and ψ(x̄)

the conclusion of Φ. We usually omit the outermost univer-
sal quantifier in L1-TO-L2 dependencies, and thus, we write
dependency (1) just asϕ(x̄)→ ψ(x̄). Moreover, for the sake
of readability, we usually write α(x̄, ȳ) → ψ(x̄) instead of
(∃ȳ α(x̄, ȳ))→ ψ(x̄) in the examples.

A fundamental class of dependencies in the schema
mapping literature is the class of source-to-target tuple-
generating dependencies (st-tgds), which corresponds to the
class of CQ-TO-CQ dependencies. Another class that we
extensively use in this paper is the class of CQ 6=,C-TO-CQ
dependencies, which are essentially st-tgds in which the
premise is extended with inequalities and predicate C(·).

Let R1 and R2 be schemas with no relation symbols in
common and Σ a set of L1-TO-L2-dependencies from R1

to R2. We say that a mappingM from R1 to R2 is specified
by Σ, denoted byM = (R1,R2, Σ), if for every instance
I of R1 and instance J of R2, it holds that (I, J) ∈ M if
and only if (I, J) satisfies the dependencies in Σ.

Homomorphisms and the chase. Given instances J1
and J2 of the same schema, a homomorphism h from J1 to
J2 is a function that is the identity over constants (h(a) = a

for every a ∈ C), maps null values to null or constant val-
ues, and for every fact R(a1, . . . , an) in J1, it holds that
R(h(a1), . . . , h(ak)) is a fact in J2. If there exists homo-
morphisms from J1 to J2 and from J2 to J1, then we say
that J1 and J2 are homomorphically equivalent.

Another notion that will be used in this document is the
notion of chase [25]. Assume that M = (S,T, Σ) is an
st-mapping, where Σ is a set of FO-TO-CQ dependencies.
Let I be an instance of S, and let JI be an instance of T
constructed as follows. For every σ ∈ Σ of the formϕ(x̄)→
∃ȳ ψ(x̄, ȳ), where x̄ = (x1, . . . , xm) and ȳ = (y1, . . . , y`)

are tuples of pairwise distinct variables with no variables in
common, and for every m-tuple ā of elements mentioned in
I such that I |= ϕ(ā), do the following. Choose an `-tuple n̄
of pairwise distinct fresh values from N, and include all the
conjuncts of ψ(ā, n̄) as facts in JI . We call instance JI the
result of chasing I with Σ, and write JI = chaseΣ(I).

The instance chaseΣ(I) has several desirable proper-
ties [12,1]. In particular, ifM = (S,T, Σ) is an st-mapping
with Σ a set of FO-TO-CQ dependencies, then for every in-
stance I of S, it holds that chaseΣ(I) ∈ SolM(I). More-
over, for every solution J ∈ SolM(I), it holds that there
exists a homomorphism from chaseΣ(I) to J [12], reason
for which chaseΣ(I) is called a canonical universal so-
lution for I under M [12,1]. This property of the chase
implies that it can be used to compute certain answers of
unions of conjunctive queries [12]. Formally, for every in-
stance I of S and query Q in UCQ over T, it holds that
certainM(Q, I) = Q(chaseΣ(I))↓, where Q(chaseΣ(I))↓
denotes the set of tuples obtained from Q(chaseΣ(I)) by
eliminating all the tuples that mention null values.

3 Query Language based Inverses of Schema Mappings

Intuitively, an inverse of a schema mapping M is a re-
verse mapping that undoes the application ofM. Any natu-
ral notion of inverse should capture the intuition that, ifM
describes how to exchange data from a source to a target
schema, then the inverse of M must describe how to re-
cover the initial data back in the source (or, at least, part of
it). Moreover, one should impose a soundness requirement;
one would like to recover only sound information, that is,
information that was already present before the exchange.

A natural question at this point is how one can formally
describe the idea of recovering sound information. In this
paper, we give a formal definition of what it means to re-
cover sound information with respect to a query language,
and use this notion to define our query-language based no-
tion of inverse of a schema mapping. It is important to no-
tice that a first notion of recovering sound information was

6 Marcelo Arenas et al.

proposed in [4] and it was called a recovery of a mapping
M. A recovery is a reverse mapping that recovers sound in-
formation with respect to a mappingM. Here, we define a
relaxation of this notion that is parameterized by a query-
language.

Before formalizing what does it mean to recover sound
information with respect to a query language, let us present
the intuition of this notion with one example.

Example 1 Let S be a source schema consisting of binary
relations R(·, ·) and S(·, ·), T a target schema consisting of
a binary relation T (·, ·), and assume that schemas S and T

are related by a mappingM specified by st-tgd:

R(x, y) ∧ S(y, z)→ T (x, z). (2)

Thus, target relation T stores the join of source relations R
and S. Consider now the reverse mapping M′ relating T

and S through the dependency:

T (x, y)→ ∃uR(x, u). (3)

This dependency states that whenever an element is in the
first component of relation T in the target database, it must
also be in the first component of relation R in the source
database. Thus, given the definition of mappingM, one can
intuitively conclude that mappingM′ recovers sound infor-
mation with respect to M. The previous intuition can be
formalized by considering the composition ofM withM′,
which represents the idea of usingM′ to bring back to the
source the information that was exchanged from the source
by using mappingM. It is important to notice thatM◦M′
is a round-trip mapping from S to S and, therefore, one can
use queries over S to measure the amount of recovered in-
formation. In particular, one can claim in this example that
M′ recovers sound information with respect toM since for
every source instance I and query Q over S, if a tuple t̄ be-
longs to the certain answers of Q for I underM◦M′, then
t̄ also belongs to the evaluation of Q over I .

Let us give an example of the previous discussion with
a concrete scenario. Assume that I is a source database
{R(a, b), R(c, d), S(b, e)}, and Q(x) is the source conjunc-
tive query ∃y R(x, y). If we directly evaluate Q over I , we
obtain the set of answers Q(I) = {a, c}. On the other hand,
if we evaluate Q over the set of instances obtained by ex-
changing data from I throughM◦M′, then we obtain the
set of answers {a}. To see why {a} is the set of certain an-
swers in this case, notice that every solution for I underM
contains the tuple T (a, e) and, hence, every solution for I
underM◦M′ contains the tuple R(a, u), for some element
u. Thus, the value a belongs to the set of certain answers of
query Q over I under mappingM◦M′. Besides, no other
element belongs to this set of certain answers as {R(a, b)}
is a solution for I underM◦M′.

We conclude this example by pointing out that given the
definitions of mappings M and M′, when computing the

certain answers of a query Q over a source instance I under
M◦M′, we obtain a subset of the direct evaluation of the
query over I , that is:

certainM◦M′(Q, I) ⊆ Q(I). (4)

ut

In general, we say that a mappingM′ is aQ-recovery of
a mappingM whenever equation (4) holds for every source
database I . For example, for the mappingsM andM′ de-
fined by dependencies (2) and (3), respectively, we have that
M′ is aQ-recovery ofM for the queryQ(x) = ∃y R(x, y).
Furthermore, it can also be shown thatM′ is a Q-recovery
ofM for every query Q. In fact, this is the reason why we
claim that M′ recovers sound information with respect to
M in this case. This intuition gives rise to the following no-
tion of C-recovery, where C is a class of queries.

Definition 1 Let C be a class of queries,M a mapping from
schema S to schema T, and M′ a mapping from T to S.
Then M′ is a C-recovery of M if for every query Q ∈ C
over S and every instance I of S, it holds that:

certainM◦M′(Q, I) ⊆ Q(I).

ut

Notice that in the previous definition we consider a class C
of queries, as in some scenarios one is interested in retriev-
ing sound information not for every possible query but for
a class of queries of interest (for instance, for the class of
conjunctive queries).

Being a C-recovery is a sound but mild requirement.
Thus, it is natural to ask whether one can compare mappings
according to their ability to recover sound information, and
then whether there is a natural way to define a notion of best
possible recovery according to a given query language. It
turns out that there is simple and natural way to do this, as
we show in the following example.

Example 2 LetM andM′ be the mappings given by depen-
dencies (2) and (3), respectively, andM′′ a mapping speci-
fied by dependency:

T (x, y)→ ∃u (R(x, u) ∧ S(u, y)).

As mentioned in Example 1, M′ recovers sound informa-
tion with respect toM as it is a Q-recovery ofM for every
query Q. Furthermore, it can be shown that this property
also holds for mappingM′′. In order to compare these map-
pings, we observe that for every queryQ and source instance
I , mappingsM′ andM′′ satisfy the following property:

certainM◦M′(Q, I) ⊆ certainM◦M′′(Q, I) ⊆ Q(I).

For instance, if I = {R(a, b), R(c, d), S(b, e)} and Q(x, y)

is conjunctive query ∃z (R(x, z) ∧ S(z, y)), then we have
that Q(I) = {(a, e)} and certainM◦M′′(Q, I) = {(a, e)},

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 7

while certainM◦M′(Q, I) = ∅. Thus, every tuple that is
retrieved by posing query Q against the space of solutions
for I underM ◦M′ is also retrieved by posing this query
over the space of solutions for I under M ◦M′′. Hence,
we can claim thatM′′ is better thanM′ recovering sound
information with respect toM. ut

The above discussion gives rise to a simple way to com-
pare two Q-recoveries M′ and M′′ of a mapping M; a
mapping M′′ recovers as much information as M′ does
forM under Q if for every source instance I , it holds that
certainM◦M′(Q, I) ⊆ certainM◦M′′(Q, I). With this way
of comparing inverse mappings, it is straightforward to de-
fine a notion of best possible recovery according to a query
language.

Definition 2 Let C be a class of queries,M a mapping from
a schema S to a schema T, and M1 a C-recovery of M.
Then M1 is a C-maximum recovery of M if for every C-
recoveryM2 ofM, it holds that:

certainM◦M2
(Q, I) ⊆ certainM◦M1

(Q, I),

for every queryQ in C over S and every instance I of S. ut

That is, M1 is a C-maximum recovery of a mapping M
if by exchanging data from I through M ◦ M1, one can
retrieve by using queries from C as much information as by
exchanging data from I through M ◦ M2, for any other
C-recovery M2 of M. For instance, for the mappings M
and M′′ mentioned in Example 2, it holds that M′′ is an
ALL-maximum recovery of M, where ALL is the class of
all queries.

3.1 On the choice of a query language

At this point, a natural question is what is the influence of the
parameter C on the notion of C-maximum recovery. In the
following sections, we show that this parameter is essential
to obtain a good mapping language for inversion, but first
we need to show how different selections of the language
C give rise to essentially different notions of inverse. Let us
start with an example relating the classes UCQ and CQ.

Example 3 LetM be a mapping specified by st-tgds:

A(x, y)→ R(x, y)

B(x)→ R(x, x)

It can be shown that mappingM1 specified by dependency:

R(x, y) → A(x, y) ∨
(
B(x) ∧ x = y

)
(5)

is a UCQ-maximum recovery ofM.
Notice that to specify M1, we use a disjunction in the

conclusion of dependency (5), which can be shown to be

unavoidable as UCQ is used to retrieve information. Un-
fortunately, tgds with disjunctions on the conclusion make
the processes of exchanging data and computing certain an-
swers much more complicated. On the other hand, if we fo-
cus on CQ to retrieve information, then, intuitively, there is
no need for disjunctions in the right-hand side of the rules
as conjunctive queries cannot extract disjunctive informa-
tion. In fact, it can be shown that a CQ-maximum recovery
ofM is specified by dependency:

R(x, y) ∧ x 6= y → A(x, y).

Intuitively, the only conjunctive information that one can ob-
tain from a target instance is that if R(a, b) is a fact in the
target with a 6= b, then the fact A(a, b) was a fact in the
initial source instance. Notice that if R(a, a) is in the target,
we cannot assume that this information came either from re-
lation A(·, ·) or B(·). Although in this case one can safely
assume that the initial source instance contained either the
fact A(a, a) or the fact B(a), this information is useless if
we only consider conjunctive queries to extract data. ut

The above example suggests that the notion of CQ-
maximum recovery is a strict generalization of the notion of
UCQ-maximum recovery. The following proposition pro-
vides a complete picture of the relationship of the notions of
C-maximum recovery, when one focuses on mappings spec-
ified by st-tgds and the most common extensions of CQ.

Proposition 1

(1) There exist st-tgd mappings M and M′ such that M′
is a UCQ-maximum recovery of M but not a CQ 6=-
maximum recovery ofM.

(2) There exist st-tgd mappings M and M′ such that M′
is a CQ 6=-maximum recovery of M but not a UCQ-
maximum recovery ofM.

Proposition 1 tells us that the notions of UCQ- and
CQ 6=-maximum recovery are incomparable, even in the case
of st-tgds. Moreover, we can also conclude from this propo-
sition that if C1 and C2 are any of the classes of queries CQ,
UCQ, CQ 6= or UCQ 6=, and C1 (C2, then there exist map-
pingsM andM′ such thatM′ is a C1-maximum recovery
ofM but not a C2-maximum recovery ofM.

We now move to the proof of Proposition 1.

Proof (Proposition 1) (1) Consider a source schema S =

{P (·), R(·)}, a target schema T = {T (·, ·), S(·)} and a
mappingM = (S,T, Σ), where Σ consists of the follow-
ing st-tgds:

P (x)→ ∃y T (x, y)

R(x)→ S(x)

8 Marcelo Arenas et al.

Consider also a mappingM′ = (T,S, Σ′), where Σ′ con-
sists of the following dependencies:

T (x, x) ∧ S(y)→ P (y) (6)

T (x, y)→ P (x) ∧ P (y) (7)

S(x)→ R(x)

We first show thatM′ is not a CQ 6=-recovery ofM, from
which we conclude thatM′ is not a CQ 6=-maximum recov-
ery ofM. Consider instance I = {P (a), R(b)} with a 6= b.
Notice that every solution for I under mappingM contains
facts S(b) and T (a, u) for some value u. Thus, by definition
ofM′, we have that every solution for I underM◦M′ con-
tains facts P (a), P (u) (dependency (7)) and, if u = a, then
it also contains fact P (b) (dependency (6)). Assume that Q
is the following boolean query in CQ 6=:

∃x∃y (P (x) ∧ P (y) ∧ x 6= y).

Then we have that certainM◦M′(Q, I) = true but Q(I) =

false, from which we conclude that M′ is not a CQ 6=-
recovery ofM.

We now prove that M′ is a UCQ-maximum recovery
of M. Let Q be a m-ary query in UCQ over S (m ≥
0) and I an instance of S. Next we show that Q(I) =

certainM◦M′(Q, I), from which we conclude that M′ is
a UCQ-maximum recovery ofM. Consider the instance

I = {P (a1), . . . , P (ak), R(b1), . . . , R(b`)},

where {a1, . . . , ak} and {b1, . . . , b`} are not necessarily dis-
joint sets, and let J = chaseΣ(I). It is easy to see that

J = {T (a1, n1), . . . , T (ak, nk), S(b1), . . . , S(b`)},

where n1, . . ., nk is a sequence of pairwise distinct null val-
ues. Now letK = chaseΣ′(J). It is straightforward to prove
that K is the instance given by the set of facts

{P (a1), P (n1), . . . , P (ak), P (nk), R(b1), . . . , R(b`)}.

Thus, given that Q is a monotone query, we have that
Q(I) ⊆ Q(K), and given that Q is a query in UCQ
and there exists a homomorphism h from K to I that
is the identity on the constants, we have that Q(K) ∩
{a1, . . . , ak, b1, . . . , b`}m ⊆ Q(I). Therefore, we conclude
that Q(I) = (Q(K) ∩ {a1, . . . , ak, b1, . . . , b`}m), from
which we obtain that Q(I) = certainM◦M′(Q, I), given
that the certain answers to Q over I underM◦M′ can be
obtained by evaluating Q over K and then removing the tu-
ples containing null values [12,14].

(2) Consider a source schema S = {D(·), E(·), F (·)},
a target schema T = {P (·), R(·)}, and a mapping M =

(S,T, Σ), where Σ consists of the following st-tgds:

D(x)→ P (x)

E(x)→ P (x)

F (x)→ R(x)

Consider also a mappingM′ = (T,S, Σ′), where Σ′ con-
sists of dependency R(x) → F (x). We show next thatM′
is not a UCQ-maximum recovery of M, and we show in
Appendix A.1 thatM′ is a CQ 6=-maximum recovery ofM,
from which we conclude that (2) holds.

Let Σ′′ consists of dependency P (x)→ (D(x)∨E(x))

andM′′ = (T,S, Σ′′). From their definitions, one can eas-
ily see that M′ and M′′ are UCQ-recoveries of M. We
show next thatM′ is not as informative asM′′ w.r.t. queries
in UCQ, which implies thatM′ is not a UCQ-maximum re-
covery ofM. Consider the instance I = {D(a)} of S, and
let Q be the following boolean query in UCQ over S:

∃xD(x) ∨ ∃yE(y)

Let I∅ be the empty instance of schema S. It is clear by
the definitions of M and M′ that I∅ is a possible solu-
tion for I under the composition M ◦M′. Thus, we have
that certainM◦M′(Q, I) = false since Q(I∅) = false.
On the other hand, every solution for I under M ◦ M′′
contains fact D(a) or fact E(a) (as every solution for I
under M contains fact P (a)), from which we conclude
that certainM◦M′′(Q, I) = true. Therefore, we have that
certainM◦M′′(Q, I) 6⊆ certainM◦M′(Q, I), which implies
thatM′ is not a UCQ-maximum recovery ofM. ut

We have learned in this section, specifically in Exam-
ple 1, that by focusing on some particular query languages
in the notion of C-maximum recovery, one can avoid em-
ploying in mapping languages features that are difficult to
use in practice. This observation motivates the search for a
class of queries that gives rise to an inverse notion meeting
the requirements mentioned in the introduction, namely that
every mapping specified by a set of st-tgds admits an inverse
under this new notion, that this mapping can be expressed in
a language that has the same good properties for data ex-
change as st-tgds, and that the language is closed under this
notion of inverse. A natural starting point in this search is
the class of conjunctive queries, as this class is widely used
in practice and, in particular, has been extensively studied in
the context of data exchange [12,7]. In fact, from the results
in [4], it is straightforward to prove that every mapping spec-
ified by a set of st-tgds has a CQ-maximum recovery. Hence,
it remains to show that the notion of CQ-maximum recovery
admits a closed mapping language with good properties for
data exchange. In Section 5, we show that this is indeed the
case. But before going into the details of this result, we show
in Section 4 that the general notion of C-maximum recovery
is of independent interest, as it can be used to characterize
the previous notions of inverse for schema mappings pro-
posed in the literature [11,15,4]. Moreover, in Section 4 we
also provide some theoretical tools that are fundamental to
proving that the notion of CQ-maximum recovery admits a
closed mapping language.

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 9

4 C-Maximum Recovery as a Unifying Framework for
Inverse Operators

During the last few years, several different notions of inverse
have been proposed for schema mappings, among them one
can find Fagin-inverse [11], quasi-inverse [15], and maxi-
mum recovery [4]. The goal of this section is to establish
the relationship between these notions and the concept of C-
maximum recovery. Specifically, we show that the notion of
C-maximum recovery provides a unified framework for the
seemingly different notions of inverse previously proposed
in the literature, thus improving the understanding of the
problem of inverting schema mappings. We recall that in this
paper we are consider the typical data exchange setting in
which source instances contain only constant values. Thus,
we only compare with the notions of inverses proposed in
this setting [11,15,4] and leave for future research the com-
parison with the notions proposed in the setting in which
source instances can contain incomplete information [16,5].

We begin in Sections 4.1 and 4.2 by showing that
both Fagin-inverse and quasi-inverse can be characterized
in terms of the notion of C-maximum recovery, for some
specific choices of the query language C. Next, in Section
4.3, we formalize the intuitive idea that maximum recovery
should be the best possible way to recover information given
by any possible query, and show that, ifM′ is a maximum
recovery ofM, thenM′ is an ALL-maximum recovery of
M, where ALL is the class of all queries. Finally, in Sec-
tion 4.4, we show how the concept of C-maximum recov-
ery can be obtained from the notion of maximum recovery
by taking into consideration the concept of schema mapping
equivalence under a query language, which has been studied
in some contexts such as schema mapping composition [24]
and schema mapping optimization [13].

4.1 Fagin-inverse

We start our study by considering the notion of Fagin-
inverse [11]. Roughly speaking, Fagin’s definition is based
on the idea that a mapping composed with its inverse
should be equal to the identity schema mapping. To define
this notion, Fagin first defines an identity mapping IdR as
{(I1, I2) | I1, I2 instances of R and I1 ⊆ I2}, which is
an appropriate identity for the mappings specified by st-
tgds [11]. Then given a mapping M from a schema S to
a schema T, a mapping M′ from T to S is said to be a
Fagin-inverse ofM ifM◦M′ = IdS.

In order to characterize the notion of Fagin-inverse in
terms of the notion of C-maximum recovery, we first in-
troduce a concept that measures the ability of an inverse
mapping to recover sound data according to a query lan-
guage, we then characterize the notion of Fagin-inverse in

terms of this concept, and we finally use this characteriza-
tion to establish the relationship between Fagin-inverses and
C-maximum recoveries. More precisely, letM be a mapping
from a schema R1 to a schema R2,M′ a mapping from R2

to R1 and Q a query over R1. Then we say that M′ fully
recovers Q for M if for every instance I of R1, it holds
that:

certainM◦M′(Q, I) = Q(I).

That is, a mappingM′ fully recovers a query Q for a map-
ping M if all data extracted by using Q can be recovered
after translating the source information with M and then
back withM′. Moreover, given a class C of queries, we say
that M′ fully recovers C for M if for every query Q ∈ C
over R1, it holds thatM′ fully recovers Q forM.

The following proposition shows that the Fagin-inverses
of a mapping M specified by a set of st-tgds exactly cor-
responds with the mappings that fully recover forM every
union of conjunctive queries with inequalities.

Proposition 2 LetM = (S,T, Σ), where Σ is a set of st-
tgds, and assume that M is Fagin-invertible. Then a map-
ping M′ is a Fagin-inverse of M if and only if M′ fully
recovers UCQ 6= forM.

Proof We start by showing the only if direction, that is, if
M′ is a Fagin-inverse of M, then for every query Q in
UCQ 6= over S, it holds thatM′ fully recovers Q forM.

Let Q be a query in UCQ 6= over S and I an instance
of S. We have to show that certainM◦M′(Q, I) = Q(I).
Given that M′ is a Fagin-inverse of M, we have that
I ⊆ J for every J ∈ SolM◦M′(I). Thus, given that
Q is a monotone query, we have that Q(I) ⊆ Q(J)

for every J ∈ SolM◦M′(I). It follows that Q(I) ⊆
certainM◦M′(Q, I) and, thus,Q(I) = certainM◦M′(Q, I)

since I ∈ SolM◦M′(I).
We show now the if direction, that is, if for every query

Q in UCQ 6= over S, it holds that M′ fully recovers Q for
M, thenM′ is a Fagin-inverse ofM. By the definition of
Fagin-inverse, the latter hold if M ◦M′ = IdS. Thus, to
show thatM′ is a Fagin inverse ofM, we prove that:

(I, J) ∈M ◦M′ if and only if I ⊆ J.

(⇒) Assume that (I, J) ∈ M ◦ M′. We need to
show that I ⊆ J . To this end, for every R ∈ S of ar-
ity k, let QR be the identity query for table R, that is,
QR(x1, . . . xk) = R(x1, . . . , xk). Given that M′ fully re-
covers each of these queries forM, we have that QR(I) =

certainM◦M′(QR, I) for every R ∈ S. Thus, we conclude
that for every K ∈ SolM◦M′(I) and R ∈ S, it holds that
QR(I) ⊆ QR(K), that is, RI ⊆ RK . Hence, we have that
I ⊆ J since J ∈ SolM◦M′(I).

(⇐) Assume that I ⊆ J . To prove that (I, J) ∈ M ◦
M′, we first show that (J, J) ∈M ◦M′.

10 Marcelo Arenas et al.

For the sake of contradiction, assume that (J, J) 6∈ M ◦
M′. Then for every relation R ∈ S, define a Boolean query
QR as follows. Assuming that the arity of R is k and RJ

contains n tuples, QR is the following query in UCQ 6=:

∃x̄1 · · · ∃x̄n∃x̄n+1

[
(∧

1≤i≤n+1

R(x̄i)

)
∧
(∧

1≤i<j≤n+1

x̄i 6= x̄j

)]
,

where ū 6= v̄ stands for the formula
∨k
`=1 ui 6= vi, for k-

tuples ū = (u1, . . . , uk) and v̄ = (v1, . . . , vk). Thus, QR
says that relation R contains at least n + 1 tuples. Let Q be
the following query in UCQ 6=:

Q =
∨
R∈S

QR.

By the construction of Q, it is clear that Q(J) = false.
By the direction (⇒), we know that if (J, J ′) ∈M◦M′,

then J ⊆ J ′ (notice that the proof of direction (⇒) was
done for an arbitrary pair of instances in M ◦M′). Thus,
we have that for every J ′ ∈ SolM◦M′(J), there exists
R ∈ S such that RJ (RJ

′
, given that J ⊆ J ′ and

J 6= J ′ (since (J, J) 6∈ M ◦ M′). We conclude that
Q(J ′) = true for every J ′ ∈ SolM◦M′(J) and, hence,
certainM◦M′(Q, J) = true. But this contradicts the fact
that M′ fully recovers Q for M since Q(J) = false and,
thus, Q(J) 6= certainM◦M′(Q, J).

Given that (J, J) ∈M◦M′, we have that there exists an
instance K of T such that (J,K) ∈ M and (K,J) ∈ M′.
Thus, given thatM is specified by a set of st-tgds and I ⊆ J ,
we conclude that (I,K) ∈ M. Hence, given that (K,J) ∈
M′, we have that (I, J) ∈ M ◦ M′. This concludes the
proof of the if direction. ut

Fagin et al. [16] introduce a notion similar to our notion of
fully recoverable query when studying extended inverses in
a setting in which null values are allowed to appear in source
instances. In [16] the authors prove a weaker form of Propo-
sition 2 stating that (extended) Fagin-inverses are capable of
fully recovering all the class conjunctive queries (we refer
the reader to Theorem 6.11 in [16] for a precise formula-
tion). Our result is in a sense stronger as we are able to com-
pletely characterize Fagin-inverses as the mapping that fully
recover the class UCQ 6=.

We are now ready to state the main theorem of this sec-
tion, that characterizes Fagin-inverses as UCQ 6=-maximum
recoveries.

Theorem 1 Let M = (S,T, Σ), where Σ is a set of st-
tgds, and assume that M is Fagin-invertible. Then a map-
ping M′ is a Fagin-inverse of M if and only if M′ is a
UCQ 6=-maximum recovery ofM.

Proof (⇒) IfM′ is a Fagin-inverse ofM, then by Proposi-
tion 2 we have thatM′ fully recovers UCQ 6= forM, which
immediately implies thatM′ is a UCQ 6=-maximum recov-
ery ofM.

(⇐) Assume thatM′ is a UCQ 6=-maximum recovery of
M. Given thatM is Fagin-invertible, there exists a Fagin-
inverse M? of M. By Proposition 2, we have that M?

fully recovers UCQ 6= for M. Thus, we have that M? is a
UCQ 6=-recovery of M and, hence, we conclude, from the
fact thatM′ is a UCQ 6=-maximum recovery ofM, that for
every query Q in UCQ 6= over S and every instance I of S:
certainM◦M?(Q, I) ⊆ certainM◦M′(Q, I). Therefore, we
deduce thatM′ fully recovers UCQ 6= forM from the fact
thatM? fully recovers UCQ 6= forM. Hence, considering
again Proposition 2, we deduce that M′ is a Fagin-inverse
ofM. ut

4.2 Quasi-inverse

We continue our study by considering the notion of quasi-
inverse [15]. The idea behind quasi-inverses is to relax the
notion of Fagin-inverse by not differentiating between in-
stances that are data-exchange equivalent. Two instances I1,
I2 are data-exchange equivalent w.r.t. a mapping M, de-
noted by I1 ∼M I2, if the space of solutions of I1 underM
coincides with the space of solutions of I2 underM, that is,
if SolM(I1) = SolM(I2) [15]. Given a mappingM1 from
S to S, mappingM1[∼M,∼M] is defined as [15]:

M1[∼M,∼M] = {(I1, I2) | ∃(I ′1, I ′2) such that

I1 ∼M I ′1, I2 ∼M I ′2 and (I ′1, I
′
2) ∈ M1}

ThenM′ is a quasi-inverse ofM if

(M◦M′)[∼M,∼M] = IdS[∼M,∼M],

where IdS is the same identity mapping used in the defini-
tion of the notion of Fagin-inverse.

It turns out that the notion of quasi-inverse can be char-
acterized in terms of the notion of C-maximum recovery, just
as for the case of Fagin-inverse. However, this characteriza-
tion is slightly more technical, since now the choice of the
query language C depends on the mapping that is being in-
verted. More specifically, given a mappingM specified by
a set of st-tgds, we define next a set of unions of conjunc-
tive queries with inequalities CM that depends on the depen-
dencies that specify M, and then we show that the quasi-
inverses of M correspond to the CM-maximum recoveries
ofM.

In order to define the class of queries CM for a given
mapping M, we need to recall some concepts regarding
query rewriting. Assume that M is a mapping from a
schema S to a schema T, and that Q is a query over T. We
say that a query Q′ over S is a source rewriting of Q w.r.t.

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 11

M if for every instance I of S, the set Q′(I) is exactly the
set of certain answers of Q over I with respect to M, that
is, Q′(I) = certainM(Q, I). It is known that ifM is speci-
fied by a set of st-tgds and Q is a conjunctive query over the
target schema, a source rewriting of Q always exists [1,29].
Moreover, it can be shown that in this case a source rewrit-
ing of Q can be expressed as a union of conjunctive queries
with equality predicates (UCQ=). As an example, consider
a mapping given by the following st-tgds:

A(x, y)→ P (x, y),

B(x)→ P (x, x),

and let Q be the target query P (x, y). Then a source rewrit-
ing of Q is given by the query:

A(x, y) ∨ (B(x) ∧ x = y),

which is a query in UCQ=. Notice that in this rewriting, we
do need disjunction and the equality x = y.

Let M = (S,T, Σ), where Σ is a set of st-tgds, and
consider the following set of queries over S:

PM = {χ(x̄) | there exists ϕ(x̄)→ ψ(x̄) ∈ Σ
such that χ(x̄) is a source rewriting of ψ(x̄) w.r.t.M}.

Notice that PM is a set of queries in UCQ= since Σ is a set
of st-tgds. Then define CM as the set of union of conjunc-
tive queries with inequalities obtained by closing PM under
conjunction, disjunction, existential quantification, variable
substitution, and the use of inequalities between free vari-
ables.

Example 4 Consider again the mapping M given by st-
tgds:

A(x, y)→ P (x, y),

B(x)→ P (x, x).

We have that

PM = {A(x, y) ∨ (B(x) ∧ x = y), A(x, x) ∨B(x)}

since A(x, y)∨ (B(x)∧ x = y) and A(x, x)∨B(x) are the
source rewritings of P (x, y) and P (x, x) w.r.t.M, respec-
tively. Thus, the following are some of the queries in the set
CM:

A(x, y) ∨ (B(x) ∧ x = y), ∃yA(x, y) ∨B(x),
A(x, y) ∧ x 6= y, ∃x∃y (A(x, y) ∧ x 6= y),
∃xA(x, x) ∨ ∃yB(y)

ut

As our first result regarding the notion of quasi-inverse, we
show that the quasi-inverses of a mapping M specified by
a set of st-tgds exactly corresponds with the mappings that
fully recover CM for M. Notice that this result is the ana-
logue of Proposition 2.

Proposition 3 LetM = (S,T, Σ), where Σ is a set of st-
tgds, and assume that M is quasi-invertible. Then a map-
ping M′ is a quasi-inverse of M if and only if M′ fully
recovers CM forM.

The proof of Proposition 3 is given in Appendix A.2. With
this result, we are ready to state the main theorem of this
section, that characterizes the quasi-inverses of a mapping
M as CM-maximum recoveries.

Theorem 2 LetM = (S,T, Σ), whereΣ is a set of st-tgds,
and assume thatM is quasi-invertible. Then a mappingM′
is a quasi-inverse ofM if and only ifM′ is a CM-maximum
recovery ofM.

The proof of this theorem is given in Appendix A.3.

4.3 Maximum Recovery

We consider now the notion of maximum recovery proposed
in [4]. In that paper, the authors follow a different approach
to define a notion of inversion. In fact, the main goal of [4]
is not to define a notion of inverse mapping, but instead to
give a formal definition for what it means for a mapping
M′ to recover sound information with respect to a mapping
M. Such a mappingM′ is called a recovery ofM in [4]. In
general, there may exist many possible recoveries for a given
mapping M. Given that, an order relation on recoveries is
introduced in [4], and then it is shown that this naturally
gives rise to the notion of maximum recovery, which is a
mapping that brings back the maximum amount of sound
information.

Let M be a mapping from a schema R1 to a schema
R2, and IdR1

the identity schema mapping over R1, that is,
IdR1

= {(I, I) | I is an instance of R1}. When trying to in-
vertM, the ideal would be to find a mappingM′ from R2 to
R1 such thatM◦M′ = IdR1

. Unfortunately, in most cases
this ideal is impossible to reach (for example, for the case
of mappings specified by st-tgds [11]). If for a mappingM,
there is no mappingM1 such thatM◦M1 = IdR1 , at least
one would like to find a schema mappingM2 that does not
forbid the possibility of recovering the initial source data.
This gives rise to the notion of recovery proposed in [4]. For-
mally, given a mappingM from a schema R1 to a schema
R2, a mapping M′ from R2 to R1 is a recovery of M if
(I, I) ∈ M ◦M′ for every instance I of R1 [4]. In gen-
eral, if M′ is a recovery of M, then the smaller the space
of solutions generated by M ◦ M′, the more informative
M′ is about the initial source instances. This naturally gives
rise to the notion of maximum recovery; given a mapping
M and a recovery M′ of it, M′ is said to be a maximum
recovery ofM if for every recoveryM′′ ofM, it holds that
M◦M′ ⊆M◦M′′ [4].

12 Marcelo Arenas et al.

The following theorem presents our main result for this
section regarding the notion of maximum recovery. Part (1)
of Theorem 3 shows that for every class of queries C, if a
mappingM′ is a maximum recovery ofM, thenM′ is also
a C-maximum recovery of M. Thus, a maximum recovery
is the best possible alternative to retrieve sound information.
In particular, one obtains as a corollary (part (2) of Theorem
3) that ifM′ is a maximum recovery ofM and a query Q
can be fully recovered forM, thenM′ also fully recovers
Q forM.

Theorem 3 Let M be a mapping from a schema R1 to a
schema R2,M′ a maximum recovery ofM and Q an arbi-
trary query over R1.

(1) IfM′′ recovers sound information forM under Q, then
for every instance I of R1:

certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I) ⊆ Q(I).

(2) If some mapping fully recovers Q forM, thenM′ fully
recovers Q forM.

It is important to notice that from the previous theorem it
is possible to conclude that if M′ is a maximum recovery
of M, then M′ is an ALL-maximum recovery of M. The
converse of this last statement does not hold, as it can be
proved that there exist mappingsM andM′ such thatM′
is an ALL-maximum recovery ofM butM′ is not a max-
imum recovery of M. The example that prove this fact is
very involved and for the sake of the space we skip this con-
struction here.

4.4 C-maximum recovery, maximum recovery and
C-equivalence

The idea of parameterizing a notion by a class of queries is
not new in schema mappings management. In fact, this idea
was developed by Madhavan and Halevy [24] to study the
composition operator, and was also used by Fagin et al. [13]
to develop a theory of schema-mapping optimization. In par-
ticular, the authors of these papers considered the notion of
certain-answers equivalence of mappings [24,13]. Let C be
a class of queries. Then two mappings M and M′ from a
schema R1 to a schema R2 are C-equivalent, denoted by
M ≡C M′, if for every query Q ∈ C over R2 and every
instance I of R1: certainM(Q, I) = certainM′(Q, I).

IfM1 andM2 are C-equivalent, then we know that they
behave in the same way with respect to the queries in C.
Thus, if one is going to retrieve information by using only
queries from C, a mappingM can be replaced by any other
C-equivalent mapping. In particular, it can be replaced by
a mapping that can be handled more efficiently, thus opti-
mizing the initial schema mapping [13]. In the notion of C-
maximum recovery, this idea of only considering a particular

query language to retrieve information is also present. The
following result shows that the notions of maximum recov-
ery and C-maximum recovery can be related through the no-
tion of C-equivalence [13]. This result will play a central role
when we present our algorithm to compute CQ-maximum
recoveries in Section 5.

Proposition 4 Let M be a mapping from a schema R1 to
a schema R2, M′, M′′ be mappings from R2 to R1, and
assume thatM′ is a maximum recovery ofM.

(1) M′′ is a C-maximum recovery ofM iff (M◦M′′) ≡C
(M◦M′).

(2) If M′′ ≡C M′, then M′′ is a C-maximum recovery of
M.

5 A Schema Mapping Language Closed Under
Inversion

The main result of this section is that, when we consider the
notion of CQ-maximum recovery as our semantics for in-
verting st-mappings, there exists a language that is closed
under inversion, contains the class of st-tgds, and for which
the standard chase procedure can be used to exchange data.
The language corresponds to CQC,6=-TO-CQ dependencies
an extension of the st-tgds by allowing formulas in the
premises to contain inequalities and a built in predicate C(·)
to differentiate constants from null values. The fact that
CQC,6=-TO-CQ dependencies contain the class of st-tgds
is obvious, and it is an easy observation that the standard
chase procedure can be used to construct a canonical univer-
sal solution in the same way as it is done for st-tgds (see e.g.
[12]). Thus, we devote the rest of the section in showing that
our choice of CQ-maximum recoveries and CQC,6=-TO-CQ
dependencies satisfy the sought-after closure result. More
specifically, we prove that every st-mapping specified by a
set of CQC,6=-TO-CQ dependencies has a CQ-maximum re-
covery also specified by a set of CQC,6=-TO-CQ dependen-
cies (Theorem 4). Although this language has appeared be-
fore in the literature about inverses of schema mappings [15,
17], it has not been used to study closure properties such as
the ones considered in this paper.

It should be noticed that our closure result (Theorem 4)
is specific to the case of st-mappings, that is, mappings that
consider only constant values in source instances. In this
scenario inverses are ts-mappings which are mappings that
transform instances with constant and null values into source
instances that only contain constant values. This has been
a common assumption on the literature on inverting map-
pings [11,15,4,17]. As we have mentioned, Fagin et al. [16]
have recently raised the issue of the asymmetry in the study
of the inverse operator, and have proposed to study the in-
verse operator in a symmetric scenario in which both source

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 13

and target schemas have constant and null values. We leave
the study of closure properties in this symmetric scenario for
future work.

The following Theorem formalizes the closure result.

Theorem 4 Every st-mapping specified by a set of
CQC,6=-TO-CQ dependencies, has a CQ-maximum recov-
ery specified by a set of CQC,6=-TO-CQ dependencies.

To prove the theorem, we provide in this section an al-
gorithm for computing a CQ-maximum recovery of an st-
mapping specified by a set of CQC,6=-TO-CQ dependencies
(see Theorem 5), and whose output is a mapping specified
in the same language. In order to simplify the exposition
of the procedure, for the rest of this section fix a set Σ of
CQC,6=-TO-CQ dependencies from a source schema S to a
target schema T, and letM = (S,T, Σ) be the st-mapping
specified by Σ that is the input for our algorithm.

5.1 An overview of the algorithm

Our algorithm works as follows. We start by computing a
maximum recovery M′ of M by using the algorithm pre-
sented in [4]. Given thatM′ is a maximum recovery ofM,
we have by Theorem 3 thatM′ is also a CQ-maximum re-
covery ofM. However, by the results in [4], we know that
M′ is specified by a set of CQC, 6=-TO-UCQ=,6= dependen-
cies, which have features beyond CQC,6=-TO-CQ depen-
dencies such as disjunctions, equalities, and inequalities in
the conclusions of a rule. Thus, our algorithm performs a
series of transformations onM′ to eliminate these features
while preserving conjunctive-query equivalence. To be more
precise, we first use a procedure ELIMINATEEQINEQ that
eliminates some equalities and inequalities fromM′ to pro-
duce a mappingM′′ that is also a maximum recovery ofM.
Then we use some graph-theoretical techniques to devise a
procedure ELIMINATEDISJUNCTIONS that produces a map-
pingM? fromM′′ such thatM? ≡CQ M′′ and the depen-
dencies specifying M? do not include disjunctions in the
conclusions. That is, the output of this last procedure is a set
of CQC,6=-TO-CQ dependencies. By using Proposition 4,
we conclude that the mappingM? is also a CQ-maximum
recovery ofM, thus obtaining our desired result.

5.2 A detailed description of the algorithm

We start with a simple observation. Consider the set Σ ob-
tained from Σ by dropping all the atoms of the form C(x)

that appear in the premises of the dependencies inΣ. Notice
that, sinceM is a source-to-target mapping, every instance
in the domain of M is composed only by elements in C.
This implies that the st-mapping specified by Σ is exactly

M (that is, if M = (S,T, Σ), then we have that for ev-
ery instance I of S: SolM(I) = SolM(I)). Thus, in what
follows we work with Σ instead of Σ.

We split the presentation of our algorithm in several sub-
procedures.

Computing a maximum recovery for Σ

We start by computing a set Σ′ that specifies a maximum
recovery of our initial mappingM. For this we use the algo-
rithm MAXIMUMRECOVERY proposed in [4], which works
for mappings specified by sets of FO-TO-CQ dependencies,
with Σ as input.

Let M be the st-mapping specified by Σ

and M′ = (T,S, Σ′) the output of the call
MAXIMUMRECOVERY(M). Given that M is speci-
fied by a set of CQ 6=-TO-CQ dependencies, we have by the
definition of algorithm MAXIMUMRECOVERY that Σ′ is
a set of CQC-TO-UCQ=,6= dependencies such that every
dependency in Σ′ is of the form

∃ȳ ψ(x̄, ȳ) ∧C(x̄)→ β1(x̄) ∨ · · · ∨ βk(x̄),

where k ≥ 1 and

1. ∃ȳ ψ(x̄, ȳ) is a query in CQ which is the conclusion of
some of the dependencies in Σ,

2. x̄ is the tuple of free variables of ∃ȳ ψ(x̄, ȳ) and of
βi(x̄), for every i ∈ {1, . . . , k},

3. C(x̄) is a conjunction of formulas C(x) for every x in
x̄, and

4. every formula βi(x̄) is a query in CQ=,6= such that:
– if the inequality z 6= z′ occurs in βi(x̄), then z and
z′ occur in some relational atom of βi(x̄),

– if the equality z = z′ occurs in βi(x̄), then z or z′

(but not necessarily both) occur in some relational
atom of βi(x̄).

Moreover, we can assume, without loss of generality, that for
every i ∈ {1, . . . , k}, the equalities occurring in the formula
βi(x̄) are only among free variables (equalities among ex-
istentially quantified variables, or among free variables and
existentially quantified variables, can be eliminated by the
corresponding variable replacements).

In what follows, we show how disjunctions, equalities,
and inequalities can be eliminated from the conclusions of
the dependencies defining M′, in such a way that the ob-
tained mapping is a CQ-maximum recovery ofM.

Eliminating equalities and inequalities among free variables
from the conclusions of Σ′

In this step, we construct a set Σ′′ that defines a maxi-
mum recovery ofM, and such that the dependencies in Σ′′

have neither equalities among free variables nor inequalities

14 Marcelo Arenas et al.

among free variables in their conclusions. To this end, we
use a notion similar to what is called complete description
in [15]. Let x̄ = (x1, . . . , xn) be a tuple of distinct vari-
ables. Consider a partition π of the set {x1, . . . , xn}, and
let [xi]π be the equivalence class induced by π to which
xi belongs (1 ≤ i ≤ n). Let fπ : {x1, . . . , xn} →
{x1, . . . , xn} be a function such that fπ(xi) = xj if j is
the minimum over all the indexes of the variables in [xi]π .
That is, fπ is a function that selects a unique representa-
tive from every equivalence class induced by π. For ex-
ample, if x̄ = (x1, x2, x3, x4, x5) and π is the partition
{{x1, x4}, {x2, x5}, {x3}}, then fπ(x1) = x1, fπ(x2) =

x2, fπ(x3) = x3, fπ(x4) = x1, fπ(x5) = x2. We also
consider the formula δπ that is constructed by taking the
conjunction of the inequalities fπ(xi) 6= fπ(xj) whenever
fπ(xi) and fπ(xj) are distinct variables. In the above ex-
ample we have that δπ is the formula x1 6= x2 ∧ x1 6=
x3 ∧ x2 6= x3. Finally, given a conjunction α of equali-
ties and inequalities and a conjunction β of inequalities, we
say α is consistent with β if there is an assignment of val-
ues to the variables in α and β that satisfies all the equalities
and inequalities in these formulas. For example, x1 = x2 is
consistent with x1 6= x3, while x1 = x2 ∧ x2 = x3 is not
consistent with x1 6= x3.

Recall that Σ′ is a set of CQC-TO-UCQ=,6= dependen-
cies that specifies the mapping M′, which is a maximum
recovery ofM. At this point, we have the necessary ingredi-
ents to describe the procedure that constructs a set Σ′′ from
Σ′ such that every inequality in the conclusion of a depen-
dency in Σ′′ includes at least one quantified variable, and
the mapping specified by Σ′′ is also a maximum recovery
of M. We call this procedure ELIMINATEEQINEQ. For a
tuple x̄ of variables, in the procedure we use C(x̄) to denote
a conjunction of formulas C(x) for every x in x̄.

Procedure ELIMINATEEQINEQ(Σ′)

1. Let Σ′′ be the empty set.
2. For every dependency σ in Σ′ of the form

∃ȳ ψ(x̄, ȳ) ∧C(x̄)→ β1(x̄) ∨ · · · ∨ βk(x̄)

with x̄ = (x1, . . . , xn) a tuple of distinct variables, and
for every partition π of {x1, . . . , xn} do the following:

– Let α(x̄) = β1(x̄) ∨ · · · ∨ βk(x̄) and fπ(x̄) =

(fπ(x1), . . . , fπ(xn))

– Construct a formula γ from α(fπ(x̄)) as follows. For
every i ∈ {1, . . . , k}:

– If the conjunction of equalities and inequalities
among free variables in βi(fπ(x̄)) is consistent
with δπ , then drop the equalities and inequalities
among free variables in βi(fπ(x̄)) and add the
resulting formula as a disjunct in γ.

– If γ has at least one disjunct, then add to Σ′′ the
dependency σπ given by formula

∃ȳ ψ(fπ(x̄), ȳ) ∧C(fπ(x̄)) ∧ δπ → γ.

3. Return Σ′′ ut

For example, assume x̄ = (x1, x2, x3) and consider the
following formulas:

∃y ψ(x̄, y) : ∃y (A(x1, x2, y) ∧B(x3, y))

β1(x̄) : ∃u (P (x1, x2, x3, u) ∧ u 6= x1) ∧ x2 = x3

β2(x̄) : R(x2, x3) ∧ x1 = x2 ∧ x1 6= x3

Moreover, assume that σ ∈ Σ′ is the following dependency:

∃y ψ(x̄, y) ∧C(x1) ∧C(x2) ∧C(x3)→ β1(x̄) ∨ β2(x̄).

Consider a partition π1 = {{x1, x2}, {x3}}. Then we have
that δπ1

is the formula x1 6= x3. Notice that the equality
x2 = x3 in β1(x̄) becomes x1 = x3 after applying fπ1

,
which is not consistent with δπ1 . Considering now β2(x̄).
In this case, the formula x1 = x2 ∧ x1 6= x3 becomes
x1 = x1 ∧ x1 6= x3 after applying fπ1

, which is consis-
tent with δπ1

. Then to construct the conclusion of depen-
dency σπ1 , we just consider the formula R(x1, x3), which
is obtained from β2(fπ1

(x̄)) by dropping the equalities and
inequalities. The premise of σπ1

is constructed as the con-
junction of ∃y ψ(fπ1(x̄), y), C(fπ1(x̄)) and δπ1 . That is, we
have that σπ1

is the formula

∃y (A(x1, x1, y) ∧B(x3, y)) ∧
C(x1) ∧C(x3) ∧ x1 6= x3 → R(x1, x3),

which is added to Σ′′ by procedure ELIMINATEEQINEQ.
Consider now the partition π2 = {{x1}, {x2, x3}}. Since
fπ2

(x3) = x2, the conjunction of equalities and inequalities
in β2(fπ2(x̄)) is the unsatisfiable formula x1 = x2 ∧ x1 6=
x2, which is not consistent with δπ2

. On the other hand, the
equalities and inequalities of β1(fπ2

(x̄)) are consistent with
δπ2 . Thus, in this case we have that σπ2 is the dependency

∃y (A(x1, x2, y) ∧B(x2, y)) ∧C(x1) ∧
C(x2) ∧ x1 6= x2 → ∃u (P (x1, x2, x2, u) ∧ u 6= x1),

and σπ2
is added to Σ′′. If we now consider partition π3 =

{{x1}, {x2}, {x3}}, then no dependency is added since nei-
ther β1(fπ3

(x̄)) nor β2(fπ3
(x̄)) is consistent with δπ3

.
Notice that the set Σ′′ obtained after the described pro-

cess is a set of CQC, 6=-TO-UCQ 6= dependencies, that also
satisfies that for every disjunct β(x̄) in the conclusion of a
dependency inΣ′, and for every inequality x 6= x′ occurring
in β(x̄), it holds that x or x′ is existentially quantified. But
more importantly, Σ′′ satisfies the following key property
for our algorithm.

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 15

Lemma 1 Let M′′ be the ts-mapping specified by the set
Σ′′ returned by ELIMINATEEQINEQ(Σ′). Then M′′ is a
maximum recovery ofM.

The proof of Lemma 1 is rather technical and can be
found in Appendix A.6.

We continue now with the description of the procedure
to compute a CQ-maximum recovery of M. In what fol-
lows, we assume that Σ′′ is the set constructed from Σ′ as
described above, and that M′′ is the ts-mapping specified
by Σ′′.

Eliminating the inequalities in the conclusions of Σ′′

In this step, we just drop all the remaining inequalities in the
disjunctions of the conclusions of the dependencies of Σ′′.
It turns out that, although the obtained set of dependencies
may no longer define a maximum recovery of M, it does
define a CQ-maximum recovery of M. In fact, a stronger
result holds, namely that the obtained set of dependencies
defines a UCQ-maximum recovery ofM.

From now on, assume that Σ′′′ is the set obtained from
Σ′′ by dropping all the inequalities in the conclusions of the
dependencies in Σ′′, and thatM′′′ is the ts-mapping speci-
fied by Σ′′′. Then we have that:

Lemma 2 M′′′ ≡UCQ M′′ andM′′′ is a UCQ-maximum
recovery ofM.

Before going to the last step of our procedure, it is worth
recalling how the dependencies in Σ′′′ look. Every element
of Σ′′′ is a dependency of the form:

ϕ(x̄) ∧C(x̄) ∧ δ(x̄)→ β1(x̄) ∨ · · · ∨ βk(x̄),

where

1. x̄ is a tuple of distinct variables,
2. ϕ(x̄) and βi(x̄) (1 ≤ i ≤ k) are conjunctive queries with
x̄ as their tuple of free variables,

3. C(x̄) is a conjunction of formulas C(x) for every vari-
able x in x̄, and

4. δ(x̄) is a conjunction of inequalities x 6= x′ for every
pair of distinct variables x, x′ in x̄.

In the last step of our algorithm, we eliminate the disjunc-
tions from the conclusions of the dependencies of Σ′′′, to
obtain a set of CQC,6=-TO-CQ dependencies that specifies a
CQ-maximum recovery ofM.

Eliminating the disjunctions in the conclusions of Σ′′′

We explain first the machinery needed in this step of our al-
gorithm. We borrow some notions and tools from graph the-
ory, in particular, properties about graph homomorphisms.

Given two instances J1 and J2 composed by constants
and null values, we define the product of J1 and J2, denoted

by J1 × J2, as the instance constructed by the following
procedure. Consider an injective function f : (C ∪ N) ×
(C ∪N) → (C ∪N) such that (1) f(a, a) = a for every
constant value a ∈ C, and (2) f(a, b) = n(a,b) is a null
value, whenever a or b is a null value, or a and b are distinct
constant values. Then for every k-ary relation symbolR and
every pair of facts R(a1, . . . , ak) in J1 and R(b1, . . . , bk)

in J2, the fact R(f(a1, b1), . . . , f(ak, bk)) is included in the
instance J1 × J2. For example, consider the instances

J1 = {P (a, b), R(n1, a), R(n1, c)},
J2 = {P (a, c), R(n2, a), R(n2, c)},

where a, b, c are distinct constant values, and n1, n2 are dis-
tinct null values. Then J1 × J2 is the instance

{P (a,m1), R(m2, a), R(m2, c), R(m2,m3), R(m2,m4)},

where m1,m2,m3,m4 are distinct null values. In this case,
we have used a function f such that f(b, c) = m1,
f(n1, n2) = m2, f(a, c) = m3 and f(c, a) = m4. No-
tice that the product of two instances could be the empty
instance. For example, if we consider J1 = {P (a, b)} and
J2 = {R(a, b)}, then J1 × J2 is the empty instance.

If we consider a schema with a single binary relation and
two instances J1 and J2 composed only by null values, the
product J1 × J2 corresponds to the graph-theoretical Carte-
sian product [21]. As for graph products, the operation ×
between instances satisfies several algebraic properties. One
of the most important properties is the following.

Lemma 3 (c.f. [21]) Let J1, J2 be instances composed by
constant and null values.

(1) There exists a homomorphism from J1× J2 to J1, and a
homomorphism from J1 × J2 to J2.

(2) If there exists a homomorphism from J to J1 and a ho-
momorphism from J to J2, then there exists a homomor-
phism from J to J1 × J2.

The above lemma intuitively states that from the space of all
possible instances, J1×J2 is the closest instance to both J1
and J2, taking homomorphisms as our proximity criterion.
Since the answering process of conjunctive queries can be
characterized in terms of homomorphisms [10], this prop-
erty gives us the following intuition. If a tuple t̄ is an answer
to a conjunctive query Q over J1 and also over J2, then t̄
should be an answer to Q over J1×J2. And, conversely, if t̄
is an answer of Q over J1 × J2, then it should be an answer
to Q over J1 and over J2. This is one of the key ingredients
for the last step of our algorithm, which is presented in this
section.

The notion of product of instances can also be applied
to conjunctive queries. Let Q1 and Q2 be two n-ary con-
junctive queries, and assume that x̄ is the tuple of free vari-
ables of Q1 and Q2. The product of Q1 and Q2, denoted

16 Marcelo Arenas et al.

by Q1 × Q2, is defined as a k-ary conjunctive query (with
k ≤ n) constructed as follows. Let f(·, ·) be a one-to-one
mapping from pairs of variables to variables such that:

1. f(x, x) = x for every variable x in x̄, and
2. f(y, z) is a fresh variable (mentioned neither in Q1 nor

in Q2) in any other case.

Then for every atoms R(y1, . . . , ym) in
Q1 and R(z1, . . . , zm) in Q2, the atom
R(f(y1, z1), . . . , f(ym, zm)) is included as a conjunct
in the query Q1 ×Q2. Furthermore, the set of free variables
of Q1×Q2 is the set of variables from x̄ that are mentioned
in Q1 ×Q2. For example, consider conjunctive queries:

Q1(x1, x2) : P (x1, x2) ∧R(x2, x1)

Q2(x1, x2) : ∃y (P (x1, y) ∧R(y, x2)).

Then we have that Q1 × Q2 is the following conjunctive
query (with a single free variable x1):

(Q1 ×Q2)(x1) : ∃z1∃z2 (P (x1, z1) ∧R(z1, z2)).

In this case, we used a mapping f such that f(x1, x1) = x1,
f(x2, y) = z1 and f(x1, x2) = z2. As shown in the exam-
ple, the free variables ofQ1×Q2 do not necessarily coincide
with the free variables of Q1 and Q2. Notice that the prod-
uct of two queries may be empty. For example, if Q1 is the
query ∃y1∃y2P (y1, y2) and Q2 is the query ∃z1R(z1, z1),
then Q1 ×Q2 is empty.

We finally have all the necessary ingredients to construct
a set of dependencies Σ? from Σ′′′, such that Σ? defines a
CQ-maximum recovery ofM and the dependencies in Σ?

do not have disjunctions in their conclusions.

Procedure ELIMINATEDISJUNCTIONS(Σ′′′)

1. Let Σ? be empty.
2. For every dependency in Σ′′′ of the form

ϕ(x̄) ∧C(x̄) ∧ δ(x̄)→ β1(x̄) ∨ · · · ∨ βk(x̄),

do the following. If β1(x̄) × · · · × βk(x̄) is not empty,
then add to Σ? the dependency

ϕ(x̄) ∧C(x̄) ∧ δ(x̄)→ β1(x̄)× · · · × βk(x̄).

3. Return Σ?. ut

For example, assume that Σ′′′ contains the dependency

A(x1, x2) ∧C(x1) ∧C(x2) ∧ x1 6= x2 →
[R(x1, x2) ∧R(x1, x1)] ∨
[∃y(P (x1, y) ∧R(x2, x2))]. (8)

Then we add to Σ? the dependency

A(x1, x2) ∧C(x1) ∧C(x2) ∧ x1 6= x2 →
∃z(R(z, x2) ∧ R(z, z)) (9)

since ∃z(R(z, x2) ∧R(z, z)) is the result of

[R(x1, x2) ∧R(x1, x1)]× [∃y(P (x1, y) ∧R(x2, x2))].

Notice that the setΣ? obtained as output of the above proce-
dure is a set of CQC,6=-TO-CQ dependencies. The following
lemma shows the key property of Σ?.

Lemma 4 LetM′′′ be the ts-mapping specified by Σ′′′ and
M? the ts-mapping specified by Σ?, where Σ? is the set
of CQC, 6=-TO-CQ dependencies obtained as the result of
the call ELIMINATEDISJUNCTIONS(Σ′′′). ThenM? is CQ-
equivalent withM′′′.

We give some intuition of why this result holds (the com-
plete proof of the lemma can be found in Appendix A.8).
Consider a set Γ1 containing dependency (8), and a set Γ2

containing dependency (9). One of the main steps in the
proof of the lemma is based on computing the chase with de-
pendencies containing disjunctions in the conclusions (like
dependency (8)). In particular, if we want to chase an in-
stance with the set Γ1, we need to consider the disjunctive
chase [15]. As in the classical (non-disjunctive) chase, to
apply a step of the disjunctive chase we need to select a par-
ticular dependency of the form α → β1 ∨ · · · ∨ βk in the
set, but in this case we also need to select a particular dis-
junct βi in the conclusion of the dependency, and then apply
a standard chase step for dependency α→ βi. The result of
the disjunctive chase is the set of all possible instances that
are obtained by considering all possible choices of disjuncts
in the conclusions (we include a detailed definition of the
disjunctive chase in Appendix A.6).

Consider now the instance J = {A(a, b)}, with a, b dis-
tinct constant values. If we consider the disjunctive chase
of instance J with set Γ1, we obtain a set V consist-
ing of instances K1 = {R(a, b), R(a, a)} and K2 =

{P (a, n), R(b, b)}, where n is a null value. By the prop-
erties of the disjunctive chase [15], we know that every so-
lution K of J under Γ1 is such that there exists a homomor-
phism from K1 to K, or there exists a homomorphism from
K2 to K. Thus, when considering the conjunctive informa-
tion contained in the space of solutions of J under Γ1, we
certainly know that the value b appears in the second com-
ponent of relation R, and that some element appears in a
single tuple in both components of R. Notice that the con-
junctive information contained in V is captured by the in-
stance K1 ×K2 = {R(n′, b), R(n′, n′)}, where n′ is a null
value. If we now chase J with Γ2, we obtain the instance
K = {R(m, b), R(m,m)} with m a null value, which is
homomorphically equivalent to K1 ×K2. From this, it can
be formally proved that for every conjunctive query Q, the
certain answers of Q under Γ1 coincides with the certain
answers of Q under Γ2.

The strategy in the proof of Lemma 4 is a generalization
of the above argument. Let Σ′′′ and Σ? be the sets of de-
pendencies in the statement of the lemma and J an arbitrary

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 17

source instance. Recall thatΣ′′′ is a set of CQC,6=-TO-UCQ
dependencies, thus the result of the (disjunctive) chase of J
with Σ′′′ is a set of instances V = {K1, . . . ,K`}. Now let
K be the result of chasing J with Σ?. The key ingredient in
the proof of Lemma 4 is the fact that K and K1 × · · · ×K`

are homomorphically equivalent. From this and the prop-
erties of the product of instances, it can be shown that for
every conjunctive query Q the certain answers of Q under
Σ? coincide with the certain answers of Q under Σ′′′.

Putting it all together

The following is the complete algorithm that uses all the
previous procedures to compute CQ-maximum recoveries
of st-mappings specified by CQC,6=-TO-CQ dependencies.

Algorithm CQ-MAXIMUMRECOVERY(M)
Input: An st-mappingM = (S,T, Σ), where Σ is a set of
CQC, 6=-TO-CQ dependencies.
Output: A ts-mapping M? = (T,S, Σ?), where Σ? is a
set of CQC, 6=-TO-CQ dependencies such thatM? is a CQ-
maximum recovery ofM.

1. Let Σ be the set of dependencies obtained from Σ by
dropping all the atoms of the form C(x) that appear in
the premises of Σ, and letM = (S,T, Σ).

2. LetM′ = (T,S, Σ′) be the ts-mapping obtained as the
output of algorithm MAXIMUMRECOVERY(M) [4].

3. LetΣ′′ be the set of dependencies obtained as the output
of ELIMINATEEQINEQ(Σ′).

4. Let Σ′′′ be the set obtained from Σ′′ by dropping all the
inequalities that appear in the conclusions of the depen-
dencies in Σ′′.

5. LetΣ? be the set of dependencies obtained as the output
of ELIMINATEDISJUNCTIONS(Σ′′′).

6. ReturnM? = (T,S, Σ?).

ut

Theorem 5 Let M be an st-mapping specified by a set
of CQC,6=-TO-CQ dependencies. Then algorithm CQ-
MAXIMUMRECOVERY(M) computes a CQ-maximum re-
covery ofM specified by set of CQC,6=-TO-CQ dependen-
cies.

Proof From Lemma 1, we have that the mappingM′′ spec-
ified by the set of CQC,6=-TO-UCQ 6= dependencies Σ′′

(computed in step 3) is a maximum recovery ofM. More-
over, we know from Lemmas 2 and 4 that the mappingM?

specified by the set of CQC,6=-TO-CQ dependencies Σ?

(computed in step 5) is CQ-equivalent to M′′. Thus, we
conclude from Proposition 4 (2) thatM? is a CQ-maximum
recovery ofM, from which the theorem follows. ut

We conclude this section by pointing out that the closure
property stated in Theorem 4 follows directly from Theo-
rem 5.

6 Optimality of the Closure Result

The closure result presented in the previous section depends
on both the mapping language and the class C used in the
notion of C-maximum recovery. Thus, a natural question
is whether this result could be strengthened by considering
other alternatives for these parameters. In Sections 6.1 and
6.2, we prove several negative results in this respect. These
results show that our choice of CQ-maximum recovery as
the semantics for inversion and CQC,6=-TO-CQ as the map-
ping language is, in a technical sense, optimal for obtaining
a mapping language closed under inversion.

6.1 CQC,6=-TO-CQ is the right language

Most of the dependencies considered in the data exchange
literature [12,11,15,4] are L1-TO-L2 dependencies, where
L1 and L2 are fragments of UCQC,6=. In this section, we
show that among all of them, CQC,6=-TO-CQ is the right
language for the notion of CQ-maximum recovery; if one
adds or removes features from this class of dependencies,
then closure under CQ-maximum recovery no longer holds.

We start by showing that both inequalities and predicate
C(·) are necessary for the closure property in Theorem 4.

Theorem 6

(1) There exists an st-mapping specified by a set of st-tgds
that has no CQ-maximum recovery specified by a set of
CQC-TO-CQ dependencies.

(2) There exists an st-mapping specified by a set of st-tgds
that has no CQ-maximum recovery specified by a set of
CQ 6=-TO-CQ dependencies.

Proof We show here mappings that satisfy conditions (1)
and (2), and give some intuition on why they satisfy these
properties. The complete proof of the theorem can be found
in Appendix A.9.

(1) Consider a mappingM specified by st-tgds:

A(x, y)→ P (x, y),

B(x, x)→ P (x, x).

Intuitively, in this case the only conjunctive information that
one can recover are the tuples coming from A whose ele-
ments are distinct, as a fact of the form P (a, a) can be gener-
ated by any of the two rules defining the mapping. To specify
this we need inequalities. In fact, a CQ-maximum recovery
forM is the mapping specified by:

P (x, y) ∧ x 6= y → A(x, y).

In Appendix A.9, it is proved thatM does not have a CQ-
maximum recovery specified by a set of CQC-TO-CQ de-
pendencies.

18 Marcelo Arenas et al.

(2) Consider a mappingM specified by st-tgds:

A(x)→ ∃yP (y),

B(x)→ P (x).

Intuitively, predicate C(·) is needed in a CQ-maximum re-
covery of M to discriminate whether a value comes from
relation B in the source. In fact, a CQ-maximum recovery
forM is the mapping specified by:

P (x) ∧C(x)→ B(x).

In Appendix A.9, it is proved thatM does not have a CQ-
maximum recovery specified by a set of CQ 6=-TO-CQ de-
pendencies. ut

We have shown that both inequalities and predicate C(·)
are necessary for the closure property of Theorem 4. A
natural question at this point is whether a similar closure
property can be obtained if one adds some extra features
to CQC,6=-TO-CQ. For example, it could be the case that
the language of CQC,6=-TO-CQ 6= dependencies is closed
under CQ-maximum recovery. Unfortunately, the follow-
ing proposition shows that if one includes disjunctions or
inequalities in the conclusions, then mappings do not neces-
sarily admit CQ-maximum recoveries, even if these features
are added to st-tgds.

Proposition 5 There exist st-mappings specified by sets of
(1) CQ-TO-UCQ dependencies, (2) CQ-TO-CQ 6= depen-
dencies, that have no CQ-maximum recoveries.

Proof We just present a sketch of the proof (the complete
proof can be found in Appendix A.10). For the case (1),
we use an st-mapping M specified by the following set of
CQ-TO-UCQ dependencies:

B(x) ∧ C1(x)→ R1(x),

B(x) ∧ C2(x)→ R2(x),

A(x)→ R1(x) ∨R2(x).

This mapping has as CQ-recoveries a mapping M1 spec-
ified by R1(x) → C1(x) ∧ B(x), and a mapping M2

specified by R2(x) → C2(x) ∧ B(x). Given that neither
M1 is better than M2 nor M2 is better than M1 as a
CQ-recovery of M, one could try to find a mapping M3

which is better than both by considering the two dependen-
cies R1(x) → C1(x) ∧ B(x), R2(x) → C2(x) ∧ B(x)

together. Although it seems that M3 is more informative
than both M1 and M2, the problem is that M3 is not a
CQ-recovery ofM. To see why this is the case, notice that
for the source instance I = {A(a)}, we have that B(a) be-
longs to every possible solution for I underM◦M3. Thus,
for the conjunctive query Q given by ∃xB(x), we have that
Q(I) = false but certainM◦M3

(Q, I) = true, which shows
that M3 does not recover sound information according to

Q. In fact, this is a general phenomenon, as it can be proved
that there is no mapping which is a CQ-recovery ofM and
is better than any other mapping in terms of its ability to re-
cover sound information forM according to the language of
conjunctive queries. Therefore, one concludes thatM does
not have a CQ-maximum recovery.

Now for the case (2), consider an st-mappings given by
the following CQ-TO-CQ 6= dependencies:

B(x) ∧ C1(x)→ R(x, x),

B(x) ∧ C2(x)→ ∃y(R(x, y) ∧ x 6= y),

A(x)→ ∃yR(x, y).

In this case one can provide a similar argument as in (1).
Consider, for example, a mappingM1 specified by depen-
dency R(x, x) → C1(x) ∧ B(x), and a mappingM2 spec-
ified by dependency R(x, y) ∧ x 6= y → C2(x) ∧ B(x).
Both are CQ-recoveries ofM, but neither is better than the
other. If one tries to improve these mappings by considering
a mapping M3 defined by both dependencies R(x, x) →
B(x) ∧C1(x), R(x, y) ∧ x 6= y → B(x) ∧C2(x) together,
then one can show that the resulting mapping is not a CQ-
recovery ofM. To see why this is the case, just consider the
source instance {A(1)} and the query ∃x B(x) as in case
(1). ut

6.2 CQ-maximum recovery is the right notion

In this section, we consider several alternatives to CQ for the
semantics of inverse operators, and show that none of them
is appropriate to obtain a closure property as in Theorem 4.

We start with the notion of UCQ-maximum recov-
ery. The following result shows that to express the UCQ-
maximum recovery of a mapping given by a set of st-tgds,
one needs dependencies with disjunctions in their conclu-
sions even if the full power of FO is allowed in the premises
of the dependencies.

Proposition 6 There exists an st-mappingM specified by a
set of st-tgds such that:

(a) M has a UCQ-maximum recovery specified by a set of
CQ-TO-UCQ dependencies.

(b) M does not have a UCQ-maximum recovery specified
by a set of FOC-TO-CQ dependencies.

Proof Consider a source schema S = {A(·), B(·)}, a target
schema T = {T (·)}, and the st-mappingM = (S,T, Σ),
where Σ consists of the following st-tgds:

A(x)→ T (x),

B(x)→ T (x).

Let M? = (T,S, Σ?) be a ts-mapping specified by the
CQ-TO-UCQ dependency

T (x)→ A(x) ∨B(x). (10)

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 19

By using the tools developed in [4], it is straightforward to
show that M? is a maximum recovery of M, which im-
plies that M? is a UCQ-maximum recovery of M. In or-
der to prove that the disjunction in (10) is essential to ob-
tain a UCQ-maximum recovery ofM, we show that every
mapping specified by a set of tgds without disjunctions in
the conclusions is strictly less informative thanM?, even if
one allows the full power of FO in the premises of depen-
dencies. The formalization of this argument can be found in
Appendix A.11. ut

Proposition 5 shows that there exist mappings specified
by CQ-TO-UCQ dependencies that have no CQ-maximum
recoveries and, hence, have no UCQ-maximum recover-
ies. Thus, Propositions 5 and 6 show that if we use UCQ-
maximum recovery as our notion of inverse, then we are
doomed to failure.

Now we consider the notion of CQ 6=-maximum recov-
ery. By Theorem 6, we have that inequalities in the premises
of dependencies are needed to express CQ-maximum recov-
eries of mappings given by st-tgds. Thus, if a mapping lan-
guage contains the class of st-tgds and is closed under CQ 6=-
maximum recovery, then it has to include inequalities in the
premises of dependencies. Our next result shows that in or-
der to express the CQ 6=-maximum recovery of a mapping
given by a set of CQ 6=-TO-CQ dependencies, one needs to
use inequalities in the conclusions, even if the full power of
FO is allowed in the premises of the dependencies.

Proposition 7 There exists an st-mappingM specified by a
set of CQ 6=-TO-CQ dependencies such that:

(a) M has a CQ 6=-maximum recovery specified by a set of
CQ-TO-CQ 6= dependencies.

(b) M does not have a CQ 6=-maximum recovery specified
by a set of FOC-TO-CQ dependencies.

Proof Consider a source schema S = {P (·, ·)}, a target
schema T = {T (·)}, and the st-mappingM = (S,T, Σ),
where Σ consists of the following CQ 6=-TO-CQ depen-
dency:

P (x, y) ∧ x 6= y → T (x).

Let M? = (T,S, Σ?) be a ts-mapping specified by the
CQ-TO-CQ 6= dependency:

T (x)→ ∃y (P (x, y) ∧ x 6= y). (11)

By using the tools developed in [4], it is straightforward to
prove that M? is a maximum recovery of M, which im-
plies that M? is a CQ 6=-maximum recovery of M. More-
over, it can be shown, as in the proof of Proposition 6, that
the inequality in the conclusion of (11) is essential to obtain
a CQ 6=-maximum recovery ofM, as every mapping speci-
fied by a set of tgds without inequalities in the conclusions
is strictly less informative thanM? (even if the full power

of FO is allowed in the premises). The formalization of this
argument can be found in Appendix A.12. ut

Proposition 5 shows that there exist mappings specified
by CQ-TO-CQ 6= dependencies that have no CQ-maximum
recoveries and, hence, have no CQ 6=-maximum recover-
ies. Thus, Propositions 5 and 7 show that if we use CQ 6=-
maximum recovery as our notion of inverse, then we cannot
hope for a closure result as in Theorem 4.

We conclude this section by pointing out that the nega-
tive results for UCQ- and CQ 6=-maximum recoveries imply
a negative result for the notion of C-maximum recovery, for
every class C of queries containing UCQ or CQ 6=. In par-
ticular, these results, together with the results in Section 6.1,
show that our choices of the notion CQ-maximum recov-
ery as the semantics for inversion and of CQC,6=-TO-CQ
as the language for defining mappings are optimal to obtain
a closure result for inverting schema mappings, which is a
fundamental property towards the applicability of inversion
in practice.

7 Concluding Remarks

In this paper, we have revisited the problem of inverting
schema mappings paying special attention to the practical
limitations of the previous approaches. We proposed a gen-
eral query language based notion of inverse, the C-maximum
recovery with C a query language. By fine-tuning the lan-
guage C, we show that the notion of CQ-maximum recovery
satisfies our main requirements. In particular, we proved that
every st-mapping specified by a set of CQC, 6=-TO-CQ de-
pendencies has a CQ-maximum recovery that can be spec-
ified in the same language. Interestingly, the language of
CQC, 6=-TO-CQ dependencies has several good properties,
being one of the most important the fact that the chase proce-
dure can be used to exchange data with these dependencies
efficiently (in data complexity), ensuring its practical appli-
cability in data exchange and integration. Our results show
that our choices of CQ-maximum recovery as the notion of
inverse, and CQC,6=-TO-CQ dependencies as the mapping
specification language, are promising options towards the
practical implementation of inversion of schema mappings.

Fagin et al. have been argued that when studying in-
verses of schema mappings in the data exchange con-
text, incomplete information naturally arise in source in-
stances [16]. We have made the assumption that source
instances contain only constant values, thus, an important
line of future work is how to extend our results on clo-
sure properties and query-language base notion of inverse
to the setting in which incomplete information is allowed in
the source. Another interesting issue is the integration be-
tween inversion and composition of schema mappings. Clo-
sure properties for composition have been obtained in the lit-

20 Marcelo Arenas et al.

erature [14,6], but the languages used do not coincide with
our proposed language for closure of inversion. Thus, a very
important and also challenging topic for future research is to
find a mapping language that is closed under both operation.

Acknowledgements We thank the anonymous reviewers for their
careful reading and for providing many useful comments. Arenas
was supported by Fondecyt grant 1090565, Pérez by Fondecyt grant
11110404 and by VID grant U-Inicia 11/04 Universidad de Chile, and
Reutter by EPSRC grant G049165 and FET-Open project FoX.

References

1. Arenas, M., Barceló, P., Fagin, R., Libkin, L.: Locally consistent
transformations and query answering in data exchange. In: PODS,
pp. 229–240 (2004)

2. Arenas, M., Pérez, J., Reutter, J.L., Riveros, C.: Composition and
inversion of schema mappings. SIGMOD Record 38(3), 17–28
(2009)

3. Arenas, M., Pérez, J., Reutter, J.L., Riveros, C.: Inverting schema
mappings: Bridging the gap between theory and practice. PVLDB
2(1), 1018–1029 (2009)

4. Arenas, M., Pérez, J., Riveros, C.: The recovery of a schema map-
ping: bringing exchanged data back. TODS 34(4) (2009)

5. Arenas, M., Pérez, J., Reutter, J. L.: Data exchange beyond com-
plete data. In PODS, pages 83–94, 2011.

6. Arocena, P., Fuxman, A., Miller, R. J.: Composing local-as-view
mappings: closure and applications. In: ICDT, pp. 209–218 (2010)

7. Barceló, P.: Logical foundations of relational data exchange. SIG-
MOD Record 38(1) (2009)

8. Bernstein, P.: Applying model management to classical meta data
problems. In: CIDR (2003)

9. Bernstein, P., Melnik, S.: Model management 2.0: manipulating
richer mappings. In: SIGMOD, pp. 1–12 (2007)

10. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunc-
tive queries in relational data bases. In: STOC, pp. 77–90 (1977)

11. Fagin, R.: Inverting schema mappings. TODS 32(4) (2007)
12. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange:

semantics and query answering. TCS 336(1), 89–124 (2005)
13. Fagin, R., Kolaitis, P.G., Nash, A., Popa, L.: Towards a theory of

schema-mapping optimization. In: PODS, pp. 33–42 (2008)
14. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema

mappings: Second-order dependencies to the rescue. TODS 30(4),
994–1055 (2005)

15. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Quasi-inverses of
schema mappings. TODS 33(2) (2008)

16. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Reverse data ex-
change: Coping with nulls. ACM Trans. Database Syst. 36(2), 11
(2011)

17. Fagin, R., Nash, A.: The structure of inverses in schema mappings.
J. ACM 57(6), 31 (2010)

18. Fuxman, A., Kolaitis, P.G., Miller, R.J., Tan, W.C.: Peer data ex-
change. In: PODS, pp. 160–171 (2005)

19. de Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: On recon-
ciling data exchange, data integration, and peer data management.
In: PODS, pp. 133–142 (2007)

20. Halevy, A.Y., Ives, Z., Madhavan, J., Mork, P., Suciu, D., Tatari-
nov, I.: The piazza peer data management system. IEEE Trans.
Knowl. Data Eng. 16(7), 787–798 (2004)

21. Hell, P., Nes̆etr̆il, J.: Graphs and Homomorphisms. Oxford Uni-
versity Press (2004)

22. Kolaitis, P.G.: Schema mappings, data exchange, and metadata
management. In: PODS, pp. 61–75 (2005)

23. Lenzerini, M.: Data integration: a theoretical perspective. In:
PODS, pp. 233–246 (2002)

24. Madhavan, J., Halevy, A.Y.: Composing mappings among data
sources. In: VLDB, pp. 572–583 (2003)

25. Maier, D., Mendelzon, A., Sagiv, Y.: Testing implications of data
dependencies. TODS 4(4), 455–469 (1979)

26. Melnik, S.: Generic Model Management: concepts and Algo-
rithms, Lecture Notes in Computer Science, vol. 2967. Springer
(2004)

27. Melnik, S., Adya, A., Bernstein, P.A.: Compiling mappings to
bridge applications and databases. ACM Trans. Database Syst.
33(4) (2008)

28. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting
executable mappings in model management. In: SIGMOD, pp.
167–178 (2005)

29. ten Cate, B., Kolaitis, P.G.: Structural characterizations of schema-
mapping languages. In: ICDT, pp. 63–72 (2009)

A Proofs and Intermediate Results

A.1 Proof of Proposition 1 (2)

We have already shown that M′ is not a UCQ-maximum recov-
ery of M. To complete the proof, we show that M′ is actually a
CQ 6=-maximum recovery of M. Notice that for every instance I of
S, if J = chaseΣ′(chaseΣ(I)), then J is a solution for I under
M ◦M′ and J ⊆ I. Thus, given that every query in CQ 6= is mono-
tone, we conclude that certainM◦M′(Q, I) ⊆ Q(J) ⊆ Q(I) for
every query Q in CQ 6= over S. Therefore, we have that M′ is a
CQ 6=-recovery of M. Hence, to finish the proof we have to show
that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I) for every CQ 6=-
recoveryM′′ ofM, query Q in CQ 6= over S, and instance I of S.

Let M′′ be a CQ 6=-recovery of M, Q a query in CQ 6= over
S and I an instance of S. We consider two cases to show that
certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).

(I) Assume that one of the conjuncts of Q is of the form either D(x) or
E(x). We show next that certainM◦M′′(Q, I) = ∅, from which we
conclude that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I). Without
loss of generality, assume that D(x) is one of the conjunct of Q, and
let I′ be an instance of S such that DI

′
= ∅, EI′ = (DI ∪ EI)

and F I
′

= F I . Then we have that SolM(I) = SolM(I′), which
implies that SolM◦M′′(I) = SolM◦M′′(I′). Thus, we have that
certainM◦M′′(Q, I) = certainM◦M′′(Q, I′). Given that D(x) is
one of the conjuncts of Q, Q is a query in CQ 6= and DI

′
= ∅,

we have that Q(I′) = ∅. Therefore, given that M′′ is a CQ 6=-
recovery ofM, we have that certainM◦M′′(Q, I′) = ∅ and, hence,
certainM◦M′′(Q, I) = ∅.
(II) Assume that all of the conjuncts of Q are of the form R(x). Next
we show that Q(I) ⊆ certainM◦M′(Q, I), from which we conclude
that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I) (since M′′ is a
CQ 6=-recovery ofM).

It is straightforward to prove that for every I′ ∈ SolM◦M′(I),
it holds that RI ⊆ RI

′
. Thus, given that all of the conjuncts of Q

are of the form R(x) and Q is a query in CQ 6=, we conclude that
Q(I) ⊆ Q(I′) for every I′ ∈ SolM◦M′(I). Therefore, we have that
Q(I) ⊆ certainM◦M′(Q, I).

A.2 Proof of Proposition 3

In the proof of the proposition, we need the following technical lemma.
Interestingly, this lemma shows that both PM and CM identify the

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 21

space of solutions associated to a mappingM. This result is of inde-
pendent interest, since, in general, such characterizations of spaces of
solutions are difficult to obtain.

Lemma 5 Let M = (S,T, Σ), where Σ is a set of st-tgds. Then
for every pair I1, I2 of instances over S, the following conditions are
equivalent: (1) SolM(I2) ⊆ SolM(I1), (2) for every queryQ ∈ PM:
Q(I1) ⊆ Q(I2), (3) for every query Q ∈ CM: Q(I1) ⊆ Q(I2).

Proof (1) ⇒ (2) Assume that SolM(I2) ⊆ SolM(I1), and let
Q ∈ PM. Next we show that Q(I1) ⊆ Q(I2). Assume that
ϕ(x̄) → ψ(x̄) is an st-tgd in Σ such that Q is a source rewriting
of ψ(x̄) w.r.t M. Given that SolM(I2) ⊆ SolM(I1), we have that
certainM(Q′, I1) ⊆ certainM(Q′, I2) for every query Q′. In par-
ticular, this last property holds for the query defined by formula ψ(x̄).
Thus, given that Q is a source rewriting of ψ(x̄) w.r.tM, we conclude
that Q(I1) ⊆ Q(I2).

(2) ⇒ (3) Assume that Q(I1) ⊆ Q(I2), for every Q ∈ PM.
We use an inductive argument to prove that for every Q ∈ CM,
it holds that Q(I1) ⊆ Q(I2). Let Q ∈ CM. If Q ∈ PM, then
Q(I1) ⊆ Q(I2) by hypothesis. Assume that the property holds for
queries Q1, Q2 in CM. If Q is the conjunction Q1 and Q2, then
Q(I1) = Q1(I1) ∩ Q2(I1). Thus, given that by induction hypoth-
esis Q1(I1) ⊆ Q1(I2) and Q2(I1) ⊆ Q2(I2), we conclude that
Q(I1) = Q1(I1) ∩ Q2(I1) ⊆ Q1(I2) ∩ Q2(I2) = Q(I2). If Q
is the disjunction of Q1 and Q2, then it is possible to conclude that
Q(I1) ⊆ Q(I2) as in the previous case. If Q is obtained from Q1 by
existentially quantifying some of the free variables of Q1, then from
the fact that Q1(I1) ⊆ Q1(I2), it is straightforward to conclude that
Q(I1) ⊆ Q(I2). Similarly, if Q is obtained from Q1 by substituting
some variables, then it is easy to conclude that Q(I1) ⊆ Q(I2) from
the fact that Q1(I1) ⊆ Q1(I2). Finally, assume that (x1, . . . , xk) is
the tuple of free variables of Q1 (with k ≥ 2), and assume that Q is
obtained from Q1 by adding the inequality xi 6= xj with i 6= j. Let
ā = (a1, . . . , ak) ∈ Q(I1). Then ā ∈ Q1(I1) and ai 6= aj . Thus,
from the fact that Q1(I1) ⊆ Q1(I2), we conclude that ā ∈ Q1(I2)
and, hence, ā ∈ Q(I2) since ai 6= aj . Therefore, we conclude that
Q(I1) ⊆ Q(I2).

(3) ⇒ (1) Let I1, I2 be instances of S such that for every
Q ∈ CM, it holds that Q(I1) ⊆ Q(I2). Next we show that
SolM(I2) ⊆ SolM(I1). Assume that J ∈ SolM(I2). To prove that
J ∈ SolM(I1), we need to prove that (I1, J) |= Σ. Let σ ∈ Σ be a
dependency of the form ϕ(x̄) → ψ(x̄), and assume that I1 |= ϕ(ā)
for some tuple ā of constant values. We need to show that J |= ψ(ā).
Given I1 |= ϕ(ā), we know that for every J ′ ∈ SolM(I1), it holds
that J ′ |= ψ(ā) and, hence, ā ∈ certainM(Qψ , I1), where Qψ is the
conjunctive query defined by ψ(x̄). Assume that Q′ ∈ CM is a source
rewriting of Qψ w.r.t. M. Since Q′(I1) = certainM(Qψ , I1), we
obtain that ā ∈ Q′(I1). Thus, given that Q′(I1) ⊆ Q′(I2) by hypoth-
esis, we conclude that ā ∈ Q′(I2). But then given that Q′ is a source
rewriting ofQψ , we conclude that ā ∈ certainM(Qψ , I2). That is, for
every K ∈ SolM(I2), it holds that ā ∈ Qψ(K). In particular, given
that J ∈ SolM(I2), we have that ā ∈ Qψ(J) and, thus, J |= ψ(ā),
which was to be shown. This concludes the proof of the lemma. ut

In the proof of Proposition 3, we also use the following observa-
tion. Let M = (S,T, Σ), where Σ is a set of st-tgds, and assume
that I is an instance of S and J is the result of chasing I with Σ.
It is known that for every conjunctive query Q over T, it holds that
certainM(Q, I) = Q(J)↓, where Q(J)↓ is defined as the set of tu-
ples of constants that belong to Q(J) [12]. Thus, if Q′ is a source
rewriting of a conjunctive query Q, then Q′(I) = Q(J)↓.

We now move to the proof of Proposition 3. LetM = (S,T, Σ)
be a quasi-invertible mapping, where Σ is a set of st-tgds. Next we
show thatM′ is a quasi-inverse ofM if and only ifM′ fully recovers
CM forM.

(⇒) Assume thatM′ is a quasi-inverse ofM. We need to show
that M′ fully recovers CM, that is, we need to show that for every
Q ∈ CM and instance I of S, we have certainM◦M′(Q, I) = Q(I).

LetQ be a query in CM and I an instance of S. First, we show that
certainM◦M′(Q, I) ⊆ Q(I). Given that (I, I) ∈ IdS[∼M,∼M]
and M′ is a quasi-inverse of M, we have that (I, I) ∈ (M ◦
M′)[∼M,∼M]. Thus, there exist instances I′, I′′ of S such that
SolM(I) = SolM(I′) = SolM(I′′) and (I′, I′′) ∈ M ◦ M′.
Since SolM(I) = SolM(I′) and (I′, I′′) ∈ M ◦ M′, we know
that (I, I′′) ∈ M ◦ M′. Now, since SolM(I) = SolM(I′′) and
Q ∈ CM, we have that Q(I) = Q(I′′) by Lemma 5. Thus, we con-
clude that certainM◦M′(Q, I) ⊆ Q(I) since I′′ ∈ SolM◦M′(I) and
Q(I′′) = Q(I). Second, we show that Q(I) ⊆ certainM◦M′(Q, I).
Let (I, J) ∈ M ◦M′. Then we have that (I, J) ∈ (M ◦M′)[∼M
,∼M]. Thus, given that M′ is a quasi-inverse of M, we conclude
that (I, J) ∈ IdS[∼M,∼M] and, hence, there exist instances I1, I2
of S such that SolM(I) = SolM(I1), SolM(J) = SolM(I2)
and (I1, I2) ∈ IdS. Therefore, we have that I1 ⊆ I2, which im-
plies that Q(I1) ⊆ Q(I2) since Q is a monotone query. Thus, given
SolM(I) = SolM(I1) and SolM(J) = SolM(I2), we conclude by
Lemma 5 that Q(I) = Q(I1), Q(J) = Q(I2) and Q(I) ⊆ Q(J).
We have shown that, if (I, J) ∈ M ◦M′, then Q(I) ⊆ Q(J), from
which we deduce that Q(I) ⊆ certainM◦M′(Q, I). This concludes
the proof thatM′ fully recovers Q.

(⇐) Assume thatM′ fully recovers CM forM. We need to show
that M′ is a quasi-inverse of M, for which we prove the following
properties:

(a) If (I1, I2) ∈ M ◦M′, then there exist instances I′1, I′2 of S such
that SolM(I1) = SolM(I′1) and SolM(I2) = SolM(I′2), and
I′1 ⊆ I′2.

(b) For every instance I of S, there exists an instance I′ of S such that
SolM(I) = SolM(I′) and (I, I′) ∈M ◦M′.

Properties (a) and (b) are enough to conclude thatM′ is a quasi-inverse
ofM. To see why this is the case, we consider two cases.

– First, we show that (M ◦M′)[∼M,∼M] ⊆ IdS[∼M,∼M]. If
(I, J) ∈ (M◦M′)[∼M,∼M], then there exist instances I1, I2
of S such that SolM(I) = SolM(I1), SolM(J) = SolM(I2)
and (I1, I2) ∈ M ◦ M′. Thus, we conclude by (a) that there
exist instances I′1, I′2 of S such that SolM(I1) = SolM(I′1),
SolM(I2) = SolM(I′2), and I′1 ⊆ I′2. Therefore, we have that
SolM(I) = SolM(I′1), SolM(J) = SolM(I′2) and (I′1, I

′
2) ∈

IdS (by definition of IdS), from which we conclude that (I, J) ∈
IdS[∼M,∼M].

– Second, we show that IdS[∼M,∼M] ⊆ (M ◦M′)[∼M,∼M
]. If (I, J) ∈ IdS[∼M,∼M], then there exist instances I1, I2
of S such that SolM(I) = SolM(I1), SolM(J) = SolM(I2)
and I1 ⊆ I2 (given that (I1, I2) ∈ IdS). We know by (b) that
there exists an instance I′2 of S such that SolM(I2) = SolM(I′2)
and (I2, I′2) ∈ M ◦M′. Thus, there exists an instance K of T
such that (I2,K) ∈ M and (K, I′2) ∈ M′. But then given that
M is defined by a set of st-tgds and I1 ⊆ I2, we conclude that
(I1,K) ∈ M and, hence, (I1, I′2) ∈ M ◦ M′. Therefore, we
have that SolM(I) = SolM(I1), SolM(J) = SolM(I′2) and
(I1, I′2) ∈M◦M′, from which we conclude that (I, J) ∈ (M◦
M′)[∼M,∼M].

We now show that (a) and (b) hold. To prove (a), let (I1, I2) ∈
M ◦M′. SinceM′ fully recovers CM, we know that for every Q ∈
CM, it holds that Q(I1) = certainM◦M′(Q, I1). Thus, given that
certainM◦M′(Q, I1) ⊆ Q(I2) for every query Q (since (I1, I2) ∈
M◦M′), we conclude thatQ(I1) ⊆ Q(I2) for everyQ ∈ CM. Hence,
by Lemma 5 we have that SolM(I2) ⊆ SolM(I1). Given that M
is quasi-invertible, we know that M satisfies the (∼M,∼M)-subset
property [15] and, thus, from the fact that SolM(I2) ⊆ SolM(I1), we
conclude that there exist instances I′1, I′2 of S such that SolM(I1) =

22 Marcelo Arenas et al.

SolM(I′1), SolM(I2) = SolM(I′2), and I′1 ⊆ I′2. This completes the
proof of (a).

To prove (b), it is important to notice that in the proof of (a), we
have shown that if (I1, I2) ∈M◦M′, then Q(I1) ⊆ Q(I2) for every
Q ∈ CM. Now we show that (b) holds. Let I be an arbitrary instance
of S. For every queryQ ∈ PM, define a Boolean queryQI as follows.
If Q is a k-ary query (k ≥ 1) and m = |Q(I)|, then:

QI = ∃x̄1 · · · ∃x̄m+1

[
Q(x̄1) ∧ · · · ∧Q(x̄m+1) ∧

∧
1≤i<j≤m+1

x̄i 6= x̄j

]
,

where x̄i is a fresh k-ary tuple of pairwise distinct variables, and ū 6= v̄

stands for the formula
∨k
`=1 ui 6= vi, for k-tuples ū = (u1, . . . , uk)

and v̄ = (v1, . . . , vk). It is straightforward to see that QI ∈ CM.
Notice that, if QI(I′) = true for an instance I′ of S, then |Q(I)| <
|Q(I′)|. And conversely, if QI(I′) = false for an instance I′ of S,
then |Q(I′)| ≤ |Q(I)|. If Q is a Boolean query, we consider two cases
to define QI . If Q(I) = false, then QI = Q. If Q(I) = true, then
QI is a Boolean query in CM that is always false (such a query can
be generated by adding a condition of the form x 6= x to any of the
queries in PM). Consider now the query:

Q? =
∨

Q∈PM

QI .

Notice that Q? is in CM. Given that M′ fully recovers CM for M,
we have thatM′ fully recovers Q? forM. Thus, given that Q?(I) =
false, we have that certainM◦M′(Q?, I) = false. Therefore, there
exists an instance I? of S such that (I, I?) ∈M◦M′ and Q?(I?) =
false. That is, QI(I?) = false for every Q ∈ PM. Now, let Q ∈
PM. Notice that from the facts that (I, I?) ∈ M ◦M′ andM′ fully
recovers Q, we know that Q(I) ⊆ Q(I?). If Q is a k-ary query (k ≥
1), then given that QI(I?) = false, we have that |Q(I?)| ≤ |Q(I)|.
Thus, given that Q(I) ⊆ Q(I?), we conclude that Q(I) = Q(I?).
Moreover, if Q is a Boolean query and Q(I) = true, then from the
fact that Q(I) ⊆ Q(I?), we conclude that Q(I?) = true. Moreover,
if Q(I) = false, then we have that QI = Q and, therefore, Q(I?) =
false since QI(I?) = false. Thus, we have shown that for every Q ∈
PM, it holds that Q(I) = Q(I?). Hence, we conclude by Lemma
5 that SolM(I) = SolM(I?). Therefore, we have that there exists
an instance I? of S such that (I, I?) ∈ M ◦ M′ and SolM(I) =
SolM(I?), which was to be shown. This concludes the proof of (b)
and, thus, the proof of the proposition.

A.3 Proof of Theorem 2

First, notice that if M′ is a quasi-inverse of M, then from Proposi-
tion 3 we have thatM′ fully recovers CM forM, which implies that
M′ is a CM-maximum recovery ofM. Second, assume thatM′ is a
CM-maximum recovery ofM. Given thatM is quasi-invertible, there
exists a quasi-inverse M? of M. Thus, we have from Proposition 3
thatM? fully recovers CM forM. Hence, we have thatM? is a CM-
recovery ofM and, therefore, we conclude, from the fact thatM′ is a
CM-maximum recovery ofM, that for every queryQ in CM and every
instance I of S: certainM◦M?(Q, I) ⊆ certainM◦M′(Q, I). Thus,
we deduce thatM′ fully recovers CM forM from the fact thatM?

fully recovers CM forM. Hence, considering again Proposition 3, we
deduce thatM′ is a quasi-inverse ofM, which concludes the proof.

A.4 Proof of Theorem 3

(1) Assume that a mapping M′′ recovers sound information for M
under Q. Next we show that for every instance I of R1, it holds that
certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).

Given that M′ is a maximum recovery of M, we have that
SolM◦M′(I) 6= ∅ since (I, I) ∈ M ◦ M′. Let I′ be an arbitrary
element of SolM◦M′(I). From Proposition 3.8 (3) in [4] and the fact
thatM′ is a maximum recovery ofM, we conclude that SolM(I′) ⊆
SolM(I). Thus, we have that SolM◦M′′(I′) ⊆ SolM◦M′′(I) and,
hence, certainM◦M′′(Q, I) ⊆ certainM◦M′′(Q, I′). Therefore,
given that M′′ recovers sound information for M under Q, we have
that certainM◦M′′(Q, I′) ⊆ Q(I′), from which we conclude that
certainM◦M′′(Q, I) ⊆ Q(I′).

From the previous discussion, we conclude that for every instance
J ∈ SolM◦M′(I), it is the case that certainM◦M′′(Q, I) ⊆ Q(J).
Thus, we have that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I),
which was to be shown.

(2) Assume that there exists a mapping M′′ that fully recovers
Q for M. Next we show that this fact implies that M′ fully recov-
ers Q for M. Let I be an instance of R1. We need to show that
Q(I) = certainM◦M′(Q, I). Given that M′ is a maximum recov-
ery ofM, it holds that certainM◦M′(Q, I) ⊆ Q(I) and, hence, we
only need to show that Q(I) ⊆ certainM◦M′(Q, I). Given thatM′′
fully recovers Q forM, we have thatM′′ recovers sound information
forM under Q and, hence, we conclude by (1) that for every instance
I′ of R1: certainM◦M′′(Q, I′) ⊆ certainM◦M′(Q, I′). In par-
ticular, we have that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).
Thus, we deduce that Q(I) ⊆ certainM◦M′(Q, I) since Q(I) =
certainM◦M′′(Q, I) (given thatM′′ fully recovers Q forM). This
concludes the proof of the theorem.

A.5 Proof of Proposition 4

First notice that sinceM′ is a maximum recovery ofM, from Theo-
rem 3 we have thatM′ is a C-maximum recovery ofM.

(1) Assume that (M ◦M′′) ≡C (M ◦M′). Then by definition
of C-equivalence, we have that for every query Q ∈ C over R1 and in-
stance I of R1: certainM◦M′(Q, I) = certainM◦M′′(Q, I). Thus,
from the fact that M′ is a C-maximum recovery of M, we conclude
thatM′′ is a C-maximum recovery ofM.

To prove the opposite direction, assume thatM′′ is a C-maximum
recovery of M. Since M′ is also a C-maximum recovery of M, we
obtain that for every instance I of R1 and query Q ∈ C over R1,
it holds that certainM◦M′(Q, I) = certainM◦M′′(Q, I). Hence,
(M◦M′′) ≡C (M◦M′).

(2) Assume thatM′′ ≡C M′. Next we show that (M◦M′′) ≡C
(M ◦M′), from which we conclude that M′′ is a C-maximum re-
covery ofM, given the fact proved in (1) and thatM′ is a maximum
recovery ofM. Let I be an instance of R1 andQ a query in C over R1.
Next we show that certainM◦M′′(Q, I) = certainM◦M′(Q, I),
from which we conclude that (M◦M′′) ≡C (M◦M′).

We show first that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).
Let ā ∈ certainM◦M′′(Q, I), and assume that J is an instance
of R1 such that (I, J) ∈ M ◦ M′. Then there exists an instance
K of R2 such that (I,K) ∈ M and (K, J) ∈ M′. Given that
M′ ≡C M′′ and SolM′(K) 6= ∅, we conclude that SolM′′(K) 6=
∅. Thus, given that ā ∈ certainM◦M′′(Q, I) and (I,K) ∈ M,
we obtain that ā ∈ certainM′′(Q,K). Hence, from the fact that
M′ ≡C M′′, we conclude that ā ∈ certainM′(Q,K). There-
fore, given that (K, J) ∈ M′, we have that ā ∈ Q(J). We have
proved that for every instance J of R1 such that (I, J) ∈ M ◦
M′, it holds that certainM◦M′′(Q, I) ⊆ Q(J). Hence, we obtain
that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I), which was to be
shown.

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 23

By using a similar argument as in the previous paragraph, we
obtain that certainM◦M′(Q, I) ⊆ certainM◦M′′(Q, I). This con-
cludes the proof of the proposition.

A.6 Proof of Lemma 1

One of the main tools used in this proof is the disjunctive chase defined
by Fagin et al. [15]. Let Σ be a set of FOC-TO-UCQ dependencies
from schema R1 to schema R2. For every instance I of R1, let JI be
an instance of R2 constructed with the following procedure. For every
dependency σ ∈ Σ of the form

ϕ(x̄)→ ∃ȳ1 β1(x̄, ȳ1) ∨ · · · ∨ ∃ȳk β1(x̄, ȳk)

with x̄ = (x1, . . . , xm) a tuple of distinct variables, and for every m-
tuple ā of elements such that I |= ϕ(ā), do the following. Choose an
index i ∈ {1, . . . , k}. Assume that ȳi = (y1, . . . , y`), then choose an
`-tuple n̄ of distinct fresh null values, and include all the conjuncts of
βi(ā, n̄) in JI . We call JI a chase of I with Σ. Notice that different
instances are obtained by different choices of indexes in the process.
Consider the set V = {J1

I , . . . , J
p
I } of all the instances that corre-

spond to a chase of I. Then we say that V is the (disjunctive) chase
of I with Σ, and write V = chaseΣ(I) [15]. As for the classical
(non-disjunctive) chase, the disjunctive chase satisfies several desirable
properties. In particular, it can be shown, that for every pair of instances
I, J , if (I, J) |= Σ, then there exists an instance K ∈ chaseΣ(I) and
a homomorphism from K to J [15]. By using the results in [12], it is
also straightforward to prove that, if I is an instance composed only by
constant values and Q is a union of conjunctive queries, then the set of
certain answers of I under Σ, equals the set of tuples that belongs to
Q(K)↓, for all K ∈ chaseΣ(I).

We also make use of the following technical result proved in [15]
(Proposition 6.7). Assume that Γ1 is a set of FO-TO-CQ dependen-
cies and Γ2 a set of CQC,6=-TO-UCQ dependencies. LetM1 be the
st-mapping specified by Γ1 andM2 the ts-mapping specified by Γ2.
In [15] the authors proved that, if I is a source instance, J the result of
chasing I with Γ1, and V = {K1,K2, . . . ,K`} the result of chasing
J with Γ2, then for every I′ such that (I, I′) ∈ M1 ◦ M2 there ex-
ists a homomorphism from some K ∈ V to I′. By following the proof
in [15], one can see that the mentioned result also holds when Γ2 is
a set of CQC,6=-TO-UCQ 6= dependencies, provided that the inequal-
ities in the conclusions of the dependencies of Γ2 always mention an
existentially quantified variable (inequalities that mention existentially
quantified variables do not affect the normal chase procedure). Thus,
we can apply this result to Σ and Σ′′.

We continue now with the proof of the lemma. Recall that M′
is the mapping specified by Σ′ and is a maximum recovery of M.
We show now that M′′ is also a maximum recovery of M. For this
it is enough to show that M ◦ M′ = M ◦ M′′(see the definition
of maximum recovery in Section 4). First, it is straightforward to see
that, if (J, I) |= Σ′ then (J, I) |= Σ′′, from which we obtain that
M◦M′ ⊆M◦M′′. Then it only remains to prove thatM◦M′′ ⊆
M◦M′.

Before proving thatM◦M′′ ⊆M◦M′, we make the following
observation about Σ′′. Notice that for every dependency σ in Σ′′, and
for every variable x that simultaneously occurs in the premise and the
conclusion of σ, we have that C(x) occurs in the premise of σ. This
property is enough to conclude that, if (J,K) |= Σ′′ with J and K
arbitrary instances composed by constants and null values, and there
exists a homomorphism from K to K′, then (J,K′) |= Σ′′. That is,
Σ′′ is closed under target homomorphisms [13].

In order to prove thatM◦M′′ ⊆M◦M′, let (I1, I2) ∈M◦M′′.
Assume that J is the result of chasing I1 with Σ, and V the result of
chasing J with Σ′′. From the discussion above, we know that there
exists an instance K ∈ V and a homomorphism from K to I2. We also
know that (J,K) |= Σ′′. Then given that Σ′′ is closed under target

homomorphisms, we have that (J, I2) |= Σ′′, and then (J, I2) ∈ M′′
since I2 is a valid source instance. We show now that (J, I2) |= Σ′

and then (J, I2) ∈ M′. Let σ be a dependency of Σ′ of the form
∃ȳψ(x̄, ȳ) ∧C(x̄) → α(x̄) with x̄ = (x1, . . . , xn) a tuple of distinct
variables. Assume that there exists an n-tuple ā = (a1, . . . , an) of
elements from dom(J) such that J |= ∃ȳψ(ā, ȳ) ∧ C(ā). We have
to show that I2 |= α(ā). Recall that Σ′ is the output of the algo-
rithm MAXIMUMRECOVERY of [4] applied to Σ. It was shown in [4]
that, if J is the result of chasing I1 with Σ, then (J, I1) |= Σ′.
Then since J |= ∃ȳψ(ā, ȳ) ∧ C(ā), we have that I1 |= α(ā).
Now, consider a partition πā of {x1, . . . , xn} constructed by con-
sidering the equivalence classes [xi]πā = {xj | aj = ai} for
1 ≤ i ≤ n. Notice that, by the construction of the partition πā, if
in the tuple fπā(x̄) = (fπā(x1), . . . , fπā(xn)) we assign to every
variable xj its corresponding value aj for 1 ≤ j ≤ n, we obtain
exactly the tuple ā. Also notice that this same assignment satisfies
the formula δπā . Then since I1 |= α(ā) = β1(ā) ∨ · · · ∨ βk(ā),
we have that there exists an index i with 1 ≤ i ≤ k such that
βi(fπā(x̄)) ∧ δπā is satisfiable by using the assignment xj → aj
for 1 ≤ j ≤ n. Then we know that dependency σπā of the form
∃ȳψ(fπā(x̄), ȳ)∧C(fπā(x̄))∧δπā → α′(fπā(x̄)) is added to the set
Σ′′. Finally, since (J, I2) |= Σ′′ we know that (J, I2) |= σπā . Then
given that J satisfies the formula ∃ȳψ(ā, ȳ)∧C(ā)∧δπā we know that
I2 |= α′(ā), and from this is straightforward to see that I2 |= α(ā).
This was to be shown. Then since (I1, J) ∈ M and (J, I2) ∈ M′ we
obtain that (I1, I2) ∈M ◦M′.

We have shown thatM◦M′ ⊆ M ◦M′′ and thatM◦M′′ ⊆
M ◦M′, which implies thatM ◦M′ = M ◦M′′. Then sinceM′
is a maximum recovery ofM we obtain thatM′′ is also a maximum
recovery ofM. That is, we have thatΣ′′ specifies a maximum recovery
ofM.

A.7 Proof of Lemma 2

In this proof we also use the notion of disjunctive chase introduced in
the proof of Lemma 1 in Section A.6. Recall that all the inequalities in
the disjuncts of the conclusions of the dependencies in Σ′′ are of the
form x 6= x′ where x or x′ is an existentially quantified variable. Also
notice that, when chasing an instance with Σ′′ we select a fresh null
value for every existentially quantified variable. These facts are enough
to conclude that the result of chasing with Σ′′ is the same as the result
of chasing withΣ′′′ (up to isomorphic images of null values). By using
this last property we can show thatM′′′ is a UCQ-maximum recovery
ofM.

We show now thatM′′′ ≡UCQ M′′. Notice that from this fact and
sinceM′′ is a maximum recovery ofM, we obtain from Proposition 4
that M′′′ is a UCQ-maximum recovery of M. First notice that the
domain of M′′ as well as the domain of M′′′ is the set of all target
instances (all the instances composed by constants and null values).
Then in order to prove thatM′′′ ≡UCQ M′′, we need to show that for
every target instance J and every queryQ that is a union of conjunctive
queries, it holds that certainM′′(Q, J) = certainM′′′(Q, J).

Let J be a target instance, and V = {K1, . . . ,K`} the re-
sult of chasing J with Σ′′. Notice that every dependency σ in Σ′′

is such that, for every variable x that occurs simultaneously in the
premise and the conclusion of σ, the atom C(x) also occurs in the
premise of σ. From this last fact and the properties of V , it follows di-
rectly from the results in [12] that certainM′′(Q, J) = Q(K1)↓ ∩
· · · ∩ Q(K`)↓, for every query Q that is a union of conjunctive
queries. Finally, since the result of chasing with Σ′′ is the same as
the result of chasing with Σ′′′, we have that certainM′′′(Q, J) =
Q(K1)↓ ∩ · · · ∩ Q(K`)↓ = certainM′′(Q, J). Then we have that
certainM′′′(Q, J) = certainM′′(Q, J) for every target instance J
and union of conjunctive queries Q, and thenM′′′ ≡UCQ M′′.

24 Marcelo Arenas et al.

A.8 Proof of Lemma 4

In this proof we make use of another useful algebraic operation among
instances. The null-disjoint union of instances J1 and J2, denoted by
J1] J2, is the instance constructed by first renaming the nulls in J1

and J2 such that they do not share null values, and then taking the set-
theoretical union of the instances. The next lemma states an algebraic
property of × and] that we use in this proof.

Lemma 6 (c.f. [21]) Let J1, J2, and J3 be instances composed by
constant and null values. Then (J1 × J2)] J3 is homomorphically
equivalent to (J1] J3)× (J2] J3).

We show now thatM? ≡CQ M′′′. We prove first the following.
Let J be an instance composed by null and constant values. Assume
that V = {K1, . . . ,K`} is the result of chasing J with Σ′′′, and K the
result of chasing J withΣ?. Then we claim thatK is homomorphically
equivalent to K1 × · · · ×K`.

To prove the above mentioned property we first reformulate the
process of chasing with Σ′′′ by using the operation] between in-
stances. Recall that every dependency σ in Σ′′′ is of the form

ϕ(x̄) ∧C(x̄) ∧ δ(x̄)→ β1(x̄) ∨ · · · ∨ βk(x̄).

Let J be an instance and consider the setAJ of all the pairs (ā, σ) such
that: (1) ā is a tuple of elements in dom(J), (2) σ ∈ Σ′′′ is a depen-
dency of the above form, and (3) J |= ϕ(ā)∧C(ā)∧ δ(ā). The idea is
that the set AJ contains all the possible assignments to the premises of
the dependencies in Σ′′′, such that the premises hold in J . Notice that,
if a pair (ā, σ) belongs to AJ , then since C(ā) ∧ δ(ā) holds, we have
that ā is a tuple of distinct constant values. We define now the notion of
choice function. Consider a function f fromAJ to the natural numbers,
such that for every (ā, σ) it holds that f(ā, σ) ∈ {1, . . . , k}, whenever
σ has k disjuncts in its conclusion. Choice functions are used to select
a particular disjunct when we apply a dependency to instance J while
computing a disjunctive chase. Let FJ be the set of all choice functions
with domain AJ . Notice that, since J is a finite instance and Σ′′′ is a
finite set of dependencies, AJ and FJ are finite sets. We need an addi-
tional notion. Given a conjunctive query β(x̄) and an assignment ā for
the variables x̄, we denote by Iβ(ā) the instance constructed by consid-
ering the atoms of β(ā), where every existentially quantified variable
has been replaced by a fresh null value. We can formally define now
the process of chasing with Σ′′′ in terms of AJ and FJ .

For every f ∈ FJ we denote by Kf the instance:

Kf =
⊎
{Iβi(ā) | (ā, σ) ∈ AJ , βi(x̄) is a disjunct

in the conclusion of σ, and i = f(ā, σ)}.

It is clear that Kf as defined above, is a chase of J with Σ′′′. Then the
(disjunctive) chase of J with Σ′′′ is the set V = {Kf | f ∈ FJ}.

We now reformulate the chase of J with Σ? by using the opera-
tions] and × between instances. Let σ be a dependency in Σ? of the
form

ϕ(x̄) ∧C(x̄) ∧ δ(x̄)→ β1(x̄)× · · · × βk(x̄).

Notice that, if ā is a tuple in dom(J) such that J |= ϕ(ā)∧C(ā)∧δ(ā),
then the atoms of β1(ā)×· · ·×βk(ā), where every existentially quan-
tified variable has been replaced by a fresh null value, are added to
the chase of J with Σ?. That is, the instance Iβ1(ā)×···×βk(ā) is
added to the chase of J with Σ?. The crucial observation here is
that, since ā is a tuple of distinct constant values, then the instance
Iβ1(ā)×···×βk(ā), equals the product of instances Iβ1(ā)×· · ·×Iβk(ā)

(up-to isomorphic image of null values). It should be noticed that
this last property does not hold if ā is a tuple where some val-
ues are repeated. For example, if β1(x1, x2) = R(x1, x1, x2) and
β2(x1, x2) = R(x1, x2, x2) then β1(x1, x2) × β2(x1, x2) is the

query ∃u R(x1, u, x2). Now if we consider tuple ā = (a, a), then we
have that Iβ1(a,a)×β2(a,a) is the instance {R(a, n, a)} with n a null
value, while Iβ1(a,a) × Iβ2(a,a) = {R(a, a, a)}. On the other hand if
we consider the tuple ā = (a, b) with a and b different values, we have
that Iβ1(a,b)×β2(a,b) = Iβ1(a,b) × Iβ2(a,b) = {R(a,m, b)} with m a
null value.

Consider A?J the set of pairs defined as for Σ′′′ but considering
the dependencies in Σ?. Notice that dependencies in Σ? do not have
disjunctions, thus, to define the chase with Σ? we do not need choice
functions as for Σ′′′. Then we can reformulate the chase of J with Σ?

in terms of A?J ,] and × as follows

K =
⊎
{Iβ1(ā) × · · · × Iβk(ā) | (ā, σ) ∈ A?J and

β1(x̄)× · · · × βk(x̄) is the conclusion of σ}.

To conclude the proof of the claim, we must show that the product
of the instances in V = {Kf | f ∈ FJ}, is homomorphically equiv-
alent to instance K above. Fix a pair (ā′, σ′) in AJ and assume that
β′1(x̄′) ∨ · · · ∨ β′

k′(x̄
′) is the conclusion of σ′. Notice that, if for a

particular function f ′ ∈ FJ it is the case that f ′(ā′, σ′) = i′, then we
can write Kf ′ as

Iβ′
i′ (ā

′)]
(⊎

{Iβi(ā) | (ā, σ) ∈ AJ r {(ā′, σ′)}, βi(x̄)

is a disjunct in σ, and i = f ′(ā, σ)}
)
.

In the above expression we have separated the pair (ā′, σ′) from AJ
and thus, since f ′(ā′, σ′) = i′ we have to explicitly include instance
Iβ′

i′ (ā
′) in the union that defines Kf ′ . Notice that every function f ∈

FJ can be seen as a choice function over domain AJ r {(ā′, σ′)} plus
an assignment for (ā′, σ′) in the set {1, . . . , k′}. Then we can write the
product of all the instances in V = {Kf | f ∈ FJ} as

k′×
i′=1

[×
f∈FJ

[
Iβ′

i′ (ā
′)](⊎

{Iβi(ā) | (ā, σ) ∈ AJ r {(ā′, σ′)}, βi(x̄)

is a disjunct in σ, and i = f(ā, σ)}
)]]

.

Thus, we consider separately every one of the possible choices (be-
tween 1 and k′) that the functions in FJ can make for the pair (ā′, σ′).
By applying Lemma 6, we know that the above instance is homomor-
phically equivalent to

k′×
i′=1

[
Iβ′

i′ (ā
′)](×

f∈FJ

⊎
{Iβi(ā) | (ā, σ) ∈ AJ r {(ā′, σ′)}, βi(x̄)

is a disjunct in σ, and i = f(ā, σ)}
)]

.

By applying Lemma 6 again, we obtain that this last instance is homo-
morphically equivalent to(
Iβ′

1(ā
′) × · · · × Iβ′

k′ (ā
′)

)
](×

f∈FJ

⊎
{Iβi(ā) | (ā, σ) ∈ AJ r {(ā′, σ′)}, βi(x̄)

is a disjunct in σ, and i = f(ā, σ)}
)
.

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 25

If we continue separating one by one the elements in AJ , we finally
obtain that the above instance is homomorphically equivalent to⊎
{Iβ1(ā) × · · · × Iβk(ā) | (ā, σ) ∈ AJ and

β1(x̄) ∨ · · · ∨ βk(x̄) is the conclusion of σ}.

It is straightforward to see that this last instance is homomorphically
equivalent to K. Just notice that, if for a dependency σ ∈ Σ′′′ of the
form ϕ(x̄)∧C(x̄)∧ δ(x̄)→ β1(x̄)∨ · · · ∨βk(x̄), we do not include a
corresponding dependency in Σ?, then β1(x̄)× · · · × βk(x̄) is empty,
which implies that Iβ1(ā) × · · · × Iβk(ā) is the empty instance for
every tuple ā of distinct constant values. Thus we have shown thatK is
homomorphically equivalent toK1×· · ·×K` with V = {K1, . . . ,K`}
the result of chasing J withΣ′′′. This completes the proof of the claim.

We are ready now to prove thatM? ≡CQ M′′′. Let J be a target
instance (composed by constant and null values), V = {K1, . . . ,K`}
the result of chasing J with Σ′′′, and K the result of chasing J
with Σ?. Notice that every dependency σ in Σ′′′ is such that for
every variable x that occurs simultaneously in the premise and the
conclusion of σ, the atom C(x) also occurs in the premise of σ.
From this last fact and the properties of V , it follows directly that
certainM′′′(Q, J) = Q(K1)↓ ∩ · · · ∩ Q(K`)↓, for every conjunc-
tive query Q. Similarly, for M? we have that, for every conjunctive
query it holds that certainM?(Q, J) = Q(K)↓. Then we only have
to prove thatQ(K)↓ = Q(K1)↓∩· · ·∩Q(K`)↓, for every conjunctive
queryQ. LetQ be an n-ary conjunctive query with free variables x̄. We
first show that Q(K)↓ ⊆ Q(K1)↓ ∩ · · · ∩Q(K`)↓. Let ā be an n-ary
tuple such that ā ∈ Q(K)↓. Since K is homomorphically equivalent
to the productK1× . . .K` we know that there exists a homomorphism
from K to every Ki with 1 ≤ i ≤ `, and then ā ∈ Q(Ki)↓ for every
1 ≤ i ≤ `. Now, to show that Q(K1)↓ ∩ · · · ∩Q(K`)↓ ⊆ Q(K)↓, as-
sume that ā ∈ Q(K1)↓ ∩ · · · ∩Q(K`)↓. Then we know that, for every
Ki with 1 ≤ i ≤ ` there exists a homomorphism h from the atoms in
Q to Ki, such that h(x̄) = ā. Then by the properties of the product of
instances (see Lemma 3), we know that there exists a homomorphism
h′ from the atoms in Q to K, such that h(x̄) = ā, and thus, since ā is
a tuple of constant values, we obtain that ā ∈ Q(K)↓. We have shown
that Q(K)↓ = Q(K1)↓ ∩ · · · ∩ Q(K`)↓ for every conjunctive query
Q, which implies thatM? ≡CQ M′′′. This concludes the proof.

A.9 Proof of Theorem 6

(1) Let S = {A(·, ·), B(·, ·)}, T = {P (·, ·)} and M = (S,T, Σ),
where Σ = {A(x, y) → P (x, y), B(x, x) → P (x, x)}. Next we
show that M does not have a CQ-maximum recovery specified by a
set of CQC-TO-CQ dependencies.

For the sake of contradiction, assume that there exists a mapping
M′ specified by a set Σ′ of CQC-TO-CQ dependencies such thatM′
is a CQ-maximum recovery ofM. Next we show that this leads to a
contradiction by considering two cases.
(I) Assume that Σ′ is empty. Then, for every instance J of T and K
of S, we have that (J,K) |= Σ′. Thus, by the definition of Σ, we
conclude that for every pair of source instances I and I′, it holds that
(I, I′) ∈ M ◦M′. LetM′′ be a ts-mapping specified by dependency
P (x, y) ∧ x 6= y → A(x, y). It is straightforward to prove thatM′′ is
a recovery of M, which implies that M′′ is a CQ-recovery of M.
Consider now instance I = {A(a, b), B(a, b)} where a 6= b, and
Boolean query Q = ∃x∃y A(x, y). We have that Q(I) = true =
certainM◦M′′(Q, I) but certainM◦M′(Q, I) = false, and thus
certainM◦M′′(Q, I) 6⊆ certainM◦M′(Q, I) which is a contradic-
tion with our assumption thatM′ is a CQ-maximum recovery ofM.

(II) Assume that Σ′ is nonempty. Consider the source instances I1 =
{A(a, a)} and I2 = {B(a, a)}, and let J = {P (a, a)}. Notice that

J is the canonical universal solution for both I1 and I2 under Σ. As-
sume that K is the result of chasing J with Σ′. Notice that K could
not be a valid source instance (it may contain null values). Neverthe-
less, since J is composed only by constant values, and by using the
properties of the chase [12,14,15], we know that for every Q that is
a union of conjunctive queries, it holds that certainM◦M′(Q, I1) =
certainM◦M′(Q, I2) = Q(K)↓. We use this last fact and the fact
that Σ′ is nonempty, to derive a contradiction.

Given that Σ′ is nonempty, there exists a CQC-TO-CQ depen-
dency ϕ(x1, . . . xm) → ∃y1 · · · ∃yn ψ(x1, . . . , xm, y1, . . . , yn) that
belongs to Σ′. Thus, we have that (J,K) satisfies this constraint.
But this implies that K is nonempty since J = {P (a, a)} and J |=
ϕ(a, . . . , a) (since a is a constant and ϕ is a query in CQC over T).

Given that K is nonempty, we have that AK 6= ∅ or BK 6= ∅.
If AK 6= ∅, then let QA be Boolean query ∃x∃yA(x, y). We know
that certainM◦M′(QA, I2) = QA(K). Thus, given that AK 6= ∅,
we conclude that certainM◦M′(QA, I2) = true. But this leads to a
contradiction since we assume that M′ is a CQ-recovery of M and
QA(I2) = false. IfBK 6= ∅, then we obtain a similar contradiction by
considering Boolean query QB = ∃x∃yB(x, y) and source instance
I1. This concludes the proof of the first part of the theorem.

(2) Let S = {A(·), B(·)}, T = {P (·)} andM = (S,T, Σ), where
Σ is the following set of st-tgds:

Σ = {A(x)→ ∃yP (y), B(x)→ P (x)}.

Next we show thatM does not have a CQ-maximum recovery spec-
ified by a set of CQ 6=-TO-CQ dependencies. For the sake of con-
tradiction, assume that M′ is a mapping specified by a set Σ′ of
CQ 6=-TO-CQ dependencies such that M′ is a CQ-maximum recov-
ery ofM.

LetM? be a mapping (T,S, Σ?), where Σ? is the set of ts-tgds
{P (x)∧C(x)→ B(x)}. Next we show thatM? is a CQ-recovery of
M. Let I be an instance of S and Q a conjunctive query over S, and
assume that J = chaseΣ?(chaseΣ(I)). It is straightforward to prove
that AJ = ∅ and BJ = BI . Thus, we have that J ⊆ I, which implies
that Q(J) ⊆ Q(I). Given that J ∈ SolM◦M?(I) in this case, we
conclude that certainM◦M?(Q, I) ⊆ Q(I), which implies thatM?

is a CQ-recovery ofM.
Let I1 and I2 be instances of S such that I1 = {A(a)}

and I2 = {B(a)}, where a is an arbitrary element of C,
and QB be Boolean query ∃xB(x). It is straightforward to
prove that certainM◦M?(QB , I2) = true. Thus, we have that
certainM◦M′(QB , I2) = true since M? is a CQ-recovery of M
and M′ is a CQ-maximum recovery of M. Next we use this fact to
prove that certainM◦M′(QB , I1) = true. Let J ∈ SolM◦M′(I1).
Then there exists an instance K of T such that (I1,K) |= Σ and
(K, J) |= Σ′. Let f : dom(K) ∪ dom(J) → C be a one-to-one
mapping such that f(u) = a for some u ∈ dom(K). We note that
such a function exists since K is not empty. By the definition of Σ,
we have that (I2, f(K)) |= Σ. Furthermore, given that Σ′ is a set
of CQ 6=-TO-CQ dependencies, we have that (f(K), f(J)) |= Σ′.
Thus, we have that (I2, f(J)) ∈ M ◦M′, from which we conclude
that f(J) |= ∃xB(x) (since certainM◦M′(QB , I2) = true). There-
fore, given that J and f(J) are isomorphic instances (not considering
predicate C), we have that J |= ∃xB(x). We conclude that for every
J ∈ SolM◦M′(I1), it holds that J |= ∃xB(x). Thus, we have that
certainM◦M′(QB , I1) = true. But this leads to a contradiction since
QB(I1) = false andM′ is assumed to be a CQ-maximum recovery
ofM. This concludes the proof of the theorem.

A.10 Proof of Proposition 5

In order to prove (1), let S = {A(·), B(·), C1(·), C2(·)}, T =
{R1(·), R2(·)}, andM = (S,T, Σ) an st-mapping specified by the

26 Marcelo Arenas et al.

following set Σ of CQ-TO-UCQ st-dependencies:

B(x) ∧ C1(x) → R1(x),

B(x) ∧ C2(x) → R2(x),

A(x) → R1(x) ∨R2(x).

We show next thatM does not have a CQ-maximum recovery. In order
to obtain a contradiction, assume thatM′ is a CQ-maximum recovery
of M. Let M1 be the mapping from T to S given by dependency
R1(x) → C1(x) ∧ B(x). It is not difficult to see that M1 is a CQ-
recovery ofM. Just notice that for every instance I of S we have that
J = {R1(a) | B(a) ∈ I and C1(a) ∈ I} ∪ {R2(a) | A(a) ∈ I} is
in SolM(I). Moreover, I ∈ SolM1

(J), and thus I ∈ SolM◦M1
(I)

which implies that certainM◦M1
(Q, I) ⊆ Q(I) for every query Q.

Similarly, for the mapping given by dependency R2(x) → C2(x) ∧
B(x), we have thatM2 is a CQ-recovery ofM. Thus, sinceM′ is a
CQ-maximum recovery ofM, we have that for every instance I of S
and conjunctive query Q it holds that

certainM◦M1
(Q, I) ⊆ certainM◦M′(Q, I) ⊆ Q(I), and (12)

certainM◦M2
(Q, I) ⊆ certainM◦M′(Q, I) ⊆ Q(I). (13)

Let I1 = {B(a), C1(a)}, and Q1 the query in CQ given by
B(x)∧C1(x). Notice that certainM◦M1

(Q1, I1) = Q1(I1) = {a}
and thus, from (12), we have that certainM◦M′(Q1, I1) = {a}.
Therefore, we have that for every instance J ∈ SolM◦M′(I1) it
holds that {B(a), C1(a)} ⊆ J . Similarly, for the instance I2 =
{B(a), C2(a)} and query Q2 given by B(x) ∧ C2(x), we have that
certainM◦M2

(Q2, I2) = Q2(I2) = {a} and thus, from (13), we
have certainM◦M′(Q2, I2) = {a}, which implies that for every in-
stance J ∈ SolM◦M′(I2) it holds that {B(a), C2(a)} ⊆ J .

Consider now instance I3 = {A(a)}. It is not difficult to see that
SolM(I3) = SolM(I1) ∪ SolM(I2), and thus SolM◦M′(I3) =
SolM◦M′(I1)∪SolM◦M′(I2). We have shown before that every in-
stance in SolM◦M′(I1) contains the facts B(a), C1(a) and that ev-
ery instance in SolM◦M′(I2) contains the facts B(a), C2(a), which
implies that every instance in SolM◦M′(I3) = SolM◦M′(I1) ∪
SolM◦M′(I2) contains the fact B(a). Thus consider the query
Q in CQ given by B(x). By the discussion above we have that
certainM◦M′(Q, I3) = {a} but Q(I3) = ∅ which is a contradic-
tion with the assumption thatM′ is a CQ-recovery ofM.

Now to prove (2), let S = {A(·), B(·), C1(·), C2(·)}, T =
{R(·, ·)}, and M = (S,T, Σ) an st-mapping specified by the fol-
lowing set Σ of CQ-TO-CQ 6= st-dependencies:

B(x) ∧ C1(x) → R(x, x),

B(x) ∧ C2(x) → ∃y(R(x, y) ∧ x 6= y),

A(x) → ∃yR(x, y).

We show next thatM does not have a CQ-maximum recovery. In or-
der to obtain a contradiction, assume that M′ is a CQ-maximum re-
covery ofM. LetM1 be the mapping from T to S given by depen-
dency R(x, x) → C1(x) ∧ B(x), and M2 given by R(x, y) ∧ x 6=
y → C2(x) ∧ B(x). As for the case (1), it is not difficult to prove
that M1 and M2 are CQ-recoveries of M. If we consider instances
I1 = {B(a), C1(a)}, I2 = {B(a), C2(a)}, and I3 = {A(a)}, ex-
actly as for part (1), it can be shown that B(a) is a fact in every so-
lution in SolM◦M′(I1) ∪ SolM◦M′(I2), and that SolM◦M′(I3) =
SolM◦M′(I1) ∪ SolM◦M′(I2), which implies that for the conjunc-
tive query Q(x) = B(x) it holds that certainM◦M′(Q, I3) = {a}
but Q(I3) = ∅, which is our desired contradiction. This concludes the
proof of the proposition.

A.11 Proof of Proposition 6

Let S = {A(·), B(·)}, T = {T (·)} and M = (S,T, Σ), where
Σ = {A(x)→ T (x), B(x)→ T (x)}.

(a) Let M? = (T,S, Σ?) where Σ? is the set of CQ-TO-UCQ de-
pendencies

Σ? = {T (x)→ A(x) ∨B(x)}.
By using the tools in [4], it is easy to show that M? is a maximum
recovery ofM, which implies thatM? is a UCQ-maximum recovery
ofM.

(b) For the sake of contradiction, assume that there exists a mapping
M′ specified by a set Σ′ of FOC-TO-CQ dependencies such thatM′
is a UCQ-maximum recovery ofM. Moreover, let I1 be an instance
of S such that:

AI1 = {a},
BI1 = {b},

where a, b are distinct constants. First, we prove that for every instance
I2 ∈ SolM◦M′(I1), it holds that a ∈ AI2 or a ∈ BI2 . For the
sake of contradiction, assume that I2 does not satisfy this condition.
Then let Q1(x) be the query A(x) ∨ B(x), and assume that M? is
the mapping defined in (a). We have that a 6∈ Q1(I2) and, therefore,
a 6∈ certainM◦M′(Q1, I1). On the other hand, we have by definition
ofM? that a ∈ certainM◦M?(Q1, I1). Thus, we conclude thatM′
is not a UCQ-maximum recovery of M, as M? is a UCQ-recovery
ofM and certainM◦M?(Q1, I1) 6⊆ certainM◦M′(Q1, I1), which
contradicts our initial assumption.

Second, we prove that for every instance I2 ∈ SolM◦M′(I1),
it holds that a, b ∈ AI2 or a, b ∈ BI2 . Let I2 ∈ SolM◦M′(I1)
and assume that J is an instance of T such that (I1, J) ∈ M and
(J, I2) ∈M′. Moreover, assume thatK is the result of chasing J with
Σ′. By the result in the previous paragraph, we have that a ∈ AK

or a ∈ BK . Assume without loss of generality that a ∈ AK . Then
there exists a dependency ϕ(x̄) → ψ(x̄) in Σ′ and a tuple c̄ of ele-
ments from J such that J |= ϕ(c̄) and A(a) is a conjunct in ψ(c̄).
Thus, given that (J, I2) |= Σ′ and ψ(x̄) is a conjunctive query, we
conclude that a ∈ AI2 . Let f : dom(J) → dom(J) be a bi-
jection defined as f(a) = b, f(b) = a and f(c) = c for every
c ∈ (dom(J) \ {a, b}). Given that a, b are constants, we have that
f is an automorphism of J . Therefore, given that ϕ(x̄) is a of formula
in FOC (recall thatΣ′ is a set of FOC-TO-CQ dependencies), we con-
clude that J |= ϕ(f(c̄)), where f(c̄) is the tuple obtained by replacing
each element c in c̄ by its image f(c). We conclude that I2 |= ψ(f(c̄))
since (J, I2) |= Σ′. Thus, given that A(a) is a conjunct in ψ(c̄), we
have that A(f(a)) = A(b) is a conjunct in ψ(f(c̄)) and, therefore,
b ∈ AI2 (since ψ(x̄) is a conjunctive query). Hence, from the assump-
tion that a ∈ AK , we have proved that a, b ∈ AI2 (analogously, from
the assumption that a ∈ BK , it is possible to prove that a, b ∈ BI2),
which was to be shown.

Now let Q2(x, y) be the query (A(x) ∧ A(y)) ∨ (B(x) ∧
B(y)). In the previous paragraph, we prove that for every instance
I2 ∈ SolM◦M′(I1), it holds that a, b ∈ AI2 or a, b ∈ BI2 ,
from which we conclude that (a, b) ∈ certainM◦M′(Q2, I1). But
(a, b) 6∈ Q2(I1) as AI1 = {a} and BI1 = {b}, which implies that
certainM◦M′(Q2, I1) 6⊆ Q2(I1). Therefore, we have that M′ is
not a UCQ-recovery ofM, which contradicts our assumption thatM′
is a UCQ-maximum recovery ofM. This concludes the proof of the
proposition.

A.12 Proof of Proposition 7

Let S = {P (·, ·)}, T = {T (·)} andM = (S,T, Σ), where Σ is the
following set of CQ 6=-TO-CQ dependencies:

Σ = {P (x, y) ∧ x 6= y → T (x)}.
(a) LetM? = (T,S, Σ?) be a ts-mapping specified by the following
set of CQ-TO-CQ 6= dependencies:

Σ? = {T (x)→ ∃y (P (x, y) ∧ x 6= y)}.

Query Language based Inverses of Schema Mappings: Semantics, Computation, and Closure Properties 27

By using the tools in [4] it is easy to prove that M? is a maximum
recovery ofM, and thusM? is a CQ 6=-maximum recovery ofM.

We now prove (b). For the sake of contradiction, assume that there
exists a mappingM′ specified by a set of FOC-TO-CQ dependencies
such thatM′ is a CQ 6=-maximum recovery ofM. Moreover, let I be
an instance of S such that P I = {(a, b)}, where a 6= b, and J a target
instance such that TJ = {a}. Then we have that (I, J) |= Σ, and
then (I, J) ∈ M. Let K be the chase of J with Σ′. Thus, given that
dom(J) = {a}, we have that

dom(K) ∩C ⊆ {a}. (14)

Then since J is composed only by constant values and Σ′ is a set of
FOC-TO-CQ, we have that every instance K′ that is a homomorphic
image of K, is such that (J,K′) |= Σ′. Consider the homomorphism
h that maps every null in K into a. Notice that h(K) is composed
only by constant values and that (J, h(K)) |= Σ′, then (J, h(K)) ∈
M′. Thus, we have that (I, h(K)) ∈ M ◦ M′. Now, let Q be the
query in CQ 6= given by ∃x∃y (P (x, y) ∧ x 6= y). From (14), we have
that Ph(K) ⊆ {(a, a)} and, hence, Q(h(K)) = false. We conclude
that certainM◦M′(Q, I) = false. Now, it is easy to prove that for
M? defined in (a), we have certainM◦M?(Q, I) = true. Therefore,
we have that certainM◦M′(Q, I) (certainM◦M?(Q, I) = Q(I),
which contradicts the fact that M′ is a CQ 6=-maximum recovery of
M sinceM? is a CQ 6=-recovery ofM. This concludes the proof of
the proposition.

